The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Situ Formation of NZF Intercalated EG
2.2. Distribution of Magnetic Particles in EG Interlayers
2.2.1. Model Building
2.2.2. Distribution of Magnetic Particles
2.3. Radar Wave Attenuation Property
3. Materials and Methods
3.1. Materials
3.2. Synthesis of NZFP/GICs
3.3. Synthesis of NZF/EG
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Daso, D.A. Weapons of choice: The development of precision guided munitions. Technol. Cult. 2008, 49, 252–254. [Google Scholar] [CrossRef]
- Xu, J.W.; Liao, G.S.; Zhu, S.Q.; So, H.C. Deceptive jamming suppression with frequency diverse MIMO radar. Signal Process. 2015, 113, 9–17. [Google Scholar] [CrossRef]
- Borah, D.; Bhattacharyya, N.S. Design and development of expanded graphite-based non-metallic and flexible metamaterial absorber for x-band applications. J. Electron. Mater. 2017, 46, 226–232. [Google Scholar] [CrossRef]
- Hung, W.C.; Wu, K.H.; Lyu, D.Y.; Cheng, K.F.; Huang, W.C. Preparation and characterization of expanded graphite/metal oxides for antimicrobial application. Mater. Sci. Eng. C 2017, 75, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Jin, W.; Ji, X.; Yan, H.; Jiang, Y.; Dong, Y.; Yang, Y.; Dang, A.; Li, H.; Li, T.; et al. Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties. J. Alloys Compd. 2017, 712, 59–68. [Google Scholar] [CrossRef]
- Li, X.; Qu, Y.F.; Wang, X.; Bian, H.Y.; Wu, W.B.; Dai, H.Q. Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding. Mater. Des. 2022, 213, 110296. [Google Scholar] [CrossRef]
- Kang, G.-H.; Kim, S.-H.; Kang, J.-H.; Lim, J.; Yoo, M.H.; Kim, Y.T. Enhancement of electromagnetic wave shielding effectiveness by the incorporation of carbon nanofibers–carbon microcoils hybrid into commercial carbon paste for heating films. Molecules 2023, 28, 870. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Wang, Y.; Gao, F.; Wang, F.; Yang, H.; Jin, F.; Bai, G.; Cao, Z.; Du, Y. In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber. Mater. Des. 2023, 225, 111576. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, B.; Feng, A.; Liu, J.; Zhang, C.; Zhang, M.; Wu, G. Fabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheres. J. Mater. Sci. Mater. Electron. 2017, 28, 9279–9288. [Google Scholar] [CrossRef]
- Gogoi, J.P.; Bhattacharyya, N.S.; Bhattacharyya, S. Single layer microwave absorber based on expanded graphite–novolac phenolic resin composite for x-band applications. Compos. Part B Eng. 2013, 58, 512–523. [Google Scholar] [CrossRef]
- Sambyal, P.; Singh, A.P.; Verma, M.; Farukh, M.; Singh, B.P.; Dhawan, S.K. Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. RSC Adv. 2014, 24, 12614–12624. [Google Scholar] [CrossRef]
- Wang, X.B.; Zhu, W.F.; Wei, X.; Zhang, Y.X.; Chen, H.H. Preparation and millimeter wave attenuation properties of NiFe2O4/expanded graphite composites by low-temperature combustion synthesis. Mater. Sci. Eng. B 2014, 185, 1–6. [Google Scholar] [CrossRef]
- Quan, L.; Zhang, H.; Wei, H.; Li, Y.; Park, S.O.; Hwang, D.Y.; Tian, Y.; Huang, M.; Wang, C.; Wang, M.; et al. The electromagnetic absorption of a Na-ethylenediamine graphite intercalation compound. ACS App. Mater. Int. 2020, 12, 16841–16848. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Narang, S.B. Magnetic characterization of nickel-zinc spinel ferrites along with their microwave characterization in Ku band. J. Magn. Magn. Mater. 2020, 513, 167052. [Google Scholar] [CrossRef]
- Luo, J.H.; Li, X.P.; Yan, W.X.; Shu, P.C.; Mei, J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon 2023, 205, 552–561. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Yu, R.; Ma, X.; Jin, S.; Chen, K.; Chen, S.; Lv, X.; Shu, Q. Synthesis and microwave absorption properties of sulfur-free expanded graphite/Fe3O4 composites. Molecules 2020, 25, 3044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, L.; Jiang, K.; Fan, M.; Jin, C.; Han, J.; Wu, W.; Tong, G. Distinctly enhanced permeability and excellent microwave absorption of expanded graphite/Fe3O4 nanoring composites. RSC Adv. 2017, 7, 11561–11567. [Google Scholar] [CrossRef]
- Chen, K.Y.; Xiang, C.; Li, L.C.; Qian, H.S.; Xiao, Q.S. A novel ternary composite: Fabrication, performance and application of expanded graphite/polyaniline/CoFe2O4 ferrite. J. Mater. Chem. 2012, 22, 6449–6455. [Google Scholar] [CrossRef]
- Chen, D.M.; Harward, I.; Baptist, J.; Goldman, S.; Celinski, Z. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method. J. Magn. Magn. Mater. 2015, 395, 350–353. [Google Scholar] [CrossRef]
- Ma, X.X.; Gu, S.; Li, Y.X.; Lu, J.; Yang, G.C.; Zhang, K.L. Additive-free energetic film based on graphene oxide and nanoscale energetic coordination polymer for transient microchip. Adv. Funct. Mater. 2021, 31, 2103199. [Google Scholar] [CrossRef]
- Nixon, D.E.; Parry, G.S. The expansion of the carbon-carbon bond length in potassium graphites. J. Phys. C Solid State Phys. 1969, 2, 1732–1741. [Google Scholar] [CrossRef]
- Persson, I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure. Appl. Chem. 2010, 82, 1901–1917. [Google Scholar] [CrossRef]
- Johansson, G. Structures of complexes in solution derived from x-ray diffraction measurements. Adv. Inorg. Chem. 1992, 39, 159–232. [Google Scholar] [CrossRef]
- Kristiansson, O.; Persson, I.; Bobicz, D.; Xu, D.W. A structural study of the hydrated and the dimethylsulfoxide, N,N′-dimethylpropyleneurea, acetonitrile, pyridine and N,N-dimethylthioformamide solvated nickel(II) ion in solution and solid state. Inorg. Chim. Acta 2003, 344, 15–27. [Google Scholar] [CrossRef]
- Mendis, A.; Thambiliyagodage, C.; Ekanayake, G.; Liyanaarachchi, H.; Jayanetti, M.; Vigneswaran, S. Fabrication of naturally derived chitosan and ilmenite sand-based TiO2/Fe2O3/Fe-N-doped graphitic carbon composite for photocatalytic degradation of methylene blue under sunlight. Molecules 2023, 28, 3154. [Google Scholar] [CrossRef]
- Szabó, T.; Berkesi, O.; Dékány, I. Drift study of deuterium-exchanged graphite oxide. Carbon 2005, 43, 3186–3189. [Google Scholar] [CrossRef]
- Tian, J.; Wu, S.; Yin, X.L.; Wu, W. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl. Surf. Sci. 2019, 496, 143696. [Google Scholar] [CrossRef]
- Vara Prasad, B.B.V.S. Effect of indium substitution on the electrical and magnetic properties of Ni–Zn ferrite. J. Theor. Appl. Phys. 2015, 9, 267–272. [Google Scholar] [CrossRef]
- Galal, A.; Sadek, O.; Soliman, M.; Ebrahim, S.; Anas, M. Synthesis of nanosized nickel zinc ferrite using electric arc furnace dust and ferrous pickle liquor. Sci. Rep. 2021, 11, 20170. [Google Scholar] [CrossRef]
- Farooq, W.A.; Sajjad Ul Hasan, M.; Khan, M.I.; Ashraf, A.R.; Abdul Qayyum, M.; Yaqub, N.; Almutairi, M.A.; Atif, M.; Hanif, A. Structural, optical and electrical properties of Cu0.6CoxZn0.4−xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4) soft ferrites. Molecules 2021, 26, 1399. [Google Scholar] [CrossRef]
- Chen, B.Y.; Chen, D.; Kang, Z.T.; Zhang, Y.Z. Preparation and microwave absorption properties of Ni-Co nano ferrites. J. Alloys Compd. 2015, 618, 222–226. [Google Scholar] [CrossRef]
- Wu, N.; Xu, D.; Wang, Z.; Wang, F.; Liu, J.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 2019, 145, 433–444. [Google Scholar] [CrossRef]
- Hamaker, H.C. The London-van der waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- London, F. The general theory of molecular forces. Trans. Faraday Soc. 1937, 33, 8b–26. [Google Scholar] [CrossRef]
- Spinks, J.M. Dynamic Simulation of Particles in a Magnetorheological Fluid. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2008. [Google Scholar]
- Dagastine, R.R.; Prieve, D.C.; White, L.R. Calculations of van der waals forces in 2-dimensionally anisotropic materials and its application to carbon black. J. Colloid Interf. Sci. 2002, 249, 78–83. [Google Scholar] [CrossRef]
- Mei, H.G.; Zhao, D.W.; Wang, T.Q.; Cheng, J.; Lu, X.C. A kinematic model describing particle movement near a surface as effected by brownian motion and electrostatic and van der waals forces. Sci. China Technol. Sci. 2014, 57, 2144–2152. [Google Scholar] [CrossRef]
- Forsyth, A.J.; Rhodes, M.J. A simple model incorporating the effects of deformation and asperities into the van der waals force for macroscopic spherical solid particles. J. Colloid Interf. Sci. 2000, 223, 113–138. [Google Scholar] [CrossRef]
- Tseng, S.J.; Huang, C.H.; Hsu, J.P. Electrophoresis of two spheres: Influence of double layer and van der waals interactions. J. Colloid Interface Sci. 2015, 451, 170–176. [Google Scholar] [CrossRef]
- Qi, Y.; Hector, L.G., Jr.; Ooi, N.; Adams, J.B. A first principles study of adhesion and adhesive transfer at Al(111)/graphite(0001). Sur. Sci. 2005, 581, 155–168. [Google Scholar] [CrossRef]
- Lenchuk, O.; Adelhelm, P.; Mollenhauer, D. Comparative study of density functionals for the description of lithium-graphite intercalation compounds. J. Comput. Chem. 2019, 40, 2400–2412. [Google Scholar] [CrossRef]
- Liang, H.; Li, S.C.; Chen, Y.P.; Zhou, Z.N. Radar attenuation performance of magnetic expanded graphite aerosol obtained from thermal expansion of stage-1 ferrocene graphite intercalation compounds. Mater. Des. 2020, 188, 108436. [Google Scholar] [CrossRef]
- Cai, R.; Zheng, W.; Yang, P.; Rao, J.; Huang, X.; Wang, D.; Du, Z.; Yao, K.; Zhang, Y. Microstructure, electromagnetic properties, and microwave absorption mechanism of SiO2-MnO-Al2O3 based manganese ore powder for electromagnetic protection. Molecules 2022, 27, 3758. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.H.; Dai, Z.Y.; Feng, M.N.; Chen, X.W.; Sun, C.H.; Xu, Y. Hierarchically porous carbon derived from natural porphyra for excellent electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 129, 206–214. [Google Scholar] [CrossRef]
- Cao, M.; Wang, X.; Cao, W.; Fang, X.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Feng, Y.; Zhu, Q.; Xia, Y.; Luo, L.; Ma, L.; Su, J.; Hu, X.; Wang, R.; Qi, S. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption. J. Mater. Sci. Technol. 2022, 113, 71–81. [Google Scholar] [CrossRef]
- Liu, P.; Ng, V.M.H.; Yao, Z.; Zhou, J.; Lei, Y.; Yang, Z.; Lv, H.; Kong, L.B. Facile synthesis and hierarchical sssembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Inter. 2017, 99, 16404–16416. [Google Scholar] [CrossRef]
- Luo, J.H.; Feng, M.N.; Dai, Z.Y.; Jiang, C.Y.; Yao, W.; Zhai, N.X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789. [Google Scholar] [CrossRef]
- Tong, G.X.; Wu, W.H.; Hua, Q.; Miao, Y.Q.; Guan, J.G.; Qian, H.S. Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18 GHz ranges. J. Alloys Compd. 2011, 509, 451–456. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749. [Google Scholar] [CrossRef]
- Jiao, Z.; Huyan, W.; Yang, F.; Yao, J.; Tan, R.; Chen, P.; Tao, X.; Yao, Z.; Zhou, J.; Liu, P. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano Micro Lett. 2022, 14, 173. [Google Scholar] [CrossRef]
- Yang, X.; Shu, T.; Yang, X.; Qiao, M.; Wang, D.; Li, X.; Rao, J.; Liu, Z.; Zhang, Y.; Yang, P.; et al. MOFs-derived three-phase microspheres: Morphology preservation and electromagnetic wave absorption. Molecules 2022, 27, 4773. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yang, X.; Shu, T.; Yang, X.; Qiao, M.; Wang, D.; Liu, Z.; Li, X.; Rao, J.; Zhang, Y.; et al. In situ synthesis of C-N@NiFe2O4@MXene/Ni nanocomposites for efficient electromagnetic wave absorption at an ultralow thickness level. Molecules 2023, 28, 233. [Google Scholar] [CrossRef] [PubMed]
Basic Parameter | Symbol | Value |
---|---|---|
Particle size | a | 300 nm |
Particle number | N | 100 |
The length of the simulated space | length | |
The width of the simulated space | width | |
The height of the simulated space | height | |
Hamaker constant between particles | 2 × 10−19 | |
Hamaker constant between particles and graphite layers | 2 × 10−19 | |
Air viscosity | ||
Time step |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, N.; Zhou, Z.; Ma, X.; Zhang, H.; Xu, X.; Chen, Y.; Guo, Z. The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property. Molecules 2023, 28, 4128. https://doi.org/10.3390/molecules28104128
Xiang N, Zhou Z, Ma X, Zhang H, Xu X, Chen Y, Guo Z. The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property. Molecules. 2023; 28(10):4128. https://doi.org/10.3390/molecules28104128
Chicago/Turabian StyleXiang, Ning, Zunning Zhou, Xiaoxia Ma, Huichao Zhang, Xiangyuan Xu, Yongpeng Chen, and Zerong Guo. 2023. "The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property" Molecules 28, no. 10: 4128. https://doi.org/10.3390/molecules28104128
APA StyleXiang, N., Zhou, Z., Ma, X., Zhang, H., Xu, X., Chen, Y., & Guo, Z. (2023). The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property. Molecules, 28(10), 4128. https://doi.org/10.3390/molecules28104128