Peroxymonosulfate-Activation-Induced Phase Transition of Mn3O4 Nanospheres on Nickel Foam with Enhanced Catalytic Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the As-Prepared Mn3O4 Sample
2.2. Degradation Performances in Different Systems
2.2.1. Effect of Catalyst Loading
2.2.2. Effect of Nickel Foam
2.2.3. Effects of Degradation Conditions
2.3. Catalyst Reusability and Structural Change
2.4. Identification of Radicals
2.5. The Mechanism of PMS Activation and Phase Transition
3. Materials and Methods
3.1. Synthesis of Mn3O4 Nanospheres on Nickel Foam
3.2. Characterization
3.3. Evaluation of Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lu, C.; Zhang, S.; Wang, J.; Zhao, X.; Zhang, L.; Tang, A.; Dong, X.; Fu, L.; Yang, H. Efficient activation of peroxymonosulfate by iron-containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants. Chem. Eng. J. 2022, 446, 137044. [Google Scholar] [CrossRef]
- Babu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of water and wastewater by advanced oxidation processes. Sci. Total Environ. 2019, 696, 133961. [Google Scholar] [CrossRef]
- Lin, W.; Liu, X.; Ding, A.; Ngo, H.H.; Zhang, R.; Nan, J.; Ma, J.; Li, G. Advanced oxidation processes (AOPs)-based sludge conditioning for enhanced sludge dewatering and micropollutants removal: A critical review. J. Water Process Eng. 2022, 45, 102468. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Guo, Q.; Wang, X.; Zhang, L.; Gao, X.; Luo, Y. Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range. Sep. Purif. Technol. 2021, 276, 119403. [Google Scholar] [CrossRef]
- Xu, X.; Zhan, F.; Pan, J.; Zhou, L.; Su, L.; Cen, W.; Li, W.; Tian, C. Engineering single-atom Fe-Pyridine N4 sites to boost peroxymonosulfate activation for antibiotic degradation in a wide pH range. Chemosphere 2022, 294, 133735. [Google Scholar] [CrossRef]
- Janzen, E.G.; Kotake, Y.; Randall, D.H. Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. Free. Radic. Biol. Med. 1992, 12, 169–173. [Google Scholar] [CrossRef]
- Olmez-Hanci, T.; Arslan-Alaton, I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J. 2013, 224, 10–16. [Google Scholar] [CrossRef]
- Huang, D.; Chen, N.; Zhu, C.; Fang, G.; Zhou, D. The overlooked oxidative dissolution of silver sulfide nanoparticles by thermal activation of persulfate: Processes, mechanisms, and influencing factors. Sci. Total Environ. 2021, 760, 144504. [Google Scholar] [CrossRef]
- Xie, R.; Ji, J.; Guo, K.; Lei, D.; Fan, Q.; Leung, D.Y.C.; Huang, H. Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals. Chem. Eng. J. 2019, 356, 632–640. [Google Scholar] [CrossRef]
- Deng, D.; Lin, X.; Ou, J.; Wang, Z.; Li, S.; Deng, M.; Shu, Y. Efficient chemical oxidation of high levels of soil-sorbed phenanthrene by ultrasound induced, thermally activated persulfate. Chem. Eng. J. 2015, 265, 176–183. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, L.; Liu, S.; Li, R.; Wang, N.; Tang, H. Efficient degradation of organic pollutants by low-level Co2+ catalyzed homogeneous activation of peroxymonosulfate. J. Hazard. Mater. 2019, 371, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yan, Y.; Yang, X.; Liao, G.; He, J.; Wang, D. The effect of complexation with metal ions on tetracycline degradation by Fe2+/3+ and Ru3+ activated peroxymonosulfate. Chem. Eng. J. 2022, 429, 132178. [Google Scholar] [CrossRef]
- Bouzayani, B.; Rosales, E.; Pazos, M.; Elaoud, S.C.; Sanromán, M.A. Homogeneous and heterogeneous peroxymonosulfate activation by transition metals for the degradation of industrial leather dye. J. Clean. Prod. 2019, 228, 222–230. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, S.; Wang, P.; Wei, X.; Zhang, R.; Tang, H.; Wang, H.; Lu, W.; Wang, J. Research progress on catalytic activation of peroxymonosulfate based on manganese oxides. J. Environ. Chem. Eng. 2022, 10, 108937. [Google Scholar] [CrossRef]
- Jia, Z.; Lv, Y.; Guo, Y.; Gao, Q.; Lan, H.; Khan, A.; Xu, A.; Li, X. Synergistic effects between graphite nanosheets and OMS-2 to enhance the direct electron transfer process-based peroxymonosulfate activation for pollutants degradation. Appl. Surf. Sci. 2022, 590, 153065. [Google Scholar] [CrossRef]
- Saputra, E.; Muhammad, S.; Sun, H.; Ang, H.-M.; Tadé, M.O.; Wang, S. Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl. Catal. B 2013, 142–143, 729–735. [Google Scholar] [CrossRef]
- Huang, J.; Zhong, S.; Dai, Y.; Liu, C.-C.; Zhang, H. Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation. Environ. Sci. Technol. 2018, 52, 11309–11318. [Google Scholar] [CrossRef]
- Saputra, E.; Muhammad, S.; Sun, H.; Ang, H.-M.; Tadé, M.O.; Wang, S. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. J. Colloid Interface Sci. 2013, 407, 467–473. [Google Scholar] [CrossRef]
- Mu, J.; Gu, Z.; Sun, H.; Wei, Q. Low Temperature Synthesis of Mn3O4 Nanoparticles Using Starch as Capping Agent. J. Dispers. Sci. Technol. 2006, 27, 307–309. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Shen, Z.; Liu, X.; Jiang, C. Facile synthesis of three-dimensional Mn3O4 hierarchical microstructures for efficient catalytic phenol oxidation with peroxymonosulfate. Appl. Surf. Sci. 2019, 495, 143568. [Google Scholar] [CrossRef]
- Zhang, L.; Tong, T.; Wang, N.; Ma, W.; Sun, B.; Chu, J.; Lin, K.A.; Du, Y. Facile Synthesis of Yolk–Shell Mn3O4 Microspheres as a High-Performance Peroxymonosulfate Activator for Bisphenol A Degradation. Ind. Eng. Chem. Res. 2019, 58, 21304–21311. [Google Scholar] [CrossRef]
- Chen, C.; Xie, M.; Kong, L.; Lu, W.; Feng, Z.; Zhan, J. Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. J. Hazard. Mater. 2020, 390, 122146. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xu, C.; Yu, S.; Zhang, D.; Wang, S. Facile Synthesis of Mn3O4-Reduced Graphene Oxide Hybrids for Catalytic Decomposition of Aqueous Organics. Ind. Eng. Chem. Res. 2013, 52, 3637–3645. [Google Scholar] [CrossRef]
- Yuan, R.; Jiang, M.; Gao, S.; Wang, Z.; Wang, H.; Boczkaj, G.; Liu, Z.; Ma, J.; Li, Z. 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chem. Eng. J. 2020, 380, 122447. [Google Scholar] [CrossRef]
- Wang, M.-M.; Liu, L.-J.; Wen, J.-T.; Ding, Y.; Xi, J.-R.; Li, J.-C.; Lu, F.-Z.; Wang, W.-K.; Xu, J. Multimetallic CuCoNi Oxide Nanowires In Situ Grown on a Nickel Foam Substrate Catalyze Persulfate Activation via Mediating Electron Transfer. Environ. Sci. Technol. 2022, 56, 12613–12624. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-H.; Park, Y.-K.; Kwon, E.; Fai Tsang, Y.; Xuan Thanh, B.; Cong Khiem, T.; You, S.; Hu, C.; Lin, K.-Y.A. Nanoneedle-Assembled Copper/Cobalt sulfides on nickel foam as an enhanced 3D hierarchical catalyst to activate monopersulfate for Rhodamine b degradation. J. Colloid Interface Sci. 2022, 613, 168–181. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, M.; Ma, X.; Wu, S.; Ge, M.; Yu, X. Insights into the transformations of Mn species for peroxymonosulfate activation by tuning the Mn3O4 shapes. Chem. Eng. J. 2021, 404, 127097. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, J.; Tang, L.; Feng, C.; Wang, J.; Deng, Y.; Liu, H.; Yu, J.; Feng, H.; Wang, J. Origin of the Enhanced Reusability and Electron Transfer of the Carbon-Coated Mn3O4 Nanocube for Persulfate Activation. ACS Catal. 2020, 10, 14857–14870. [Google Scholar] [CrossRef]
- Julien, C.M.; Massot, M.; Poinsignon, C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim. Acta Part A 2004, 60, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xiao, P.; Wang, X.; Liu, Y.; Yi, X.; Zhou, H. Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides. J. Hazard. Mater. 2022, 427, 127938. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Zhang, Z.-Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst. Chem. Eng. J. 2017, 313, 1320–1327. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, Y.; Lu, F.; Wei, F.; Wang, X.; Wang, S. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. Hazard. Mater. 2014, 270, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Y.; Liu, Y.; Cheng, X.; Tang, W.; Zhao, C.; Guo, H. Kinetic performance of peroxymonosulfate activated by Co/Bi25FeO40: Radical and non-radical mechanism. J. Taiwan Inst. Chem. Eng. 2019, 100, 56–64. [Google Scholar] [CrossRef]
- Yuan, R.; Hu, L.; Yu, P.; Wang, Z.; Wang, H.; Fang, J. Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: A synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants. Chemosphere 2018, 210, 877–888. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, H.; Li, Y.; Zhang, H. The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis. Sci. Total Environ. 2017, 609, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Post, J.E.; McKeown, D.A.; Heaney, P.J. Raman spectroscopy study of manganese oxides: Layer structures. Am. Mineral. 2021, 106, 351–366. [Google Scholar] [CrossRef]
- Bernard, M.C.; Hugot-Le Goff, A.; Thi, B.V.; de Torresi, S.C. Electrochromic reactions in manganese oxides: I. Raman analysis. J. Electrochem. Soc. 1993, 140, 3065–3070. [Google Scholar] [CrossRef]
- Nagaraju, G.; Ko, Y.H.; Cha, S.M.; Im, S.H.; Yu, J.S. A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 2016, 9, 1507–1522. [Google Scholar] [CrossRef]
- Jabeen, N.; Hussain, A.; Xia, Q.; Sun, S.; Zhu, J.; Xia, H. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 2017, 29, 1700804. [Google Scholar] [CrossRef]
- Zhao, N.; Fan, H.; Zhang, M.; Ma, J.; Wang, C.; Yadav, A.K.; Li, H.; Jiang, X.; Cao, X. Beyond intercalation-based supercapacitors: The electrochemical oxidation from Mn3O4 to Li4Mn5O12 in Li2SO4 electrolyte. Nano Energy 2020, 71, 104626. [Google Scholar] [CrossRef]
- Li, Y.-F.; Liu, Z.-P. Active site revealed for water oxidation on electrochemically induced δ-MnO2: Role of spinel-to-layer phase transition. J. Am. Chem. Soc. 2018, 140, 1783–1792. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, S.; Ji, X.; Jiang, Y.; Zhou, J.; Liu, M. Investigations into the origin of pseudocapacitive behavior of Mn3O4 electrodes using in operando Raman spectroscopy. J. Mater. Chem. A 2015, 3, 7338–7344. [Google Scholar] [CrossRef]
- Kim, S.; Nam, K.W.; Lee, S.; Cho, W.; Kim, J.-S.; Kim, B.G.; Oshima, Y.; Kim, J.-S.; Doo, S.-G.; Chang, H.; et al. Direct observation of an anomalous spinel-to-layered phase transition mediated by crystal water intercalation. Angew. Chem. Int. Ed. 2015, 54, 15094–15099. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Dou, Y.; Hwang, S.M.; Park, M.-S.; Jiang, L.; Kim, J.H.; Dou, S.X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, Z.; Chen, Y.; Zeng, X.; Long, H.; Rong, H.; Zou, H.; Ding, J.; Li, J. Peroxymonosulfate-Activation-Induced Phase Transition of Mn3O4 Nanospheres on Nickel Foam with Enhanced Catalytic Performance. Molecules 2023, 28, 4312. https://doi.org/10.3390/molecules28114312
Liu C, Wang Z, Chen Y, Zeng X, Long H, Rong H, Zou H, Ding J, Li J. Peroxymonosulfate-Activation-Induced Phase Transition of Mn3O4 Nanospheres on Nickel Foam with Enhanced Catalytic Performance. Molecules. 2023; 28(11):4312. https://doi.org/10.3390/molecules28114312
Chicago/Turabian StyleLiu, Cuiyin, Ziyan Wang, Yanfeng Chen, Xinjuan Zeng, Hangyu Long, Haibo Rong, Hongtao Zou, Jinpeng Ding, and Jingling Li. 2023. "Peroxymonosulfate-Activation-Induced Phase Transition of Mn3O4 Nanospheres on Nickel Foam with Enhanced Catalytic Performance" Molecules 28, no. 11: 4312. https://doi.org/10.3390/molecules28114312
APA StyleLiu, C., Wang, Z., Chen, Y., Zeng, X., Long, H., Rong, H., Zou, H., Ding, J., & Li, J. (2023). Peroxymonosulfate-Activation-Induced Phase Transition of Mn3O4 Nanospheres on Nickel Foam with Enhanced Catalytic Performance. Molecules, 28(11), 4312. https://doi.org/10.3390/molecules28114312