A Quick Method to Synthesize Extrachromosomal Circular DNA In Vitro
Abstract
:1. Introduction
2. Results
2.1. Preparing Fragments A and E
2.2. The Synthesis of DNA Minicircle
2.3. The Validation of DNA Minicircle Production
3. Materials and Methods
3.1. Experimental Design
3.2. Preparing Complementary Fragments (E) for the LAMA Reaction
3.3. DNA Circularization by LAMA Method
3.4. The Validation of Circularization Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
EccDNA | Extrachromosomal circular DNA |
NGS | Next-Generation Sequencing |
LAMA | Ligase-Assisted Minicircle Accumulation |
SDS | Sodium dodecyl sulfate |
PCR | Polymerase Chain Reaction |
ssDNA | Single-stranded DNA |
dsDNA | Single-stranded DNA |
MW | Molecular weight |
NHEJ | Non-homologous end joining |
MMEJ | Microhomology-mediated end joining |
sl-eccDNA | Single continuous genomic loci extrachromosomal circular DNA |
ml-eccDNA | Multiple genomic loci extrachromosomal circular DNA |
References
- Hotta, Y.; Bassel, A. Molecular size and circularity of DNA in cells of mammals and higher plants. Proc. Natl. Acad. Sci. USA 1965, 2, 356–362. [Google Scholar] [CrossRef]
- Demeke, M.M.; Foulquié-Moreno, M.R.; Dumortier, F.; Thevelein, J.M. Rapid evolution of recombinant saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet. 2015, 11, e1005010. [Google Scholar] [CrossRef] [PubMed]
- Moller, H.D.; Larsen, C.E.; Parsons, L.; Hansen, A.J.; Regenberg, B.; Mourier, T. Formation of extrachromosomal circular DNA from long terminal repeats of retrotransposons in saccharomyces cerevisiae. G3-Genes Genomes Genet. 2015, 6, 453–462. [Google Scholar] [CrossRef]
- Møller, H.D.; Parsons, L.; Jørgensen, T.S.; Botstein, D.; Regenberg, B. Extrachromosomal circular DNA is common in yeast. Proc. Natl. Acad. Sci. USA 2015, 112, E3114–E3122. [Google Scholar] [CrossRef] [PubMed]
- Shoura, M.J.; Gabdank, I.; Hansen, L.; Merker, J.; Gotlib, J.; Levene, S.D.; Fire, A.Z. Intricate and cell type-specific populations of endogenous circular DNA (eccDNA) in caenorhabditis elegans and homo sapiens. G3-Genes Genomes Genet. 2017, 7, 3295–3303. [Google Scholar] [CrossRef]
- Yang, N.; Srivastav, S.P.; Rahman, R.; Ma, Q.; Dayama, G.; Li, S.; Chinen, M.; Lei, E.P.; Rosbash, M.; Lau, N.C. Transposable element landscapes in aging drosophila. PLoS Genet. 2022, 18, e1010024. [Google Scholar] [CrossRef]
- Cohen, S.; Yacobi, K.; Segal, D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in drosophila. Genome Res. 2003, 13, 1133–1145. [Google Scholar] [CrossRef]
- Cohen, S. Evidence for rolling circle replication of tandem genes in drosophila. Nucleic Acids Res. 2005, 33, 4519–4526. [Google Scholar] [CrossRef]
- Sin, S.T.; Deng, J.; Ji, L.; Yukawa, M.; Chan, R.W.; Volpi, S.; Vaglio, A.; Fenaroli, P.; Bocca, P.; Cheng, S.H.; et al. Effects of nucleases on cell-free extrachromosomal circular DNA. JCI Insight 2022, 7, e156070. [Google Scholar] [CrossRef]
- Gerovska, D.; Araúzo-Bravo, M.J. Skeletal muscles of sedentary and physically active aged people have distinctive genic extrachromosomal circular DNA profiles. Int. J. Mol. Sci. 2023, 24, 2736. [Google Scholar] [CrossRef]
- Zeng, T.; Huang, W.; Cui, L.; Zhu, P.; Lin, Q.; Zhang, W.; Li, J.; Deng, C.; Wu, Z.; Huang, Z.; et al. The landscape of extrachromosomal circular DNA (eccDNA) in the normal hematopoiesis and leukemia evolution. Cell Death Dis. 2022, 8, 400. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, R.A.; Jenjaroenpun, P.; Sjøstrøm, I.B.; Jensen, K.R.; Prada-Luengo, I.; Wongsurawat, T.; Nookaew, I.; Regenberg, B. Circular DNA in the human germline and its association with recombination. Mol. Cell 2022, 82, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Mouakkad-Montoya, L.; Murata, M.M.; Sulovari, A.; Suzuki, R.; Osia, B.; Malkova, A.; Katsumata, M.; Giuliano, A.E.; Eichler, E.E.; Tanaka, H. Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA. Proc. Natl. Acad. Sci. USA 2021, 118, e2102842118. [Google Scholar] [CrossRef]
- Møller, H.D.; Mohiyuddin, M.; Prada-Luengo, I.; Sailani, M.R.; Halling, J.F.; Plomgaard, P.; Maretty, L.; Hansen, A.J.; Snyder, M.P.; Pilegaard, H.; et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat. Commun. 2018, 9, 1069. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, Y.; He, J.; Xu, C.; Ge, Q.; Zhuo, W.; Si, J.; Chen, S. Distribution and characterization of extrachromosomal circular DNA in colorectal cancer. Mol. Biomed. 2022, 3, 38. [Google Scholar] [CrossRef]
- Sun, Z.; Ji, N.; Zhao, R.; Liang, J.; Jiang, J.; Tian, H. Extrachromosomal circular DNAs are common and functional in esophageal squamous cell carcinoma. Ann. Transl. Med. 2021, 9, 1464. [Google Scholar] [CrossRef]
- Li, B.; Jog, S.P.; Reddy, S.; Comai, L. Wrn controls formation of extrachromosomal telomeric circles and is required for TRF2ΔB-mediated telomere shortening. Mol. Cell. Biol. 2008, 28, 1892–1904. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, J.A.; Parkhill, J.; Campbell, L.; Stacey, M.; Biggs, P.; Byrd, P.J.; Taylor, A.M. Accelerated telomere shortening in ataxia telangiectasia. Nat. Genet. 1996, 13, 350–353. [Google Scholar] [CrossRef]
- Kim, H.; Nguyen, N.; Turner, K.; Wu, S.; Gujar, A.D.; Luebeck, J.; Liu, J.; Deshpande, V.; Rajkumar, U.; Namburi, S.; et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 2020, 52, 891–897. [Google Scholar] [CrossRef]
- Kumar, P.; Kiran, S.; Saha, S.; Su, Z.; Paulsen, T.; Chatrath, A.; Shibata, Y.; Shibata, E.; Dutta, A. Atac-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci. Adv. 2020, 6, a2489. [Google Scholar] [CrossRef]
- Ouyang, Y.; Lu, W.; Wang, Y.; Wang, B.; Li, F.; Li, X.; Bai, Y.; Wang, Y. Integrated analysis of mrna and extrachromosomal circular DNA profiles to identify the potential mrna biomarkers in breast cancer. Gene 2023, 857, 147174. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, Y.; Zhang, T.; Xv, T.; Chen, C.; Li, M.; Qiu, Q.; Song, Y.; Wan, S. Extrachromosomal circular DNA in cancer drug resistance and its potential clinical implications. Front. Oncol. 2023, 12, 1092705. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Chen, Y.; Zhang, F.; Liu, B.; Xie, C.; Song, Y. Encoding gene rab3b exists in linear chromosomal and circular extrachromosomal DNA and contributes to cisplatin resistance of hypopharyngeal squamous cell carcinoma via inducing autophagy. Cell Death Dis. 2022, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, M.; Hu, X.E.; Yuan, L.; Chen, S.; Peng, S.; Yang, P.; Yang, Z.; Bao, G.; He, X. EccDNA-oriented itgb7 expression in breast cancer. Ann. Transl. Med. 2022, 10, 1344. [Google Scholar] [CrossRef]
- Xu, G.; Shi, W.; Ling, L.; Li, C.; Shao, F.; Chen, J.; Wang, Y. Differential expression and analysis of extrachromosomal circular DNAs as serum biomarkers in lung adenocarcinoma. J. Clin. Lab. Anal. 2022, 36, e24425. [Google Scholar] [CrossRef]
- Wu, X.; Li, P.; Yimiti, M.; Ye, Z.; Fang, X.; Chen, P.; Gu, Z. Identification and characterization of extrachromosomal circular DNA in plasma of lung adenocarcinoma patients. Int. J. Gen. Med. 2022, 15, 4781–4791. [Google Scholar] [CrossRef]
- Cen, Y.; Fang, Y.; Ren, Y.; Hong, S.; Lu, W.; Xu, J. Global characterization of extrachromosomal circular DNAs in advanced high grade serous ovarian cancer. Cell Death Dis. 2022, 13, 342. [Google Scholar] [CrossRef]
- Turner, K.M.; Deshpande, V.; Beyter, D.; Koga, T.; Rusert, J.; Lee, C.; Li, B.; Arden, K.; Ren, B.; Nathanson, D.A.; et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 2017, 543, 122–125. [Google Scholar] [CrossRef]
- Zhu, Y.; Gujar, A.D.; Wong, C.; Tjong, H.; Ngan, C.Y.; Gong, L.; Chen, Y.; Kim, H.; Liu, J.; Li, M.; et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 2021, 39, 694–707. [Google Scholar] [CrossRef]
- Luebeck, J.; Ng, A.; Galipeau, P.C.; Li, X.; Sanchez, C.A.; Katz-Summercorn, A.C.; Kim, H.; Jammula, S.; He, Y.; Lippman, S.M.; et al. Extrachromosomal DNA in the cancerous transformation of barrett’s oesophagus. Nature 2023, 616, 798–805. [Google Scholar] [CrossRef]
- Kuhn, H.; Frank Kamenetskii, M.D. Template-independent ligation of single-stranded DNA by t4 DNA ligase. FEBS J. 2005, 272, 5991–6000. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.D.; Lin, L.; Xiang, X.; Petersen, T.S.; Huang, J.; Yang, L.; Kjeldsen, E.; Jensen, U.B.; Zhang, X.; Liu, X.; et al. Crispr-c: Circularization of genes and chromosome by crispr in human cells. Nucleic Acids Res. 2018, 46, e131. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Kotlyar, A.; Vologodskii, A. Kinking the double helix by bending deformation. Nucleic Acids Res. 2008, 36, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Day, L.A. Separation and size determination of circular and linear single-stranded DNAs by alkaline agarose gel electrophoresis. Anal. Biochem. 1995, 226, 202–206. [Google Scholar] [CrossRef] [PubMed]
eccDNA Name | Circularization Ratio (%) | Con. (ng/µL) | A260/280 | A260/230 | Yield (µg) |
---|---|---|---|---|---|
eccBRCA1 | 76.93 ± 9.67 | 101.1 ± 1.80 | 1.82 ± 0.01 | 2.43 ± 0.25 | ~5 |
eccLIMD1 | 39.22 ± 17.69 | 143.6 ± 2.45 | 1.87 ± 0.01 | 2.34 ± 0.25 | ~7.15 |
eccMir2392 | 69.79 ± 5.26 | 100.77 ± 1.93 | 1.87 ± 0.03 | 2.13 ± 0.14 | ~5 |
eccDNA Name | Chromosome | Start | End | Length | Description |
---|---|---|---|---|---|
eccBRCA1 | chr17 | 43,129,109 | 43,129,839 | 731 | Upstream of BRCA1 gene |
eccLIMD1 | chr3 | 45,597,836 | 45,600,504 | 2668 | The first intron of the LIMD1 gene |
eccMir2392 | chr14 | 100,814,436 | 100,815,570 | 1135 | Containing mir2392 gene |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, S.; Li, X.; Yang, Y.; Zhou, J.; He, Q. A Quick Method to Synthesize Extrachromosomal Circular DNA In Vitro. Molecules 2023, 28, 4236. https://doi.org/10.3390/molecules28104236
Zuo S, Li X, Yang Y, Zhou J, He Q. A Quick Method to Synthesize Extrachromosomal Circular DNA In Vitro. Molecules. 2023; 28(10):4236. https://doi.org/10.3390/molecules28104236
Chicago/Turabian StyleZuo, Shanru, Xueguang Li, Yide Yang, Junhua Zhou, and Quanyuan He. 2023. "A Quick Method to Synthesize Extrachromosomal Circular DNA In Vitro" Molecules 28, no. 10: 4236. https://doi.org/10.3390/molecules28104236
APA StyleZuo, S., Li, X., Yang, Y., Zhou, J., & He, Q. (2023). A Quick Method to Synthesize Extrachromosomal Circular DNA In Vitro. Molecules, 28(10), 4236. https://doi.org/10.3390/molecules28104236