Comparative Study on Assisted Solvent Extraction Techniques for the Extraction of Biologically Active Compounds from Sideritis raeseri and Sideritis scardica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Composition of Sideritis scardica and Sideritis raeseri
2.2. Comparative Analyses of Phytochemical Variation between Extracts with Different Polarities from Sideritis raeseri and Sideritis scardica
2.3. Comparative Analyses of Phytochemical Variation between Extracts from Conventional and Assisted Solvent Extractions
3. Materials and Methods
3.1. Plant Material
3.2. Determination of Moisture Content
3.3. Preparation of Extracts
3.3.1. Conventional Solvent Extraction (CSE)
3.3.2. Assisted Solvent Extractions (ASE)
3.4. LC-Q-Orbitrap HRMS Analysis
3.5. Antioxidant Profiling by Post-Column Derivatization with ABTS
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Šavikin, K.; Živković, J.; Janković, T.; Ćujić-Nikolić, N.; Zdunić, G.; Menković, N.; Drinić, Z. Optimization of Ultrasound-Assisted Extraction of Phenolics from Sideritis raeseri Using Response Surface Methodology. Molecules 2021, 26, 3949. [Google Scholar] [CrossRef] [PubMed]
- Krgović, N.; Jovanović, M.; Aradski, A.A.; Jankovi´c, T.; Stević, T.; Zdunić, G.; Laušević, S.D.; Šavikin, K. Bioassay-Guided Skin-Beneficial Effects of Fractionated Sideritis raeseri subsp. raeseri Extract. Plants 2022, 11, 2677. [Google Scholar] [CrossRef] [PubMed]
- Bardakci, H.; Cevik, D.; Barak, T.H.; Gozet, T.; Kan, Y.; Kirmizibekmez, H. Secondary metabolites, phytochemical characterization and antioxidant activities of different extracts of Sideritis congesta P.H. Davis et Hub.-Mor. Biochem. Syst. Ecol. 2020, 92, 104120. [Google Scholar] [CrossRef]
- Zengin, G.; Uğurlu, A.; Baloglu, M.C.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Ceylan, R.; Aktumsek, A.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Chemical fingerprints, antioxidant, enzyme inhibitory, and cell assays of three extracts obtained from Sideritis ozturkii Aytaç & Aksoy: An endemic plant from Turkey. J. Pharm. Biomed. Anal. 2019, 171, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Ignatov, I. Sideritis scardica Griseb. (Mursalski Tea.; Pirinski Tea) from Bulgaria, which Is Growing in Zones with High Percent of Long Living People. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 141–153. [Google Scholar]
- Moussavi, N.; Azizullah, H.; Malterud, K.E.; Inngjerdingen, K.T.; Wangensteen, H. Immunomodulating polyphenols from Sideritis scardica. J. Funct. Foods 2022, 96, 105197. [Google Scholar] [CrossRef]
- Todorova, M.; Trendafilova, A. Sideritis scardica Griseb., an endemic species of Balkan peninsula: Traditional uses, cultivation, chemical composition, biological activity. J. Ethnopharmacol. 2014, 152, 256–265. [Google Scholar] [CrossRef]
- Krasniqi, B.; Thaçi, S.; Dërmaku-Sopjani, M.; Rifati-Nixha, A.; Abazi, S.; Sopjani, M. Insight into the Mechanisms Underlying the Tracheorelaxant Properties of the Sideritis raeseri Extract. Evid. Based Complementary Altern. Med. 2020, 2020, 6510708. [Google Scholar] [CrossRef]
- Patelou, E.; Chatzopoulou, P.; Polidoros, A.N.; Mylona, P.V. Genetic diversity and structure of Sideritis raeseri Boiss. & Heldr. (Lamiaceae) wild populations from Balkan Peninsula. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100241. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Żyżelewicz, K. Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, Antioxidative action, bioavailability and Anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Shouqin, Z.; Junjie, Z.; Changzhen, W. Novel high pressure extraction technology. Int. J. Pharm. 2004, 278, 471–474. [Google Scholar] [CrossRef]
- Sklirou, A.D.; Angelopoulou, M.T.; Argyropoulou, A.; Chaita, E.; Boka, V.I.; Cheimonidi, C.; Niforou, K.; Mavrogonatou, E.; Pratsinis, H.; Kalpoutzakis, E.; et al. Phytochemical Study and In Vitro Screening Focusing on the Anti-Aging Features of Various Plants of the Greek Flora. Antioxidants 2021, 10, 1206. [Google Scholar] [CrossRef]
- Vasilopoulou, C.G.; Kontogianni, V.G.; Linardaki, Z.I.; Iatrou, G.; Lamari, F.N.; Nerantzaki, A.A.; Gerothanassis, I.P.; Tzakos, A.G.; Margarity, M. Phytochemical composition of “mountain tea” from Sideritis clandestina subsp. clandestina and evaluation of its behavioral and oxidant/antioxidant effects on adult mice. Eur. J. Nutr. 2013, 52, 107–116. [Google Scholar] [CrossRef]
- Dimaki, V.D.; Zeliou, K.; Nakka, F.; Stavreli, M.; Bakratsas, I.; Papaioannou, L.; Iatrou, G.; Lamari, F.N. Characterization of Sideritis clandestina subsp. peloponnesiaca Polar Glycosides and Phytochemical Comparison to Other Mountain Tea Populations. Molecules 2022, 27, 7613. [Google Scholar] [CrossRef]
- Tomou, E.-M.; Papaemmanouil, C.D.; Diamantis, D.A.; Kostagianni, A.D.; Chatzopoulou, P.; Mavromoustakos, T.; Tzakos, A.G.; Skaltsa, H. Anti-Ageing Potential of S. Euboea Heldr. Phenolics. Molecules 2021, 26, 3151. [Google Scholar] [CrossRef]
- Alipieva, K.; Petreska, J.; Gil-Izquierdo, Á.; Stefova, M.; Evstatieva, L.; Bankova, V. Influence of the Extraction Method on the Yield of Flavonoids and Phenolics from Sideritis spp. (Pirin Mountain tea). Nat. Prod. Commun. 2010, 5, 51–54. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Samanidou, V.; Tsagiannidis, A.; Sarakatsianos, I. Simultaneous determination of polyphenols and major purine alkaloids in Greek Sideritis species, herbal extracts, green tea, black tea, and coffee by high-performance liquid chromatography-diode array detection. J. Sep. Sci. 2012, 35, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Dina, E.; Vontzalidou, A.; Cheilari, A.; Bagatzounis, P.; Agapidou, E.; Giannenas, I.; Grigoriadou, K.; Aligiannis, N. Sustainable Use of Greek Herbs By-Products, as an Alternative Source of Biologically Active Ingredients for Innovative Products. Front. Nutr. 2022, 9, 867666. [Google Scholar] [CrossRef] [PubMed]
- Pljevljakušić, D.; Šavikin, K.; Janković, T.; Zdunić, G.; Ristić, M.; Godjevac, D.; Konić-Ristić, A. Chemical properties of the cultivated Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Food Chem. 2011, 124, 226–233. [Google Scholar] [CrossRef]
- Axiotis, E.; Petrakis, E.A.; Halabalaki, M.; Mitakou, S. Phytochemical Profile and Biological Activity of Endemic Sideritis sipylea Boiss. in North Aegean Greek Islands. Molecules 2020, 25, 2022. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Sinan, K.I.; Etienne, O.K.; Zengin, G.; Gevrenova, R.; Mahomoodally, M.F.; Lobine, D.; Mollica, A. Chemical composition and biological properties of Synedrella nodiflora (L.) Gaertn: A comparative investigation of different extraction methods. Process. Biochem. 2020, 96, 202–212. [Google Scholar] [CrossRef]
- Kassi, E.; Paliogianni, A.; Dontas, I.; Aligiannis, N.; Halabalaki, M.; Papoutsi, Z.; Skaltsounis, A.-L.; Moutsatsou, P. Effects of Sideritis euboea (Lamiaceae) Aqueous Extract on IL-6, OPG and RANKL Secretion by Osteoblasts. Nat. Prod. Commun. 2011, 6, 1689–1696. [Google Scholar] [CrossRef]
- Petreska, J.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Stefova, M. Phenolic Compounds of Mountain Tea from the Balkans: LC/DAD/ESI/MSn Profile and Content. Nat. Prod. Commun. 2011, 6, 21–30. [Google Scholar] [CrossRef]
- Petreska Stanoeva, J.; Stefova, M. Evaluation of the ion trap MS performance for quantification of flavonoids and comparison to UV detection. J. Mass Spectrom. 2012, 47, 1395–1406. [Google Scholar] [CrossRef]
- Abdel-Hady, H.; El-Sayed, M.M.; Abdel-Hady, A.A.; Hashash, M.M.; Abdel-Hady, A.M.; Aboushousha, T.; Abdel-Hameed, E.S.; Abdel-Lateef, E.E.; Morsi, E.A. Nephroprotective Activity of Methanolic Extract of Lantana camara and Squash (Cucurbita pepo) on Cisplatin-Induced Nephrotoxicity in Rats and Identification of Certain Chemical Constituents of Lantana camara by HPLC-ESI- MS. Pharmacogn J. 2018, 10, 136–147. [Google Scholar] [CrossRef]
- Rios, J.L.; Mañez, S.; Paya, M.; Alcaraz, M.J. Antioxidant activity of flavonoids from Sideritis javalambrensis. Phytochemistry 1992, 31, 1947–1950. [Google Scholar] [CrossRef] [PubMed]
- Pilipczuk, T.; Kusznierewicz, B.; Zielińska, D.; Bartoszek, A. The influence of roasting and additional processing on the content of bioactive components in special purpose coffees. J. Food Sci. Technol. 2015, 52, 5736–5744. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, M.; Marino, T.; Prejanò, M.; Russo, N. Primary and secondary antioxidant properties of scutellarin and scutellarein in water and lipid-like environments: A theoretical investigation, J. Mol. Liq. 2022, 366, 120343. [Google Scholar] [CrossRef]
- Irakli, M.; Tsifodimou, K.; Sarrou, E.; Chatzopoulou, P. Optimization infusions conditions for improving phenolic content and antioxidant activity in Sideritis scardica tea using response surface methodology. J. Appl. Res. Med. Aromat. Plants. 2018, 8, 67–74. [Google Scholar] [CrossRef]
- Akbaba, E. Characterization of Bioactive and Antioxidant Composition of Mountain Tea (Sideritis montana ssp. montana): Microwave-Assisted Technology. Int. J. Second. Metab. 2021, 8, 159–171. [Google Scholar] [CrossRef]
- Khan, S.A.; Aslam, R.; Makroo, H.A. High pressure extraction and its application in the extraction of bio-active compounds: A review. J. Food Process. Eng. 2019, 42, 54–62. [Google Scholar] [CrossRef]
- Huang, H.-W.; Hsu, C.-P.; Yang, B.B.; Wang, C.-Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 2013, 33, 54–62. [Google Scholar] [CrossRef]
- Malinowska-Pańczyk, E.; Walecka, M.; Pawłowicz, R.; Tylingo, R.; Kołodziejska, I. The effect of high pressure at subzero temperature on proteins solubility, drip loss and texture of fish (cod and salmon) and mammal’s (pork and beef) meat. Food Sci. Technol. Int. 2014, 20, 383–395. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Mróz, M.; Koss-Mikołajczyk, I.; Namieśnik, J. Comparative evaluation of different methods for determining phytochemicals and antioxidant activity in products containing betalains—Verification of beetroot samples. Food Chem. 2021, 362, 130132. [Google Scholar] [CrossRef]
No. | Compound | RT [min] | Formula | Theoretical [M−H]− | Experimental [M−H]− | Δmass [ppm] | MS/MS | Class |
---|---|---|---|---|---|---|---|---|
1 | * Cinnamaldehyde | 1.87 | C9H8O | 131.04969 | 131.04895 | 5.6 | 72.0076; 58.0284; 70.0284; 71.0236; 71.0124; 113.034 | PA |
2 | * O-Hexosyl-hexose | 1.92 | C12H22O11 | 341.10839 | 341.10884 | −1.3 | 89.0229; 59.0124; 101.0229; 179.0552; 71.0124; 119.0336 | S |
3 | * Glucose | 1.95 | C6H12O6 | 179.05557 | 179.05515 | 2.3 | 59.0124; 71.0124; 72.9916; 58.0046; 87.0072; 55.0174 | S |
4 | * Gluconic acid [4] | 1.97 | C6H12O7 | 195.05048 | 195.05016 | 1.7 | 75.0073; 59.0124; 72.9916; 71.0124; 87.0073; 105.0179 | S |
5 | * Raffinose | 1.97 | C18H32O16 | 503.16122 | 503.16127 | −0.1 | 179.0550; 89.0229; 503.1614; 221.0659; 101.0229; 161.0443 | S |
6 | * D-(+)-Maltose | 2.01 | C12H22O11 | 341.10839 | 341.10873 | −1.0 | 59.0124; 89.0229; 71.0124; 101.0230; 113.0229; 119.0334 | S |
7 | * Xylonic acid | 2.01 | C5H10O6 | 165.03992 | 165.03940 | 3.1 | 75.0073; 59.0124; 72.9916; 71.0124; 87.0073; 76.0106 | S |
8 | * L-Threonic acid | 2.03 | C4H8O5 | 135.02935 | 135.02867 | 5.0 | 75.0073; 71.0124; 72.9917; 59.0124; 55.017; 58.0046 | S |
9 | * Quinic acid + coniferin | 2.05 | C19H34O17 | 533.17178 | 533.17200 | −0.4 | 191.0552; 192.0585; 85.0279; 59.0124; 191.3149; 93.0328 | CA |
10 | D-(−)-Quinic acid [4,23] | 2.07 | C7H12O6 | 191.05557 | 191.05522 | 1.8 | 85.0280; 93.0331; 87.0073; 59.0124; 109.0282; 81.0331 | CA |
11 | * L-(+)-Tartaric acid | 2.16 | C4H6O6 | 149.00862 | 149.00821 | 2.7 | 75.0074; 72.9917; 59.0125; 69.0331; 71.0125; 66.0084 | S |
12 | * DL-Malic acid | 2.32 | C4H6O5 | 133.01370 | 133.01413 | −3.2 | 71.0124; 72.9917; 59.0124; 72.0158; 72.9958; 115.0022 | S |
13 | Citric acid [4] | 2.83 | C6H8O7 | 191.01918 | 191.01900 | 1.0 | 87.0074; 111.0075; 85.0281; 57.0332; 67.0175; 59.0125 | CA |
14 | * Oxaloglutarate | 2.88 | C7H8O7 | 203.01918 | 203.01895 | 1.1 | 71.0124; 79.0174; 69.0331; 97.0281; 95.0124; 72.9916 | CA |
15 | * L-Tyrosine | 2.90 | C9H11NO3 | 180.06607 | 180.06589 | 1.0 | 152.917; 167.9038; 72.0076; 119.0491; 122.9579; 93.0333 | AA |
16 | * Uridine | 2.92 | C9H12N2O6 | 243.06171 | 243.06221 | −2.0 | 82.0285; 110.0235; 66.0335; 168.0146; 122.0234; 118.9650 | N |
17 | * Guanosine | 3.65 | C10H13N5O5 | 282.08385 | 282.08356 | 1.0 | 150.0411; 133.0144; 126.0297; 108.0190; 107.0350; 151.0457 | N |
18 | * Melittoside isomer | 4.21 | C21H32O15 | 523.16630 | 523.16688 | −1.1 | 89.0229; 119.0336; 179.0551; 59.0124; 71.0124; 113.0231 | I |
19 | * Monomelittoside [17] | 4.23 | C15H22O10 | 361.11348 | 361.11332 | 0.4 | 59.0124; 89.0229; 71.0124; 99.0074; 101.0229; 155.0339 | I |
20 | * Gallic acid | 4.44 | C7H6O5 | 169.01370 | 169.01329 | 2.4 | 69.0331; 125.0232; 124.0152; 97.0281; 79.0174; 95.0123 | PA |
21 | Methyl gallate [24] | 4.55 | C8H8O5 | 183.02935 | 183.02913 | 1.2 | 137.0233; 136.0155; 108.0204; 109.0284; 124.0154; 111.0075 | PA |
22 | Melittoside [18,25] | 4.65 | C21H32O15 | 523.16630 | 523.16693 | −1.2 | 89.0229; 59.0124; 119.0337; 71.0124; 101.0230; 113.0231 | I |
23 | * Geniposidic acid | 4.87 | C16H22O10 | 373.11348 | 373.11420 | −1.9 | 123.0438; 149.0596; 89.0229; 59.0124; 71.0124; 121.0646 | I |
24 | * Glucovanillyl alcohol | 5.06 | C14H20O8 | 315.10800 | 315.10784 | 0.5 | 153.0545; 112.9842; 138.0313; 68.9944; 71.0124; 154.0585 | PA |
25 | * Methylscutelloside | 5.47 | C16H26O11 | 393.13969 | 393.14047 | −2.0 | 127.0388; 167.0705; 149.0595; 89.0229; 121.0646; 59.0123 | I |
26 | * Vannilic acid glucoside [18] | 5.69 | C14H18O9 | 329.08726 | 329.08786 | −1.8 | 108.0203; 152.0104; 167.0339; 123.0438; 153.0137; 109.0237 | PA |
27 | * Decaffeoylverbascoside | 6.32 | C20H30O12 | 461.16591 | 461.16660 | −1.5 | 113.0231; 112.9842; 135.0439; 89.0229; 71.0124; 68.9943 | PEG |
28 | * Gentisic acid [26] | 6.47 | C7H6O4 | 153.01879 | 153.01819 | 3.9 | 108.0203; 109.0283; 68.9943; 91.0174; 58.9900; 110.0314 | PA |
29 | * 8-Epiloganic acid [4] | 6.47 | C16H24O10 | 375.12913 | 375.12970 | −1.5 | 151.0753; 59.0124; 169.0860; 69.0331; 89.0229; 95.0488 | I |
30 | * Salidroside | 6.84 | C14H20O7 | 299.11308 | 299.11365 | −1.9 | 137.0232; 59.0124; 71.0124; 138.0549; 119.0489; 89.0229 | PEG |
31 | * Glucosyringic acid | 7.05 | C15H20O10 | 359.09783 | 359.09836 | −1.5 | 59.0124; 89.0229; 71.0124; 197.0445; 101.0229; 113.0230 | PA |
32 | * Swertiamacroside | 7.12 | C21H28O13 | 487.14517 | 487.14609 | −1.9 | 179.0341; 135.0439; 161.0234; 180.0375; 113.0231; 174.9553 | PA |
33 | * Gentisoyl glucoside | 7.18 | C14H20O8 | 315.07161 | 315.07139 | 0.7 | 109.0281; 153.0182; 110.0315; 135.0075; 65.0383; 154.0216 | PA |
34 | * Salicylic acid glucoside | 7.51 | C13H16O8 | 299.07670 | 299.07636 | 1.1 | 93.0332; 137.0232; 94.0364; 138.0266; 71.0124; 85.0281 | PA |
35 | * Sucrose 6-benzoate | 7.63 | C19H26O12 | 445.13461 | 445.13531 | −1.6 | 121.0282; 89.0229; 122.0315; 101.0229; 71.0124; 59.0125 | PA |
36 | 4′-O-Methylisoscutellarein 7-O-[6′-O-acetyl]-allosyl-(1→2)-[6′-O-acetyl]-glucoside | 8.41 | C32H36O18 | 707.18235 | 707.18274 | −0.6 | 191.0552; 353.0877; 192.0586; 354.0911; 161.0231; 179.0339 | F |
37 | Chlorogenic acid [18,20,25] | 8.42 | C16H18O9 | 353.08726 | 353.08783 | −1.6 | 191.0552; 192.0586; 85.0280; 93.0332; 161.0235; 127.0388 | PA |
38 | * Barlerin | 8.76 | C19H28O12 | 447.15026 | 447.15106 | −1.8 | 161.0446; 269.1031; 101.0230; 71.0124; 113.0231; 89.0229 | I |
39 | * Stachysoside E/G | 9.28 | C30H38O17 | 669.20308 | 669.20361 | −0.8 | 163.0389; 187.0391; 325.0928; 205.0499; 145.0283; 181.0497 | I |
40 | Unknown | 9.34 | C18H28O12 | 435.15026 | 435.15088 | −1.4 | 59.0124; 167.0702; 346.3243; 108.5539; 221.9166; 116.5048 | - |
41 | Apigenin 7-O-allosyl(1→2)-glucoside [16] | 9.41 | C27H30O15 | 593.15065 | 593.15137 | −1.2 | 593.1515; 473.1089; 594.1549; 353.0667; 383.0772; 503.1198 | F |
42 | Caffeic acid | 9.44 | C9H8O4 | 179.03444 | 179.03415 | 1.6 | 135.0441; 134.0361; 89.0383; 136.0473; 107.0490; 117.0333 | PA |
43 | Ajugoside [3,18] | 9.69 | C17H26O10 | 389.14478 | 389.14542 | −1.6 | 59.0124; 89.0231; 112.9843; 68.9943; 101.0229; 71.0124 | I |
44 | 7-O-acetyl-8-epiloganic acid [18] | 9.72 | C18H26O11 | 417.13969 | 417.14059 | −2.2 | 59.0124; 89.0229; 107.0489; 193.0862; 71.0124; 151.0753 | I |
45 | β-Hydroxyverbascoside [17,18] | 10.25 | C29H36O16 | 639.19252 | 639.19348 | −1.5 | 161.0234; 179.0341; 621.1828; 639.1941; 622.1855; 459.1513 | PEG |
46 | * Coumaroylmelittoside derivative | 10.91 | C32H40O18 | 711.21365 | 711.21417 | −0.7 | 163.0390; 367.103; 187.0392; 205.0500; 145.0283; 181.0496 | I |
47 | * N1, N10-Bis(p-coumaroyl)spermidine | 11.28 | C25H31N3O4 | 436.22363 | 436.22391 | −0.6 | 119.0488; 316.1663; 145.0283; 290.1873; 317.1695; 120.0521 | PA |
48 | Echinacoside/phlinoside A [23,25] | 11.48 | C35H46O20 | 785.25043 | 785.25116 | −0.9 | 193.0499; 767.2409; 785.2502; 768.2443; 786.2529; 639.1931 | PEG |
49 | Hypolaetin 7-O-allosyl(1→2)glucoside [18] | 11.60 | C27H30O17 | 625.14048 | 625.14099 | −0.8 | 625.1407; 301.0352; 626.1445; 463.0881; 300.0272; 445.0777 | F |
50 | * Dihydrodehydrodiconiferyl alcohol hexoside | 11.66 | C26H34O11 | 521.20229 | 521.20282 | −1.0 | 329.1396; 330.1429; 175.0753; 177.0546; 71.0124; 193.0864 | BF |
51 | Forsythoside B/Samioside/Lavandulifolioside [18,23,25] | 11.76 | C34H44O19 | 755.23986 | 755.24044 | −0.8 | 755.2405; 756.2438; 757.2453; 593.2094; 161.0233; 594.2143 | PEG |
52 | Verbascoside/isoverbascoside [2,18,23,25] | 12.09 | C29H36O15 | 623.19760 | 623.19812 | −0.8 | 161.0233; 623.1984; 461.1664; 624.2015; 162.0269; 462.1700 | PEG |
53 | * Vicenin-2 (6.8-diglucosylapigenin) | 12.37 | C27H30O15 | 593.15065 | 593.15155 | −1.5 | 269.0457; 593.1517; 270.0490; 594.1548; 431.0984; 432.1029 | F |
54 | * Quercetin-3β-D-glucoside [4] | 12.41 | C21H20O12 | 463.08766 | 463.08841 | −1.6 | 300.0275; 301.0342; 161.0233; 302.0385; 463.0851; 151.0025 | F |
55 | Verbascoside/isoverbascoside [2,18,23,25] | 12.64 | C29H36O15 | 623.19760 | 623.19812 | −0.8 | 161.0233; 623.1982; 461.1668; 624.2015; 162.0268; 462.1712 | PEG |
56 | Isoscutellarein 7-O-allosyl(1→2)-glucoside (All-Glc-ISC) [18,20] | 12.79 | C27H30O16 | 609.14557 | 609.14581 | −0.4 | 285.0402; 609.1458; 286.0437; 429.0825; 610.1489; 284.0322 | F |
57 | Isoscutellarein acetyl dissacharide [18] | 12.84 | C29H32O17 | 651.15613 | 651.15674 | −0.9 | 651.1567; 652.1603; 609.1461; 285.0401; 610.1490; 286.0435 | F |
58 | Glycosidic derivative of a methylether of acteoside [27] | 12.89 | C36H48O20 | 799.26608 | 799.26605 | 0.0 | 799.2664; 800.2699; 623.2181; 193.0496; 637.2153; 624.2218 | PEG |
59 | Allysonoside [18,25] | 13.07 | C35H46O19 | 769.25551 | 769.25604 | −0.7 | 769.2560; 770.2590; 638.2175; 593.2093; 637.2131; 193.0498 | PEG |
60 | 3′-O-Methylhypolaetin 7-O-allosyl(1→2)-glucoside [18,28] | 13.13 | C28H32O17 | 639.15613 | 639.15674 | −1.0 | 315.0510; 639.1558; 316.054; 640.1589; 459.0933; 477.1038 | F |
61 | Hypolaetin 7-O-[6‴-O-acetyl]-allosyl(1→2)-glucoside [18,20,25] | 13.16 | C29H32O18 | 667.15105 | 667.15155 | −0.8 | 667.1515; 301.0351; 668.1549; 463.0880; 625.1407; 300.0274 | F |
62 | * Asystoside | 13.17 | C25H44O15 | 583.26020 | 583.25946 | 1.3 | 289.1656; 161.0445; 451.2187; 101.0229; 421.2079; 71.0124 | AAG |
63 | * Isoscutellarein 7-O-glucoside [3] | 13.28 | C21H20O11 | 447.09274 | 447.09323 | −1.1 | 285.0402; 286.0437; 284.0326; 112.9843; 447.0921; 241.0497 | F |
64 | Leucoseptoside A [18,23,25] | 13.49 | C30H38O15 | 637.21325 | 637.21381 | −0.9 | 175.0391; 461.1666; 637.2139; 161.0234; 638.2178; 193.0498 | PEG |
65 | * 2-(4-Hydroxyphenyl)-ethyl-(6-O-caffeoyl)-β-D-glucopyranoside | 13.63 | C23H26O10 | 461.14478 | 461.14572 | −2.1 | 161.0233; 461.1455; 162.0267; 462.1493; 179.0341; 135.0439 | PEG |
66 | * Methylhypolaetin glucoside | 13.70 | C22H22O12 | 477.10331 | 477.10394 | −1.3 | 315.0509; 300.027; 316.0542; 301.0307; 314.0431; 477.1003 | F |
67 | Apigenin 7-O-beta-D-glucoside [23,25] | 13.77 | C21H20O10 | 431.09783 | 431.09845 | −1.4 | 268.0376; 269.044; 431.0981; 432.1019; 270.0490; 311.0545 | F |
68 | Apigenin 7-O-[6‴-O-acetyl]-allosyl(1→2)-glucoside [25] | 14.12 | C29H32O16 | 635.16122 | 635.16150 | −0.4 | 269.0454; 635.1616; 270.0488; 636.1651; 593.1498; 637.1656 | F |
69 | Isoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1→2)-glucoside [2,18,20] | 14.39 | C29H32O17 | 651.15613 | 651.15662 | −0.7 | 285.0402; 651.1563; 429.0825; 286.0437; 652.1592; 284.0326 | F |
70 | * 3′-O-Methylisoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1→2)glucoside | 14.52 | C30H34O17 | 665.17178 | 665.17224 | −0.7 | 299.0560; 623.1616; 624.1649; 300.0594; 665.1718; 666.1748 | F |
71 | * Stachysoside D/Leonoside B | 14.70 | C36H48O19 | 783.27116 | 783.27142 | −0.3 | 783.2717; 784.2749; 175.0391; 193.0498; 607.2245; 652.2327 | PEG |
72 | 4′-O-Methylhypolaetin 7-O-[6‴-O-acetyl]-allosyl(1→2)-glucoside [2,20] | 14.76 | C30H34O18 | 681.16670 | 681.16711 | −0.6 | 315.0511; 681.1669; 316.0543; 682.1705; 639.1565; 459.0942 | F |
73 | * 4′-O-Methyl-(−)-epigallocatechin 7-O-glucuronide | 14.84 | C22H24O13 | 495.11387 | 495.11456 | −1.4 | 197.0448; 153.0546; 198.0481; 182.0211; 297.0614; 121.0282 | F |
74 | * 1-Octen-3-yl primeveroside | 14.92 | C19H34O10 | 421.20738 | 421.20795 | −1.4 | 71.0124; 101.0229; 113.0230; 85.0280; 73.0280; 161.0444 | AAG |
75 | Martynoside [4,19,25,27] | 15.29 | C31H40O15 | 651.22890 | 651.22961 | −1.1 | 175.0391; 651.2321; 193.0499; 176.0425; 475.1823; 652.2353 | PEG |
76 | 4′-O-Methylisoscutellarein 7-O-allosyl(1→2)glucoside [25] | 15.48 | C28H32O16 | 623.16122 | 623.16193 | −1.1 | 299.0561; 300.0595; 623.1603; 624.1642; 112.9842; 161.0235 | F |
77 | 3′-O-Methylhypolaetin 7-O-[6‴-O-acetyl]-allosyl(1→2)glucoside [18,28] | 15.98 | C30H34O18 | 681.16670 | 681.16766 | −1.4 | 315.051; 681.1679; 316.055; 682.1724; 501.1043; 519.1148 | F |
78 | Hypolaetin 7-O-[2‴,6‴-di-O-acetyl]-allosyl(1→2)glucoside [18,28] | 16.32 | C31H34O19 | 709.16161 | 709.16180 | −0.3 | 709.1619; 710.1654; 301.0351; 667.1522; 505.0992; 649.1404 | F |
79 | * Tremasperin | 17.22 | C30H34O16 | 649.17687 | 649.17664 | 0.4 | 283.0611; 284.0644; 607.1667; 299.0561; 112.9841; 268.0363 | F |
80 | 4′-O-Methylisoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1→2)glucoside [18,20,25] | 17.37 | C30H34O17 | 665.17178 | 665.17242 | −1.0 | 299.0561; 665.1722; 300.0594; 666.1760; 101.0230; 461.1095 | F |
81 | * Scutellarein/Isoscutellarein | 17.49 | C15H10O6 | 285.03992 | 285.04037 | −1.6 | 133.0283; 285.0404; 151.0026; 175.0391; 107.0125; 149.0232 | F |
82 | Isoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1→2)-[6″-O-acetyl]-glucoside [18,25,28] | 17.57 | C31H34O18 | 693.16670 | 693.16705 | −0.5 | 285.0404; 693.168; 471.0933; 633.1464; 651.1561; 284.0326 | F |
83 | 4′-O-Methylhypolaetin 7-O-[6‴-O-acetyl]-allosyl-(1→2)[6″-O-acetyl]-glucoside [2,18,29] | 17.88 | C32H36O19 | 723.17726 | 723.17773 | −0.7 | 315.0511; 723.1779; 316.0543; 681.1673; 724.1811; 501.1039 | F |
84 | * Proanthocyanidin dimer | 18.15 | C30H26O12 | 577.13461 | 577.13519 | −1.0 | 269.0455; 270.0489; 577.1358; 578.1385; 145.0282; 307.0821 | F |
85 | * Trihydroxy octadecadienoic acid | 18.88 | C18H32O5 | 327.21715 | 327.21774 | −1.8 | 211.1334; 171.1017; 85.0281; 229.1442; 97.0645; 183.1381 | FA |
86 | Apigenin-7-O-(6″-O-4-coumaroyl)-beta-glucoside [16,23,24,25] | 19.91 | C30H26O12 | 577.13461 | 577.13519 | −1.0 | 269.0455; 145.0284; 431.0982; 413.0878; 577.1352; 270.0489 | F |
87 | * Trihydroxy-octadecenoic acid | 20.08 | C18H34O5 | 329.23280 | 329.23331 | −1.5 | 211.1334; 229.1441; 183.1382; 99.0801; 171.1018; 212.1367 | FA |
88 | 4′-O-Methylisoscutellarein 7-O-[6‴-O-acetyl]-allosyl(1→2)-[6″-O-acetyl]-glucoside [20,23,25,28,29] | 20.55 | C32H36O18 | 707.18235 | 707.18292 | −0.8 | 299.0560; 707.1829; 300.0593; 708.1871; 101.0229; 665.1715 | F |
89 | * Rosmanol | 21.38 | C20H26O5 | 345.17020 | 345.17005 | 0.4 | 301.1810; 283.1704; 302.1844; 284.1738; 61.9870; 258.1257 | DT |
90 | * Cirsimaritin [4] | 21.45 | C17H14O6 | 313.07122 | 313.07163 | −1.3 | 283.0247; 284.0280; 297.0403; 255.0297; 298.0466; 163.0026 | F |
91 | * (−)-Usnicacid/Eupatorin | 21.73 | C18H16O7 | 343.08178 | 343.08215 | −1.1 | 313.0355; 298.0118; 270.0169; 314.0388; 328.0588; 285.0404 | F |
92 | * Genkwanin | 21.84 | C16H12O5 | 283.06065 | 283.06025 | 1.4 | 268.0376; 269.0409; 240.0420; 117.0331; 283.0614; 239.0344 | F |
93 | * 4-Dodecylbenzenesulfonic acid | 22.46 | C18H30O3S | 325.18374 | 325.18357 | 0.5 | 325.1845; 183.0113; 326.1877; 184.0181; 216.009; 197.0272 | OSC |
94 | * Carnosol | 22.48 | C20H26O4 | 329.17529 | 329.17519 | 0.3 | 285.1860; 286.18933; 201.0914; 270.1627; 214.0999; 269.1543 | DT |
95 | * Hydroxylinoleic acid | 22.73 | C18H32O3 | 295.22732 | 295.22781 | −1.7 | 98.9544; 277.2171; 61.9869; 195.1384; 171.1016; 96.9587 | FA |
96 | * Dodecyl sulfate | 22.74 | C12H26O4S | 265.14736 | 265.14786 | −1.9 | 96.9587; 265.1479; 79.9559; 97.9577; 95.9508; 266.1515 | OSC |
97 | * Carnosic acid | 22.94 | C20H28O4 | 331.19094 | 331.19056 | 1.1 | 332.1867; 286.1809; 314.1765; 287.2008; 96.9584; 331.2667 | DT |
98 | * Lauryl ether sulphate | 23.98 | C14H30O5S | 309.17357 | 309.17401 | −1.4 | 96.9586; 309.1739; 79.9558; 310.1771; 122.974; 94.9794 | OSC |
99 | * Bis(2-ethylhexyl) adipate | 24.35 | C22H42O4 | 369.30049 | 369.30075 | −0.7 | 72.9916; 75.0073; 369.3006; 59.0124; 293.2846; 323.2971 | CA |
100 | * Myristyl sulfate | 24.36 | C14H30O4S | 293.17866 | 293.17902 | −1.2 | 96.9587; 293.1791; 221.1539; 220.1462; 294.1826; 79.9558 | OSC |
101 | * Diisononyl adipate | 24.37 | C24H46O4 | 397.33179 | 397.33212 | −0.9 | 59.0124; 397.226; 351.3631; 96.9587; 72.9916; 397.3729 | CA |
102 | * 16-Hydroxyhexadecanoic acid | 24.51 | C16H32O3 | 271.22732 | 271.22784 | −1.9 | 225.2218; 223.2063; 226.2252; 197.1903; 221.1908; 224.2096 | FA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mróz, M.; Malinowska-Pańczyk, E.; Bartoszek, A.; Kusznierewicz, B. Comparative Study on Assisted Solvent Extraction Techniques for the Extraction of Biologically Active Compounds from Sideritis raeseri and Sideritis scardica. Molecules 2023, 28, 4207. https://doi.org/10.3390/molecules28104207
Mróz M, Malinowska-Pańczyk E, Bartoszek A, Kusznierewicz B. Comparative Study on Assisted Solvent Extraction Techniques for the Extraction of Biologically Active Compounds from Sideritis raeseri and Sideritis scardica. Molecules. 2023; 28(10):4207. https://doi.org/10.3390/molecules28104207
Chicago/Turabian StyleMróz, Marika, Edyta Malinowska-Pańczyk, Agnieszka Bartoszek, and Barbara Kusznierewicz. 2023. "Comparative Study on Assisted Solvent Extraction Techniques for the Extraction of Biologically Active Compounds from Sideritis raeseri and Sideritis scardica" Molecules 28, no. 10: 4207. https://doi.org/10.3390/molecules28104207
APA StyleMróz, M., Malinowska-Pańczyk, E., Bartoszek, A., & Kusznierewicz, B. (2023). Comparative Study on Assisted Solvent Extraction Techniques for the Extraction of Biologically Active Compounds from Sideritis raeseri and Sideritis scardica. Molecules, 28(10), 4207. https://doi.org/10.3390/molecules28104207