Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Materials
2.1.1. Morphology and Structure of Adsorbent Materials
2.1.2. Crystallinity of Adsorbent Materials
2.1.3. Thermal Analysis
2.1.4. Molecular Structure of the Adsorbents
2.1.5. Surface and Porosity
2.2. Removal of Phenolic Compounds using Pomace-Derived Products
2.2.1. Effect of Adsorption Parameters
2.2.2. Sorption Kinetics
2.2.3. Adsorption Isotherms
2.2.4. Thermodynamic Study
2.3. Effect of Regeneration
3. Discussion
Raw Material, Reference | Treatment of Adsorbent | Compound, Conditions | Recorded Efficiency |
---|---|---|---|
olive pomace Stasinakis et al. (2008) [21] | raw; dried; dried and solvent extracted; dried, solvent extracted and incompletely combusted | total phenols in olive mill wastewater | highest performance with dried, solvent extracted and incompletely combusted olive pomace |
olive pomace Haydari et al. (2022) [22] | hydrogen peroxide activation | total phenols in olive mill wastewater; batch and fixed-column assays | adsorption capacity up to 789.28 mg·g−1 and 643.92 mg·g−1 at 4 g·L−1 concentration of phenolic compounds |
olive pomace El Hanandeh et al. (2021) [23] | biochar (pyrolysis) pre-treated with FeCl3 prior to carbonization | aqueous solutions of phenolic compounds; raw olive mill wastewater | 103.9 and 73.9 mg·g−1 at pH = 2 and 5, respectively, and 51.3 mg·g−1 using raw olive mill wastewater |
olive oil solid waste (olive husk) Hamadneh et al. (2020) [24] | biochar (slow pyrolysis) followed with activation using MgCl2 | phenol (P), PMP, PNP in aqueous solution | activation of biochar yields 1.76–2.16-fold increase of adsorption capacity compared with raw biochar |
olive stone (kernels) Bohli et al. (2013) [42] | activated carbon (slow pyrolysis) 2 h 30 min, 410 °C, pre-treated with diluted H3PO4 for 9 h at 110 °C | Aqueous phenol solutions (25–300 mg·L−1, pH 2–9) | max. adsorption capacity 58 mg·g−1; highest adsorption rate at lowest pH = 2; good fit with pseudo-second-order model and Langmuir isotherm |
food waste Lee et al. (2019) [37] | biochar (pyrolysis) | phenol in aqueous solution | max. adsorption capacity with biochar at max. pyrolysis temperature (700 °C); adsorption rate increases as temperature of medium increases from 15 to 35 °C |
date palm Lawal et al. (2020) [43] | biochar (steam pyrolysis) | phenol in palm oil mill effluent | phenol removal rate >90% at 16–20 g/L of biochar |
kenaf Cho et al. (2021) [44] | biochar (pyrolysis) | phenol in aqueous solution | max. adsorption capacity 41.1 mg/g; decreasing phenol adsorption rates as pH of medium increases from 3 to 11 |
date palm frond Fseha et al. (2023) [45] | biochar (pyrolysis 600 °C) | phenol in synthetic wastewater | max. phenol removal rate 64% and adsorption capacity 15.93 mg/g; optimal at pH 6, contact time 20 h (response surface methodology) |
pistachio, pecan shells, wood sawdust Komnitsas and Zaharaki (2016) [46] | chemical activation of biochar (slow pyrolysis) using 1M FeCl3 and 1M KOH | phenol in aqueous solution | Highest adsorption capacity using biochar activated with KOH |
palm kernel Hairuddin et al. (2019) [47] | magnetic biochar | phenol in wastewater | max. adsorption capacity 10.84 mg/g; pH 8 optimum |
pretreated olive pomace Göktepeli et al. (2021) [48] | biochar (pyrolysis) pretreated with FeCl3 | phenol in aqueous solution | pH 5.7 optimum; dosage of biochar 0.14 g and 60 min contact time |
kiwi, cucumber, potato peels Mahmoodi et al. (2018) [49] | activated carbon | dye (methylene blue), mixtures with malachite green and rhodamine B | Endothermic, spontaneous, physical sorption following Langmuir isotherm and pseudo-second-order model |
olive husk Michailof et al. (2008) [50] | activated carbon from pyrolysis 800 °C 1–3 h followed with KOH activation 800–900 °C 2–5 h, KOH:C ratio 4–6:1 | mixture of phenols (caffeic acid, vanillin, vanillic acid, π-hydroxybenzoic acid and gallic acid) | Endothermic, physical and spontaneous adsorption; micropore filling may play an important role in adsorption; adsorption increases with temperature |
floss silk tree waste Franco et al. (2021) [51] | activated carbon from ZnCl2 pretreatment followed with pyrolysis 700 °C 2 h | phenol solution 50 mg/L, adsorbent dosage 0.5–1.5 g/L | pH 7 and adsorbent dosage 0.83 g/L optimum, decreased adsorption efficiency along with increased temperature from 25 to 55 °C |
olive stone Allaoui et al. (2021) [52] | crude olive stone cleaned with hexane, dried and sieved <63 μm | olive mill effluent with 0.3 g/L polyphenols, adsorbent dosage 1 g/L | adsorption efficiency decreased from 381 mg/g to 235 mg/g with increased temperature from 25 to 45 °C, indicates exothermic process |
olive stone Eder et al. (2021) [53] | activated carbon from pyrolysis 600 °C 1 h followed with steam activation 900 °C 1 h | Hydroxytyrosol solution | adsorption increases with pH (range 2–8) and temperature (range 0–60 °C); based on Akaike Information Criterion, kinetics controlled via intraparticle diffusion resistance |
olive stone, wood from olive tree pruning Esteves et al. (2022) [54] | activated carbon from pyrolysis 800 °C 2 h followed with CO2 or KOH 800 °C 4 h | Phenols (tyrosol, caffeic acid, gallic acid, protocatechuic acid, vanillic acid) | good fit with pseudo-second-order model and Langmuir isotherm, adsorption increases linearly with volume of micropores |
olive stone Galiatsatou et al. (2002) [55] | activated carbon from 2-step steam activation at 850 and 800 °C of olive stone and solvent-extracted olive pulp | 20% v/v diluted olive mill effluent with 1.5–2.4 g/L of polyphenols and COD 30,000–150,000 mg/L | mesoporosity may be the key factor for total phenol adsorption, microporosity effects adsorption of total organic compounds |
olive pomace Abu-dalo et al. (2021) [56] | activated carbon from pyrolysis 800 °C 1 h, mixing with KOH 1 h, re-activation 800 °C 8 h, oxidation, functionalization with Cu/Cu2O/CuO | olive mill effluent with acid pretreatment, filtration and dilution to 124–93–62 mg/L total phenols | endothermic, spontaneous, good fit with pseudo-second-order model, adsorption increases at higher pH (range 2–11) and higher temperature (range 20–38 °C) |
olive branches Vohra et al. (2022) [57] | activated carbon from pyrolysis 700 °C | phenol in aqueous solution | adsorption follows pseudo-first-order kinetics, rate constant 0.127 min−1 |
brown seaweed Rathinam et al. (2011) [58] | activated carbon from ZnCl2 pretreatment followed with pyrolysis 800 °C 2 h | Phenol in aqueous solution | optimal adsorption efficiency 98.31% at pH 3.0, 150 mg/L phenol, adsorbent dosage 10 g/L, time 4 h, temperature 50¨C, stirring 75 rpm |
particleboard waste Girods et al. (2009) [59] | activated carbon from 3-stages: (1) 250–400 °C, (2) 800–1000 °C, (3) steam activation 800 °C 30 min | phenol solution 400 mg/L, pH 6–7 | adsorption capacity up to 0.5 g/g with surface area of activated carbon 800–1300 m2/g |
commercial activated carbon Liu et al. (2010) [60] | activated carbon fibers, 4 mm diameter (Sainuoda Co., Anshan, China) | phenol, derivatives 2-CP, 4-CP, DCP, TCP, 4-NP, DNP | best fit with Redlich-Peterson model, exothermic process as adsorption decreases at higher temperature (range 25–55 °C) |
commercial activated carbon Azzam et al. (2004) [61] | activated carbon powder, Canning Chemicals, England, 50–150 μm, 800 m2/g | olive mill effluent treated via settling, centrifugation and filtration | at 35 °C, max. adsorption capacity reached in < 4 h, then desorption of phenols back in solution, max. adsorption 94% at 31 g/L adsorbent |
commercial activated carbon Garcia-Araya et al. (2003) [62] | granular activated carbon, Hydraffin P110, Donan Carbon GmbH & Co. KG, Germany | gallic acid, p-hydroxybenzoic acid, syringic acid and their mixtures | Positive and negative interactions at low and high concentrations, respectively, max. adsorption rate 0.20–0.25 g/g after up to 150 h |
commercial activated carbon Senol et al. (2016) [63] | activated carbon Sigma-Aldrich powder 100 μm, granular 600 and 1000 μm | olive mill effluent treated via centrifugation, total phenols 4821.5 g/L | max. adsorption capacity 65 mg/g and phenol removal rate 41% at 25 °C, 120 min, pH 4.4 and 30 g/L adsorbent with smaller particle size |
composite material Abu-dalo et al. (2023) [64] | composite of Cu 1,4-benzene dicarboxylate metal-organic framework and granular activated carbon | olive mill effluent pH 4.0 and total phenols 440 mg/L | maximum adsorption capacity was 20 mg/g of total phenolic content (TPC) after 4 h. using 2% wt/wt of composite adsorbent |
composite material Yangui and Abderrabba (2018) [65] | commercial activated carbon (Strem Chemicals) coated with milk proteins | filtrated olive mill effluent | optimal pH 7.0, 50 g/L adsorbent, max. phenol removal rate 75.4% |
olive pomace (Our study) | water washed, dried 60 °C, sieved <2 mm (OPR); biochar (pyrolysis 450 °C) (OPB) | Diluted olive mill wastewater adjusted at 100 mg/L total phenols | Endothermic, spontaneous, good fit with pseudo-second-order model and Langmuir isotherm; max. adsorption capacity (OPR) 21.27 (OPB) 66.67; pH 10 optimum |
4. Materials and Methods
4.1. Feedstocks
4.2. Characterization of the Materials
4.3. Monitoring of Adsorption Experiments
4.4. Implementation of Adsorption Experiments
4.5. Estimation and Modeling of Adsorption Parameters
Sorption | Model | Equation | Linear Expression |
---|---|---|---|
Kinetic | Pseudo-first order | ||
Pseudo-second order | |||
Isotherm | Freundlich | ||
Langmuir |
4.6. Regeneration Experiments
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mehdaoui, I.; Majbar, Z.; Atemni, I.; Jennan, S.; Ainane, T.; Gaga, Y.; Chetouani, A. What effects does an organic amendment to olive waste have on the soil and crop yield? Moroc. J. Chem. 2021, 9, 776–790. [Google Scholar]
- Fernández-Rodríguez, M.J.; De la Lama-Calvente, D.; Jiménez-Rodríguez, A.; Borja, R.; Rincón-Llorente, B. Anaerobic co-digestion of olive mill solid waste and microalga Scenedesmus quadricauda: Effect of different carbon to nitrogen ratios on process performance and kinetics. J. Appl. Phycol. 2019, 31, 3583–3591. [Google Scholar] [CrossRef]
- Mendecka, B.; Lombardi, L.; Micali, F.; De Risi, A. Energy recovery from olive pomace by hydrothermal carbonization on hypothetical industrial scale: A LCA perspective. Waste Biomass Valoriz. 2020, 11, 5503–5519. [Google Scholar] [CrossRef]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Mehdaoui, I.; Majbar, Z.; Atemni, I.; Elhaji, M.; Abbou, M.B.; Jennan, S.; Rais, Z. Agronomic valorization of the composts with olive waste. Moroc. J. Chem. 2022, 10, 606–621. [Google Scholar]
- Sánchez-Sánchez, C.; González-González, A.; Cuadros-Salcedo, F.; Cuadros-Blázquez, F. Two-phase Olive mill waste: A circular economy solution to an imminent problem in Southern Europe. J. Clean. Prod. 2020, 274, 122789. [Google Scholar] [CrossRef]
- Nunes, A.; Marto, J.; Gonçalves, L.; Martins, A.M.; Fraga, C.; Ribeiro, H.M. Potential therapeutic of olive oil industry by-products in skin health: A review. Int. J. Food Sci. Technol. 2022, 57, 173–187. [Google Scholar] [CrossRef]
- Khwaldia, K.; Attour, N.; Matthes, J.; Beck, L.; Schmid, M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1218–1253. [Google Scholar] [CrossRef]
- Schroeder, P.; Pereira, V.B.; Ventura, A.; Andrade, J.; Figueiredo, M.K.K.; das Chagas, E.F.; da Silva RV, S. Chemical Evaluation via High-Resolution Techniques and Biopesticide Potential of Bio-Oil and Aqueous Phase from Slow Pyrolysis of Passion Fruit Seed Cake. Waste Biomass Valoriz. 2022, 1–22. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2021, 61, 920–945. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.; Félix, R.; Pais, A.C.; Rocha, S.M.; Silvestre, A.J. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules 2019, 9, 847. [Google Scholar] [CrossRef]
- Ainane, T.; Abourriche, A.; Kabbaj, M.; Elkouali, M.; Bennamara, A.; Charrouf, M.; Talbi, M. Valorization of natural clay from agadir (Morocco): Characterization and study of the isotherms adsorption of Methylene blue. J. Chem. Pharm. Res. 2014, 6, 599–606. [Google Scholar]
- Solomakou, N.; Goula, A.M. Treatment of olive mill wastewater by adsorption of phenolic compounds. Rev. Environ. Sci. Bio/Technol. 2021, 20, 839–863. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, S.; Chen, L.; Liu, Z.; Qin, J. Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater. Ind. Crops Prod. 2021, 160, 113157. [Google Scholar] [CrossRef]
- Patel, P.; Gupta, S.; Mondal, P. Modeling and optimization of process parameters of MB dye adsorption using waste-derived chemically activated biosorbents. Biomass Convers. Biorefinery 2022, 1–20. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S. Biochar derived carbonaceous material for various environmental applications: Systematic review. Environ. Res. 2022, 214, 113857. [Google Scholar] [CrossRef]
- Amalina, F.; Abd Razak, A.S.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications—A review. J. Hazard. Mater. Adv. 2022, 7, 100s134. [Google Scholar] [CrossRef]
- Güleç, F.; Williams, O.; Kostas, E.T.; Samson, A.; Lester, E. A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction. Energy Convers. Manag. 2022, 270, 116260. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman MH, D.; Liang, X.; Goh, H.H.; Gikas, P.; Chong, K.K.; Chew, K.W. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. J. Environ. Manag. 2023, 332, 117429. [Google Scholar] [CrossRef]
- Abdeljaoued, E.; Brulé, M.; Tayibi, S.; Manolakos, D.; Oukarroum, A.; Monlau, F.; Barakat, A. Bibliometric analysis of the evolution of biochar research trends and scientific production. Clean Technol. Environ. Policy 2020, 22, 1967–1997. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Elia, I.; Petalas, A.V.; Halvadakis, C.P. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J. Hazard. Mater. 2008, 160, 408–413. [Google Scholar] [CrossRef]
- Haydari, I.; Lissaneddine, A.; Aziz, K.; Ouazzani, N.; Mandi, L.; El Ghadraoui, A.; Aziz, F. Optimization of preparation conditions of a novel low-cost natural bio-sorbent from olive pomace and column adsorption processes on the removal of phenolic compounds from olive oil mill wastewater. Environ. Sci. Pollut. Res. 2022, 29, 80044–80061. [Google Scholar] [CrossRef] [PubMed]
- El Hanandeh, A.; Albalasmeh, A.; Gharaibeh, M.; Alajlouni, M. Modification of biochar prepared from olive oil processing waste to enhance phenol removal from synthetic and olive mill wastewater. Sep. Sci. Technol. 2021, 56, 1659–1671. [Google Scholar] [CrossRef]
- Hamadneh, I.; Abu-Zurayk, R.A.; Al-Dujaili, A.H. Removal of phenolic compounds from aqueous solution using MgCl2-impregnated activated carbons derived from olive husk: The effect of chemical structures. Water Sci. Technol. 2020, 81, 2351–2367. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.M.; Morales-Torres, S.; Maldonado-Hódar, F.J.; Madeira, L.M. Fitting biochars and activated carbons from residues of the olive oil industry as supports of Fe-catalysts for the heterogeneous Fenton-like treatment of simulated olive mill wastewater. Nanomaterials 2020, 10, 876. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Judeh, A.A.; Hakeem, A.S.; Ul-Hamid, A.; Umar, Y.; Ahmad, A. Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int. J. Biol. Macromol. 2020, 155, 730–739. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Yi, Q.; Qi, F.; Cheng, G.; Zhang, Y.; Xiao, B.; Hu, Z.; Xu, S. Thermogravimetric analysis of co-combustion of biomass and biochar. J. Therm. Anal. Calorim. 2013, 112, 1475–1479. [Google Scholar] [CrossRef]
- Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M.P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 177–184. [Google Scholar] [CrossRef]
- Li, C.; Sun, Y.; Dong, D.; Gao, G.; Zhang, S.; Wang, Y.; Hu, X. Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar. Energy 2021, 226, 120442. [Google Scholar] [CrossRef]
- Kim, H.B.; Kim, J.G.; Kim, T.; Alessi, D.S.; Baek, K. Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: Relationships between lignin content and dissolved organic matter leaching. Chem. Eng. J. 2020, 393, 124687. [Google Scholar] [CrossRef]
- Qiu, B.; Shao, Q.; Shi, J.; Yang, C.; Chu, H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol. 2022, 300, 121925. [Google Scholar] [CrossRef]
- Halder, P.; Kundu, S.; Patel, S.; Parthasarathy, R.; Pramanik, B.; Paz-Ferreiro, J.; Shah, K. TGA-FTIR study on the slow pyrolysis of lignin and cellulose-rich fractions derived from imidazolium-based ionic liquid pre-treatment of sugarcane straw. Energy Convers. Manag. 2019, 200, 112067. [Google Scholar] [CrossRef]
- Abid, N.; Masmoudi, M.A.; Megdiche, M.; Barakat, A.; Ellouze, M.; Chamkha, M.; Sayadi, S. Biochar from olive mill solid waste as an eco-friendly adsorbent for the removal of polyphenols from olive mill wastewater. Chem. Eng. Res. Des. 2022, 181, 384–398. [Google Scholar] [CrossRef]
- Alimohammadi, P.; Nejad, M.S.; Miroliaei, M.R.; Sheibani, H. Oriented growth of copper & nickel-impregnated δ-MnO2 nanofilaments anchored onto sulfur-doped biochar template as hybrid adsorbents for removing phenolic compounds by adsorption-oxidation process. Chem. Eng. Process. Process Intensif. 2022, 176, 108971. [Google Scholar]
- Khammour, F.; Abdoul-Latif, F.M.; Ainane, A.; Mohamed, J.; Ainane, T. Eco-friendly adsorbent from waste of mint: Application for the removal of hexavalent chromium. J. Chem. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Lee, C.G.; Hong, S.H.; Hong, S.G.; Choi, J.W.; Park, S.J. Production of biochar from food waste and its application for phenol removal from aqueous solution. Water Air Soil Pollut. 2019, 230, 70. [Google Scholar] [CrossRef]
- Fotsing, P.N.; Bouazizi, N.; Woumfo, E.D.; Mofaddel, N.; Le Derf, F.; Vieillard, J. Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell adsorbent. J. Environ. Chem. Eng. 2021, 9, 104618. [Google Scholar] [CrossRef]
- Al-Essa, K.; Al-Essa, E.M. Effective approach of activated Jordanian bentonite by sodium ions for total phenolic compounds removal from olive mill wastewater. J. Chem. 2021, 2021, 7405238. [Google Scholar] [CrossRef]
- Abu-Nada, A.; Abdala, A.; McKay, G. Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: A review. J. Environ. Chem. Eng. 2021, 9, 105858. [Google Scholar] [CrossRef]
- Ververi, M.; Goula, A.M. Pomegranate peel and orange juice by-product as new biosorbents of phenolic compounds from olive mill wastewaters. Chem. Eng. Process. Process Intensif. 2019, 138, 86–96. [Google Scholar] [CrossRef]
- Bohli, T.; Fiol Santaló, N.; Villaescusa Gil, I.; Ouederni, A. Adsorption on activated carbon from olive stones: Kinetics and equilibrium of phenol removal from aqueous solution. J. Chem. Eng. Process Technol. 2013, 4, 165. [Google Scholar]
- Lawal, A.A.; Hassan, M.A.; Farid MA, A.; Yasim-Anuar TA, T.; Yusoff MZ, M.; Zakaria, M.R.; Shirai, Y. One-step steam pyrolysis for the production of mesoporous biochar from oil palm frond to effectively remove phenol in facultatively treated palm oil mill effluent. Environ. Technol. Innov. 2020, 18, 100730. [Google Scholar] [CrossRef]
- Cho, E.J.; Kang, J.K.; Moon, J.K.; Um, B.H.; Lee, C.G.; Jeong, S.; Park, S.J. Removal of triclosan from aqueous solution via adsorption by kenaf-derived biochar: Its adsorption mechanism study via spectroscopic and experimental approaches. J. Environ. Chem. Eng. 2021, 9, 106343. [Google Scholar] [CrossRef]
- Fseha, Y.H.; Shaheen, J.; Sizirici, B. Phenol contaminated municipal wastewater treatment using date palm frond biochar: Optimization using response surface methodology. Emerg. Contam. 2023, 9, 100202. [Google Scholar] [CrossRef]
- Komnitsas, K.A.; Zaharaki, D. Morphology of modified biochar and its potential for phenol removal from aqueous solutions. Front. Environ. Sci. 2016, 4, 26. [Google Scholar] [CrossRef]
- Hairuddin, M.N.; Mubarak, N.M.; Khalid, M.; Abdullah, E.C.; Walvekar, R.; Karri, R.R. Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environ. Sci. Pollut. Res. 2019, 26, 35183–35197. [Google Scholar] [CrossRef] [PubMed]
- Göktepeli, G.; Yildiz, S.; Esra, Y.E.L. Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics. Hacet. J. Biol. Chem. 2021, 49, 133–145. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Taghizadeh, M.; Taghizadeh, A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: Preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems. J. Mol. Liq. 2018, 269, 217–228. [Google Scholar] [CrossRef]
- Michailof, C.; Stavropoulos, G.G.; Panayiotou, C. Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresour. Technol. 2008, 99, 6400–6408. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.S.; Georgin, J.; Netto, M.S.; Allasia, D.; Oliveira, M.L.; Foletto, E.L.; Dotto, G.L. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. J. Environ. Chem. Eng. 2021, 9, 105927. [Google Scholar] [CrossRef]
- Allaoui, S.; Bennani, M.N.; Ziyat, H.; Qabaqous, O.; Tijani, N.; Ittobane, N.; Hodaifa, G. Valorization of crude olive stone in the removing of polyphenols from crude olive mill wastewater: Kinetic, isotherm and mechanism study. Heliyon 2021, 7, e07525. [Google Scholar] [CrossRef] [PubMed]
- Eder, S.; Müller, K.; Azzari, P.; Arcifa, A.; Peydayesh, M.; Nyström, L. Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit–derived activated carbon. Chem. Eng. J. 2021, 404, 126519. [Google Scholar] [CrossRef]
- Esteves, B.M.; Morales-Torres, S.; Madeira, L.M.; Maldonado-Hódar, F.J. Specific adsorbents for the treatment of OMW phenolic compounds by activation of bio-residues from the olive oil industry. J. Environ. Manag. 2022, 306, 114490. [Google Scholar] [CrossRef] [PubMed]
- Galiatsatou, P.; Metaxas, M.; Arapoglou, D.; Kasselouri-Rigopoulou, V. Treatment of olive mill waste water with activated carbons from agricultural by-products. Waste Manag. 2002, 22, 803–812. [Google Scholar] [CrossRef]
- Abu-Dalo, M.; Abdelnabi, J.; Bawab, A.A. Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater. Materials 2021, 14, 6636. [Google Scholar] [CrossRef]
- Vohra, M.; Hussaini, M.; Mohammad, T. Olive branches activated carbon: Synthesis, phenol adsorption and modeling. Chem. Pap. 2023, 77, 485–498. [Google Scholar] [CrossRef]
- Rathinam, A.; Rao, J.R.; Nair, B.U. Adsorption of phenol onto activated carbon from seaweed: Determination of the optimal experimental parameters using factorial design. J. Taiwan Inst. Chem. Eng. 2011, 42, 952–956. [Google Scholar] [CrossRef]
- Girods, P.; Dufour, A.; Fierro, V.; Rogaume, Y.; Rogaume, C.; Zoulalian, A.; Celzard, A. Activated carbons prepared from wood particleboard wastes: Characterisation and phenol adsorption capacities. J. Hazard. Mater. 2009, 166, 491–501. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Azzam, M.O.; Al-Malah, K.I.; Abu-Lail, N.I. Dynamic post-treatment response of olive mill effluent wastewater using activated carbon. J. Environ. Sci. Health Part A 2004, 39, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Araya, J.F.; Beltran, F.J.; Alvarez, P.; Masa, F.J. Activated carbon adsorption of some phenolic compounds present in agroindustrial wastewater. Adsorption 2003, 9, 107–115. [Google Scholar] [CrossRef]
- Senol, A.; Hasdemir, İ.M.; Hasdemir, B.; Kurdaş, İ. Adsorptive removal of biophenols from olive mill wastewaters (OMW) by activated carbon: Mass transfer, equilibrium and kinetic studies. Asia-Pac. J. Chem. Eng. 2017, 12, 128–146. [Google Scholar] [CrossRef]
- Abu-Dalo, M.A.; Al-Rawashdeh, N.A.; Almurabi, M.; Abdelnabi, J.; Al Bawab, A. Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework. Materials 2023, 16, 1159. [Google Scholar] [CrossRef]
- Yangui, A.; Abderrabba, M. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chem. 2018, 262, 102–109. [Google Scholar] [CrossRef]
- Michiu, D.; Socaciu, M.I.; Fogarasi, M.; Jimborean, A.M.; Ranga, F.; Mureşan, V.; Semeniuc, C.A. Implementation of an analytical method for spectrophotometric evaluation of total phenolic content in essential oils. Molecules 2022, 27, 1345. [Google Scholar] [CrossRef]
- Ainane, T.; Khammour, F.; Talbi, M.; Elkouali, M. A novel bio-adsorbent of mint waste for dyes remediation in aqueous environments: Study and modeling of isotherms for removal of methylene Blue. Orient. J. Chem. 2014, 30, 1183–1189. [Google Scholar] [CrossRef]
- Saleh, T.A. Isotherm models of adsorption processes on adsorbents and nanoadsorbents. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 34, pp. 99–126. [Google Scholar]
- Ainane, T.; Mohamed Abdoul-Latif, F.; Ainane, A.; Kornaros, M.; Brulé, M. Optimization by design of experiments of the preparation of biochar from olive pomace and its physico-chemical characterizations. J. Anal. Sci. Appl. Biotechnol. 2023, 5, 1–10. [Google Scholar]
- Zaghloul, A.; Aziam, R.; Abali, M.H.; Benhiti, R.; Soudani, A.; Zerbet, M.; Sinan, F. Sorption of azoic dye onto MgAl-hydrotalcite prepared by the coprecipitation method. J. Anal. Sci. Appl. Biotechnol. 2021, 3, 74–77. [Google Scholar]
Material | C (%) | O (%) | Other Elements (%) |
---|---|---|---|
OPR | 58.1 | 40.7 | 1.2 |
OPB | 77.6 | 21.3 | 1.1 |
Sample | SBET (m2·g−1) | VTotal (cm3·g−1) | Dp (nm) |
---|---|---|---|
OPR | 2.1951 | 0.0134 | 15.3725 |
OPB | 13.6176 | 0.0225 | 3.7929 |
Model | Parameters | OPR | OPB |
---|---|---|---|
Pseudo-first-order | Linear expression | y = −0.117x + 1.112 | y = −0.102x + 1.794 |
R2 | 0.848 | 0.737 | |
k1P (min−1) | 0.117 | 0.102 | |
qe.1P (mg·g−1) | 3.04 | 6.01 | |
Pseudo-second-order | Linear expression | y = 0.225x + 0.154 | y = 0.048x + 0.029 |
R2 | 0.902 | 0.970 | |
k2P (min−1) | 0.685 | 0.604 | |
qe.2P (mg·g−1) | 6.49 | 34.48 |
Model | Parameters | OPR | OPB |
---|---|---|---|
Freundlich | Linear expression | y = 0.763x − 0.173 | y = 0.665x + 0.568 |
R2 | 0.972 | 0.900 | |
KF (L/g) | 1.189 | 1.765 | |
nF | 0.763 | 0.665 | |
Langmuir | Linear expression | y = 2.044x + 0.047 | y = 0.418x + 0.015 |
R2 | 0.982 | 0.953 | |
KL | 0.023 | 0.036 | |
qm.L (mg·g−1) | 21.27 | 66.67 |
Adsorbent | ΔH° (KJ·mol−1) | ΔS° (KJ·K−1·mol−1) | ΔG° (KJ·mol−1) | ||
---|---|---|---|---|---|
298 K | 308 K | 318 K | |||
OPR | −13.15 | −0.022 | −6.594 | −6.374 | −6.154 |
OPB | −21.38 | −0.034 | −11.248 | −10.908 | −10.568 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Abdoul-Latif, F.; Ainane, A.; Hachi, T.; Abbi, R.; Achira, M.; Abourriche, A.; Brulé, M.; Ainane, T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023, 28, 4310. https://doi.org/10.3390/molecules28114310
Mohamed Abdoul-Latif F, Ainane A, Hachi T, Abbi R, Achira M, Abourriche A, Brulé M, Ainane T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules. 2023; 28(11):4310. https://doi.org/10.3390/molecules28114310
Chicago/Turabian StyleMohamed Abdoul-Latif, Fatouma, Ayoub Ainane, Touria Hachi, Rania Abbi, Meryem Achira, Abdelmjid Abourriche, Mathieu Brulé, and Tarik Ainane. 2023. "Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents" Molecules 28, no. 11: 4310. https://doi.org/10.3390/molecules28114310
APA StyleMohamed Abdoul-Latif, F., Ainane, A., Hachi, T., Abbi, R., Achira, M., Abourriche, A., Brulé, M., & Ainane, T. (2023). Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules, 28(11), 4310. https://doi.org/10.3390/molecules28114310