Biphenarenes, Versatile Synthetic Macrocycles for Supramolecular Chemistry
Abstract
:1. Introduction
2. Structures of Biphenarenes
Macrocyclic Host | Chemical Structure | Diameter (Å) | Ref. |
---|---|---|---|
α-Cyclodextrin | 4.7–5.3 | [11] | |
β-Cyclodextrin | 6.0–6.5 | [12] | |
γ-Cyclodextrin | 7.5–8.3 | [14] | |
Per-ethylated pillar[5]arene | 4.7 | [4] | |
Per-ethylated pillar[6]arene | 6.7 | [62] | |
Cucurbit[6]uril | 3.9 | [56] | |
Cucurbit[7]uril | 5.4 | [56] | |
Cucurbit[8]uril | 6.9 | [56] |
3. Molecular Recognition
4. Adsorption and Separation
5. Drug Delivery
6. Fluorescence Sensing
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. [Google Scholar] [CrossRef]
- Cram, D.J.; Cram, J.M. Host–guest chemistry. Science 1974, 183, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.-M. Supramolecular chemistry. Science 1993, 260, 1762–1763. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, S.; Kato, K.; Fa, S.; Ogoshi, T. Host–guest chemistry based on solid-state pillar[n]arenes. Coord. Chem. Rev. 2022, 462, 214503. [Google Scholar] [CrossRef]
- Gutsche, C.D. Calixarenes. Acc. Chem. Res. 1983, 16, 161–170. [Google Scholar] [CrossRef]
- Lee, J.W.; Samal, S.; Selvapalam, N.; Kim, H.-J.; Kim, K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621–630. [Google Scholar] [CrossRef]
- Yan, M.; Zhou, J. Methylene-bridged naphthotubes: New macrocyclic arenes with great potential for supramolecular chemistry. Org. Chem. Front. 2023, 10, 2340–2345. [Google Scholar] [CrossRef]
- Dsouza, R.N.; Pischel, U.; Nau, W.M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 2011, 111, 7941–7980. [Google Scholar] [CrossRef]
- Gokel, G.W.; Leevy, W.M.; Weber, M.E. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 2004, 104, 2723–2750. [Google Scholar] [CrossRef]
- Han, Y.; Meng, Z.; Ma, Y.-X.; Chen, C.-F. Iptycene-derived crown ether hosts for molecular recognition and self-assembly. Acc. Chem. Res. 2014, 47, 2026–2040. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y. Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev. 2010, 39, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. A history of cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Tao, W.; Liu, Y.; Jiang, B.; Yu, S.; Huang, W.; Zhou, Y.; Yan, D. A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility. J. Am. Chem. Soc. 2012, 134, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.-D.; Tang, G.-P.; Chu, P.K. Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: From design to applications. Acc. Chem. Res. 2014, 4, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.-S.; Liu, Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 2012, 41, 5907–5921. [Google Scholar] [CrossRef]
- Ni, X.-L.; Xiao, X.; Cong, H.; Zhu, Q.-J.; Xue, S.-F.; Tao, Z. Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: New opportunities for supramolecular architectures and materials. Acc. Chem. Res. 2014, 47, 1386–1395. [Google Scholar] [CrossRef]
- Barrow, S.J.; Kasera, S.; Rowland, M.J.; Barrio, D.J.; Scherman, O.A. Cucurbituril-based molecular recognition. Chem. Rev. 2015, 115, 12320–12406. [Google Scholar] [CrossRef]
- Tang, B.; Li, W.-L.; Chang, Y.; Yuan, B.; Wu, Y.; Zhang, M.-T.; Xu, J.-F.; Li, J.; Zhang, X. A supramolecular radical dimer: High-efficiency NIR-II photothermal conversion and therapy. Angew. Chem. Int. Ed. 2019, 58, 15526–15531. [Google Scholar] [CrossRef]
- Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.-A.; Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: Their lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Zhang, F.; Zhu, F.; Mei, Y.; Liu, L.; Tian, D.; Li, H. A light-regulated host–guest-based nanochannel system inspired by channelrhodopsins protein. Nat. Commun. 2017, 8, 260. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Jin, M.; Yang, K.; Pei, Y.; Pei, Z. Supramolecular delivery systems based on pillararenes. Chem. Commun. 2018, 54, 13626–13640. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Jiang, X.-M.; Gong, G.-F.; Yao, H.; Zhang, Y.-M.; Wei, T.-B.; Lin, Q. Pillararene-based AIEgens: Research progress and appealing applications. Chem. Commun. 2021, 57, 284–301. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Hua, B.; Li, Q.; Zhou, J.; Yang, J. Acid/base-controllable FRET and self-assembling systems fabricated by rhodamine B functionalized pillar[5]arene-based host–guest recognition motifs. Org. Lett. 2018, 20, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 2009, 48, 9721–9723. [Google Scholar] [CrossRef]
- Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.; Wang, L. pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J. Am. Chem. Soc. 2013, 135, 10542–10549. [Google Scholar] [CrossRef]
- Guo, Q.-H.; Fu, Z.-D.; Zhao, L.; Wang, M.-X. Synthesis, structure, and properties of O6-corona[3]arene[3]tetrazines. Angew. Chem. Int. Ed. 2014, 53, 13548–13552. [Google Scholar] [CrossRef]
- Yang, L.-P.; Wang, X.; Yao, H.; Jiang, W. Naphthotubes: Macrocyclic hosts with a biomimetic cavity feature. Acc. Chem. Res. 2020, 53, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.-C.; Sessler, J.L.; Guo, D.-S. Supramolecular prodrugs based on host–guest interactions. Chem. Soc. Rev. 2020, 49, 2303–2315. [Google Scholar] [CrossRef]
- Liu, Z.; Nalluri, S.K.M.; Stoddart, J.F. Surveying macrocyclic chemistry: From flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 2017, 46, 2459–2478. [Google Scholar] [CrossRef]
- Mako, T.L.; Racicot, J.M.; Levine, M. Supramolecular luminescent sensors. Chem. Rev. 2019, 119, 322–477. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Zhou, J. Pillararene-based supramolecular polymers for cancer therapy. Molecules 2023, 28, 1470. [Google Scholar] [CrossRef] [PubMed]
- Amabilino, D.B.; Smith, D.K.; Steed, J.W. Supramolecular materials. Chem. Soc. Rev. 2017, 46, 2404–2420. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Li, H.; Song, N.; Wang, D.; Tang, B.Z. Supramolecular materials based on AIE luminogens (AIEgens): Construction and applications. Chem. Soc. Rev. 2020, 49, 1144–1172. [Google Scholar] [CrossRef]
- Yang, X.; Wu, B.; Zhou, J.; Lu, H.; Zhang, H.; Huang, F.; Wang, H. Controlling intracellular enzymatic self-assembly of peptide by host–guest complexation for programming cancer cell death. Nano Lett. 2022, 22, 7588–7596. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Wu, X.; Li, Z.; Jiang, Y.-B. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors. Chem. Soc. Rev. 2015, 44, 4249–4263. [Google Scholar] [CrossRef]
- Webber, M.J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620. [Google Scholar] [CrossRef]
- Webber, M.J.; Appel, E.A.; Meijer, E.W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26. [Google Scholar] [CrossRef]
- Zhou, J.; Rao, L.; Yu, G.; Cook, T.R.; Chen, X.; Huang, F. Supramolecular cancer nanotheranostics. Chem. Soc. Rev. 2021, 50, 2839–2891. [Google Scholar] [CrossRef]
- Ding, Y.; Tong, Z.; Jin, L.; Ye, B.; Zhou, J.; Sun, Z.; Yang, H.; Hong, L.; Huang, F.; Wang, W.; et al. An NIR discrete metallacycle constructed from perylene bisimide and tetraphenylethylene fluorophores for imaging-guided cancer radio-chemotherapy. Adv. Mater. 2022, 34, e2106388. [Google Scholar] [CrossRef]
- Hazarika, B.; Singh, V.P. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. Chin. Chem. Lett. 2023, in press. [CrossRef]
- Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Yu, Y.; Jia, X.; Li, C. Biphen[n]arenes. Chem. Sci. 2015, 6, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Ding, Z.-J.; Cui, L.; Li, J.; Jia, X.; Li, C. 2,2′-Biphen[n]arenes (n = 4–8): One-step, high-yield synthesis, and host–guest properties. Chem. Commun. 2017, 53, 12096–12099. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, K.; Li, B.; Cui, L.; Li, J.; Jia, X.; Zhao, H.; Fang, J.; Li, C. Efficient separation of cis- and trans-1,2-dichloroethene isomers by adaptive biphen[3]arene crystals. Angew. Chem. Int. Ed. 2019, 58, 10281–10284. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, W.; Chen, J.; Wang, Y.; Yan, M.; Zhou, J. An amphiphilic water-soluble biphen[3]arene with tunable lower critical solution temperature behavior. New J. Chem. 2022, 46, 21453–21457. [Google Scholar]
- Chen, J.; Chen, L.; Zhang, Y.; Zhao, L.; Dong, M.; Meng, Z.; Meng, Q.; Li, C. The effective taste masking of alkaloids by a water-soluble terphen[3]arene. Chem. Commun. 2022, 58, 3370–3373. [Google Scholar] [CrossRef]
- Xu, K.; Li, B.; Yao, S.; Li, Z.; Lu, Y.; Dong, M.; Qiu, J.; Luo, L.; Li, C. Modular introduction of endo-binding sites in a macrocyclic cavity towards selective recognition of neutral azacycles. Angew. Chem. Int. Ed. 2022, 61, e202203016. [Google Scholar]
- Xu, K.; Zhang, Z.-Y.; Zhou, Z.; Li, C. Prospering the biphen[n]arenes family by tailoring reaction modules. Chin. Chem. Lett. 2022, 33, 2451–2454. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Li, C. Biphen[n]arenes: Modular synthesis, customizable cavity sizes, and diverse skeletons. Acc. Chem. Res. 2022, 55, 916–929. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Z.-Y.; Yu, C.; Wang, B.; Dong, M.; Zeng, X.; Gou, R.; Cui, L.; Li, C. A modular synthetic strategy for functional macrocycles. Angew. Chem. Int. Ed. 2020, 59, 7214–7218. [Google Scholar] [CrossRef]
- Mattia, E.; Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 2015, 10, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, S.; Lu, D.; Shi, Y.; Yao, Y. Water-soluble supramolecular polymers constructed by macrocycle-based host–guest interactions. Chin. Chem. Lett. 2019, 30, 37–43. [Google Scholar] [CrossRef]
- Hu, W.; Ye, B.; Yu, G.; Huang, F.; Mao, Z.; Ding, Y.; Wang, W. Recent development of supramolecular cancer theranostics based on cyclodextrins: A review. Molecules 2023, 28, 3441. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Zhou, J. Suprasomes: An emerging platform for cancer theranostics. Sci. China Chem. 2023, 66, 613–614. [Google Scholar] [CrossRef]
- Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Cyclodextrins, from molecules to applications. Environ. Chem. Lett. 2018, 16, 1361–1375. [Google Scholar] [CrossRef]
- Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 2005, 44, 4844–4870. [Google Scholar] [CrossRef]
- Wang, M.; Li, Q.; Li, E.; Liu, J.; Zhou, J.; Huang, F. Vapochromic behaviors of a solid-state supramolecular polymer based on exo-wall complexation of perethylated pillar[5]arene with 1,2,4,5-tetracyanobenzene. Angew. Chem. Int. Ed. 2021, 60, 8115–8120. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, J.; Shen, J.; Tang, G.; Huang, F. Cationic pillar[6]arene/ATP host–guest recognition: Selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 2016, 7, 4073–4078. [Google Scholar] [CrossRef]
- Omachi, H.; Segawa, Y.; Itami, K. Synthesis of cycloparaphenylenes and related carbon nanorings: A step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 2012, 45, 1378–1389. [Google Scholar] [CrossRef]
- Lewis, S.E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 2015, 44, 2221–2304. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Huang, X.; Dai, L.; Cui, L.; Li, J.; Jia, X.; Li, C. Terphen[n]arenes and quaterphen[n]arenes (n = 3–6): One-pot synthesis, self-assembly into supramolecular gels, and iodine capture. Angew. Chem. Int. Ed. 2019, 58, 3885–3889. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Schalley, C.A. Exploring macrocycles in functional supramolecular gels: From stimuli responsiveness to systems chemistry. Acc. Chem. Res. 2014, 47, 2222–2233. [Google Scholar] [CrossRef]
- Strutt, N.L.; Zhang, H.; Schneebeli, S.T.; Stoddart, J.F. Functionalizing pillar[n]arenes. Acc. Chem. Res. 2014, 47, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jordan, J.H.; Velmurugan, K.; Tian, X.; Zuo, M.; Hu, X.-Y.; Wang, L. Role of functionalized pillararene architectures in supramolecular catalysis. Angew. Chem. Int. Ed. 2021, 60, 9205–9214. [Google Scholar] [CrossRef]
- Dong, R.; Zhou, Y.; Huang, X.; Zhu, X.; Lu, Y.; Shen, J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015, 27, 498–526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hua, B.; Shao, L.; Feng, H.; Yu, G. Host–guest interaction enhanced aggregation-induced emission and its application in cell imaging. Chem. Commun. 2016, 52, 5749–5752. [Google Scholar] [CrossRef]
- Wu, J.-R.; Wu, G.; Yang, Y.-W. Pillararene-inspired macrocycles: From extended pillar[n]arenes to geminiarenes. Acc. Chem. Res. 2022, 55, 3191–3204. [Google Scholar] [CrossRef]
- Rebek, J., Jr. Molecular Recognition with model systems. Angew. Chem. Int. Ed. 1990, 29, 245–255. [Google Scholar] [CrossRef]
- Ariga, K.; Ito, H.; Hill, J.P.; Tsukube, H. Molecular recognition: From solution science to nano/materials technology. Chem. Soc. Rev. 2012, 41, 5800–5835. [Google Scholar] [CrossRef]
- Persch, E.; Dumele, O.; Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 2015, 54, 3290–3297. [Google Scholar] [CrossRef]
- Escobar, L.; Ballester, P. Molecular recognition in water using macrocyclic synthetic receptors. Chem. Rev. 2021, 121, 2445–2514. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, G.; Li, Y.; Shen, J.; Wang, M.; Li, Z.; Wei, P.; Tang, J.; Huang, F. [2]Pseudorotaxane-based supramolecular optical indicator for the visual detection of cellular cyanide excretion. Chem. Eur. J. 2019, 25, 14447–14453. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sun, S.-S.; Lees, A.J. Directed assembly metallocyclic supramolecular systems for molecular recognition and chemical sensing. Coord. Chem. Rev. 2008, 252, 922–939. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, G.; Huang, F. Supramolecular chemotherapy based on host–guest molecular recognition: A novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 2017, 46, 7021–7053. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, S.; Shionoya, M. Novel porous crystals with macrocycle-based well-defined molecular recognition sites. Acc. Chem. Res. 2020, 53, 632–643. [Google Scholar] [CrossRef]
- Lande, D.N.; Rao, S.S.; Gejji, S.P. Deciphering noncovalent interactions accompanying 7,7,8,8-tetracyanoquinodimethane encapsulation within biphene[n]arenes: Nucleus-independent chemical shifts approach. ChemPhysChem 2016, 17, 2197–2209. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, G.; Shao, L.; Hua, B.; Huang, F. A water-soluble biphen[3]arene: Synthesis, host–guest complexation, and application in controllable self-assembly and controlled release. Chem. Commun. 2015, 51, 4188–4191. [Google Scholar] [CrossRef]
- Ma, J.; Deng, H.; Ma, S.; Li, J.; Jia, X.; Li, C. Molecular binding behavior of bipyridium derivatives by water-soluble carboxylato-biphen[3]arene. Chem. Commun. 2015, 51, 6621–6624. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, J.; Zhang, Z.; Yu, G. A cationic water-soluble biphen[3]arene: Synthesis, host–guest complexation and fabrication of a supra-amphiphile. RSC Adv. 2016, 6, 77179–77183. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, J.; Hua, B.; Shao, L.; Zhang, Z.; Yu, G. The synthesis, structure, and molecular recognition properties of a [2]calix[1]biphenyl-type hybrid[3]arene. Chem. Commun. 2016, 52, 1622–1624. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, G.; Li, Q.; Wang, M.; Huang, F. Separation of benzene and cyclohexane by nonporous adaptive crystals of a hybrid[3]arene. J. Am. Chem. Soc. 2020, 142, 2228–2232. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Li, J.-R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P.B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal–organic frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823. [Google Scholar] [CrossRef]
- Perez-Botella, E.; Valencia, S.; Rey, F. Zeolites in adsorption processes: State of the art and future prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zhou, P.; Xu, J.; Tu, S.; Xu, F.; Yan, J.; Xi, H.; Yuan, W.; Fu, Q.; Chen, X.; et al. Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chem. Eng. J. 2022, 431, 133208. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef]
- Wang, H.; Li, J. Microporous metal–organic frameworks for adsorptive separation of C5-C6 alkane isomers. Acc. Chem. Res. 2019, 52, 1968–1978. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, X.; Kang, Z.; Liu, X.; Sun, D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coord. Chem. Rev. 2021, 443, 213968. [Google Scholar] [CrossRef]
- Amooghin, E.A.; Sanaeepur, H.; Luque, R.; Garcia, H.; Chen, B. Fluorinated metal–organic frameworks for gas separation. Chem. Soc. Rev. 2022, 51, 7427–7508. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 2019, 400, 213046. [Google Scholar] [CrossRef]
- Yang, L.; Qian, S.; Wang, X.; Cui, X.; Chen, B.; Xing, H. Energy-efficient separation alternatives: Metal–organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 2020, 49, 5359–5406. [Google Scholar] [CrossRef]
- Wang, M.; Fang, S.; Yang, S.; Li, Q.; Khashab, N.M.; Zhou, J.; Huang, F. Separation of ethyltoluene isomers by nonporous adaptive crystals of perethylated and perbromoethylated pillararenes. Mater. Today Chem. 2022, 24, 100919. [Google Scholar] [CrossRef]
- Mudhoo, A.; Sillanpaa, M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: A review. Environ. Chem. Lett. 2021, 19, 4393–4413. [Google Scholar] [CrossRef]
- Zhang, X.; Maddock, J.; Nenoff, T.M.; Denecke, M.A.; Yang, S.; Schroder, M. Adsorption of iodine in metal–organic framework materials. Chem. Soc. Rev. 2022, 51, 3243–3262. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, Q.; Li, Z.; Jiang, W.; Jiang, Q.; Jiang, D. Exceptional iodine capture in 2D covalent organic frameworks. Adv. Mater. 2018, 30, e1801991. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Fang, W.-H.; Sun, Y.; Wang, S.-T.; Zhang, J. Mesoporous assembly of aluminum molecular rings for iodine capture. J. Am. Chem. Soc. 2021, 143, 2325–2330. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Noble, R.D.; Falconer, J.L. Zeolite membranes: Microstructure characterization and permeation mechanisms. Acc. Chem. Res. 2011, 44, 1196–1206. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef]
- Chai, Y.; Han, X.; Li, W.; Liu, S.; Yao, S.; Wang, C.; Shi, W.; Da-Silva, I.; Manuel, P.; Cheng, Y.; et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 2020, 368, 1002–1006. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.H.; Long, J.R. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef]
- Mukherjee, S.; Sensharma, D.; Qazvini, O.T.; Dutta, S.; Macreadie, L.K.; Ghosh, S.K.; Babarao, R. Advances in adsorptive separation of benzene and cyclohexane by metal–organic framework adsorbents. Coord. Chem. Rev. 2021, 437, 213852. [Google Scholar] [CrossRef]
- Cui, W.-G.; Hu, T.-L.; Bu, X.-H. Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater. 2019, 32, 1806445. [Google Scholar] [CrossRef]
- Fan, H.; Peng, M.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 2021, 12, 38. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Chen, Y.; Zhang, Z.; Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735. [Google Scholar] [CrossRef] [PubMed]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; OÕKeeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Zhai, L.; Coupry, D.E.; Addicoat, M.A.; Okushita, K.; Nishimura, K.; Heine, T.; Jiang, D. Multiple-component covalent organic frameworks. Nat. Commun. 2016, 7, 12325. [Google Scholar] [CrossRef]
- An, S.; Xu, Q.; Ni, Z.; Hu, J.; Peng, C.; Zhai, L.; Guo, Y.; Liu, H. Construction of covalent organic frameworks with crown ether struts. Angew. Chem. Int. Ed. 2021, 60, 9959–9963. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Zhao, B.; Jia, Q. Supramolecular adsorbents in extraction and separation techniques—A review. Anal. Chim. Acta 2020, 1122, 97–113. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Li, E.; Zhou, Y.; Li, Q.; Huang, F. Separation of monochlorotoluene isomers by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. J. Am. Chem. Soc. 2019, 141, 17102–17106. [Google Scholar] [CrossRef]
- Zhu, W.; Li, E.; Zhou, J.; Zhou, Y.; Sheng, X.; Huang, F. Highly selective removal of heterocyclic impurities from toluene by nonporous adaptive crystals of perethylated pillar[6]arene. Mater. Chem. Front. 2020, 4, 2325–2329. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J. Discovery of non-classical complex models between a cationic water-soluble pillar[6]arene and naphthalenesulfonate derivatives and their self-assembling behaviors. Soft Matter 2019, 15, 4127–4131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Jin, L.; Gu, P.; Tian, L.; Li, N.; Chen, D.; Marcomini, A.; Xu, Q.; Lu, J. Novel calixarene-based porous organic polymers with superfast removal rate and ultrahigh adsorption capacity for selective separation of cationic dyes. Chem. Eng. J. 2022, 433, 134442. [Google Scholar] [CrossRef]
- Wang, L.-J.; Bai, S.; Han, Y.-F. Water-soluble self-assembled cage with triangular metal-metal-bonded units enabling the sequential selective separation of alkanes and isomeric molecules. J. Am. Chem. Soc. 2022, 144, 16191–16198. [Google Scholar] [CrossRef]
- Zhang, G.; Hua, B.; Dey, A.; Ghosh, M.; Moosa, B.A.; Khashab, N.M. Intrinsically porous molecular materials (IPMs) for natural gas and benzene derivatives separations. Acc. Chem. Res. 2021, 54, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.-L.; Zhu, Y.; Long, H.; Jin, Y.; Zhang, W.; Yang, Y.-W. Pillar[n]arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity. Chem. Commun. 2017, 53, 6409–6412. [Google Scholar] [CrossRef]
- Guo, S.-T.; Cui, P.-F.; Liu, X.-R.; Jin, G.-X. Synthesis of carborane-backbone metallacycles for highly selective capture of n-pentane. J. Am. Chem. Soc. 2022, 144, 22221–22228. [Google Scholar] [CrossRef]
- Wu, J.-R.; Yang, Y.-W. Synthetic macrocycle-based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. 2021, 60, 1690–1701. [Google Scholar] [CrossRef]
- Jie, K.; Zhou, Y.; Li, E.; Huang, F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 2018, 51, 2064–2072. [Google Scholar] [CrossRef]
- Yang, W.; Samanta, K.; Wan, X.; Thikekar, T.U.; Chao, Y.; Li, S.; Du, K.; Xu, J.; Gao, Y.; Zuilhof, H.; et al. Tiara[5]arenes: Synthesis, solid-state conformational studies, host–guest properties, and application as nonporous adaptive crystals. Angew. Chem. Int. Ed. 2020, 59, 3994–3999. [Google Scholar] [CrossRef]
- Atwood, J.L.; Barbour, L.J.; Jerga, A.; Schottel, B.L. Guest transport in a nonporous organic solid via dynamic van der waals cooperativity. Science 2002, 298, 1000–1002. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Tan, L.L.; Song, N.; Li, K.; Yang, Y.-W. A high-yield synthesis of [m]biphenyl-extended pillar[n]arenes for an efficient selective inclusion of toluene and m-xylene in the solid state. Chem. Commun. 2016, 52, 5804–5807. [Google Scholar] [CrossRef] [PubMed]
- Hurley, D.H.; El-Azab, A.; Bryan, M.S.; Cooper, M.W.D.; Dennett, C.A.; Gofryk, K.; He, L.; Khafizov, M.; Lander, G.H.; Manley, M.E.; et al. Thermal energy transport in oxide nuclear fuel. Chem. Rev. 2022, 122, 3711–3762. [Google Scholar] [CrossRef]
- Parsons, J.; Buongiorno, J.; Corradini, M.; Petti, D. A fresh look at nuclear energy. Science 2019, 363, 105. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-R.; Wang, Y.; Yang, Y.-W. Elongated-geminiarene: Syntheses, solid-state conformational investigations, and application in aromatics/cyclic aliphatics separation. Small 2020, 16, e2003490. [Google Scholar] [CrossRef]
- Dai, D.; Yang, J.; Zou, Y.-C.; Wu, J.-R.; Tan, L.-L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y.-W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew. Chem. Int. Ed. 2021, 60, 8967–8975. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 2015, 115, 7794–7839. [Google Scholar] [CrossRef]
- Fenton, O.S.; Olafson, K.N.; Pillai, P.S.; Mitchell, M.J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, e1705328. [Google Scholar] [CrossRef]
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, P.X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev. 2013, 65, 1215–1233. [Google Scholar] [CrossRef]
- Yu, G.; Zhu, B.; Shao, L.; Zhou, J.; Saha, M.L.; Shi, B.; Zhang, Z.; Hong, T.; Li, S.; Chen, X.; et al. Host–guest complexation-mediated codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proc. Natl. Acad. Sci. USA 2019, 116, 6618–6623. [Google Scholar] [CrossRef] [PubMed]
- Vargason, A.M.; Anselmo, A.C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021, 5, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Zhang, Z.; Ji, Y.; Zhou, S.; Jia, B.; Zhang, Y.; Wang, J.; Ding, Y.; Wang, Y.; Yao, Y.; et al. Icing on the cake: Combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Sci. China Chem. 2022, 65, 1134–1141. [Google Scholar] [CrossRef]
- Qin, Y.; Tong, F.; Zhang, W.; Zhou, Y.; He, S.; Xie, R.; Lei, T.; Wang, Y.; Peng, S.; Li, Z.; et al. Self-delivered supramolecular nanomedicine with transformable shape for ferrocene-amplified photodynamic therapy of breast cancer and bone metastases. Adv. Funct. Mater. 2021, 31, 210464. [Google Scholar] [CrossRef]
- Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Zhou, J.; Chi, X. Pillar[10]arene-based size-selective host-guest complexation and its application in tuning the LCST behavior of a thermoresponsive polymer. Macromol. Rapid Commun. 2015, 36, 23–30. [Google Scholar] [CrossRef]
- Wu, D.; Li, Y.; Yang, J.; Shen, J.; Zhou, J.; Hu, Q.; Yu, G.; Tang, G.; Chen, X. Supramolecular nanomedicine constructed from cucurbit[8]uril-based amphiphilic brush copolymer for cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 44392–44401. [Google Scholar] [CrossRef]
- Chen, J.; Meng, Q.; Zhang, Y.; Dong, M.; Zhao, L.; Zhang, Y.; Chen, L.; Chai, Y.; Meng, Z.; Wang, C.; et al. Complexation of an antimicrobial peptide by large-sized macrocycles for decreasing hemolysis and improving stability. Angew. Chem. Int. Ed. 2021, 60, 11288–11293. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Tian, L.; Zhang, Y.; Chen, L.; Du, X.; Ma, M.; Li, J.; Meng, Q.; Li, C. Supramolecular detoxification of macromolecular biotoxin through the complexation by a large-sized macrocycle. Adv. Healthc. Mater. 2022, 11, e2200270. [Google Scholar] [CrossRef]
- Du, X.; Ma, M.; Zhang, Y.; Yu, X.; Chen, L.; Zhang, H.; Meng, Z.; Jia, X.; Chen, J.; Meng, Q.; et al. Synthesis of cationic biphen[4, 5]arenes as biofilm disruptors. Angew. Chem. Int. Ed. 2023, 62, e202301857. [Google Scholar] [CrossRef]
- Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.R.; Wang, Y.; Zhang, D.; Yang, Y.-W. Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. J. Am. Chem. Soc. 2019, 14, 4756–4763. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, W.; Wang, J.; Ma, Y.; Wang, C.; Wang, Y.; Lu, B.; Yao, Y. Intelligent supramolecular nanoprodrug based on anionic water-soluble [2]biphenyl-extended-pillar[6]arenes for combination therapy. ACS Macro Lett. 2022, 11, 830–834. [Google Scholar] [CrossRef]
- Marimuthu, M.; Arumugam, S.S.; Sabarinathan, D.; Li, H.; Chen, Q. Metal–organic framework based fluorescence sensor for detection of antibiotics. Trends Food Sci. Technol. 2021, 116, 1002–1028. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sharma, D.; Bera, R.K.; Crisponi, G.; Callan, J.F. Iron(III) selective molecular and supramolecular fluorescent probes. Chem. Soc. Rev. 2012, 41, 7195–7227. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Y.; Yu, G.; Crawley, M.R.; Fulong, C.R.P.; Friedman, A.E.; Sengupta, S.; Sun, J.; Li, Q.; Huang, F.; et al. Highly emissive self-assembled BODIPY-platinum supramolecular triangles. J. Am. Chem. Soc. 2018, 140, 7730–7736. [Google Scholar] [CrossRef]
- Shi, B.; Jie, K.; Zhou, Y.; Zhou, J.; Xia, D.; Huang, F. Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water. J. Am. Chem. Soc. 2016, 138, 80–83. [Google Scholar] [CrossRef]
- Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular fluorescent sensors: An historical overview and update. Coord. Chem. Rev. 2021, 427, 213560. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, G.; Huang, F. AIE opens new applications in super-resolution imaging. J. Mater. Chem. B 2016, 4, 7761–7765. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Li, K.; Liu, B.; Tang, B.Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, K.; Feng, X.-C.; Li, Z.-X.; Zhang, Z.-Y.; Wang, B.; Li, M.; Bai, Y.-L.; Cui, L.; Li, C. Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle. Nat. Commun. 2022, 13, 2850. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Meng, X.; Shen, C.-C.; Zhang, Z.-Y.; Li, C. Facile synthesis of heterogeneous macrocycles for intramolecular energy transfer. Chem. Commun. 2022, 58, 12684–12687. [Google Scholar] [CrossRef] [PubMed]
Macrocyclic Host | Chemical Structure | Diameter (Å) | Ref. |
---|---|---|---|
Terphen[3]arene | 9.86 | [61] | |
Terphen[4]arene | 13.85 | [61] | |
Terphen[5]arene | 16.47 | [49] | |
Terphen[6]arene | 21.59 | [49] | |
Quaterphen[3]arene | 15.76 | [61] | |
Quaterphen[4]arene | 17.86 | [61] | |
Quaterphen[5]arene | 21.48 | [61] | |
Quaterphen[6]arene | 30.82 | [61] |
Host | Guest | Solvent | Ka (M−1) |
---|---|---|---|
H1 | G1 | D2O | (1.1 ± 0.2) × 104 |
H1 | G2 | D2O | (2.4 ± 0.1) × 104 |
H1 | G3 | D2O | (5.1 ± 0.3) × 104 |
H1 | G4 | D2O | (4.7 ± 0.4) × 103 |
H1 | G5 | D2O | (9.6 ± 1.7) × 103 |
H1 | G6 | D2O | (1.5 ± 0.2) × 103 |
H3 | G7 | acetone-d6 | (0.32 ± 0.04) × 102 |
H3 | G8 | acetone-d6 | (1.6 ± 0.2) × 102 |
H3 | G9 | acetonitrile-d3 | (2.4 ± 0.3) × 102 |
H3 | G10 | acetone-d6/CD2Cl2 (1:1, v/v) | (3.1 ± 0.3) × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yang, W.; Zhou, J. Biphenarenes, Versatile Synthetic Macrocycles for Supramolecular Chemistry. Molecules 2023, 28, 4422. https://doi.org/10.3390/molecules28114422
Zhang W, Yang W, Zhou J. Biphenarenes, Versatile Synthetic Macrocycles for Supramolecular Chemistry. Molecules. 2023; 28(11):4422. https://doi.org/10.3390/molecules28114422
Chicago/Turabian StyleZhang, Wenjie, Wenzhi Yang, and Jiong Zhou. 2023. "Biphenarenes, Versatile Synthetic Macrocycles for Supramolecular Chemistry" Molecules 28, no. 11: 4422. https://doi.org/10.3390/molecules28114422
APA StyleZhang, W., Yang, W., & Zhou, J. (2023). Biphenarenes, Versatile Synthetic Macrocycles for Supramolecular Chemistry. Molecules, 28(11), 4422. https://doi.org/10.3390/molecules28114422