Determination of Glycerol, Propylene Glycol, and Nicotine as the Main Components in Refill Liquids for Electronic Cigarettes
Abstract
:1. Introduction
2. Results
2.1. Detection and Chromatographic Parameters
2.2. Sample Preparation Procedure Based on Dilution
2.3. Method Validation
2.4. Analysis of Real Samples
3. Discussion
4. Materials and Methods
4.1. Standards and Solutions Preparation
4.2. Instrument Conditions and Chromatography
4.3. Sample Preparation of Refill Liquids and Preparation of Fortified Samples
5. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grana, R.; Benowitz, N.; Glantz, S.A. E-Cigarettes. Circulation 2014, 129, 1972–1986. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T. Chemical Evaluation of Electronic Cigarettes. Tob. Control 2014, 23, ii11–ii17. [Google Scholar] [CrossRef] [PubMed]
- Kubica, P.; Kot-Wasik, A.; Wasik, A.; Namieśnik, J. “Dilute & Shoot” Approach for Rapid Determination of Trace Amounts of Nicotine in Zero-Level e-Liquids by Reversed Phase Liquid Chromatography and Hydrophilic Interactions Liquid Chromatography Coupled with Tandem Mass Spectrometry-Electrospray Ionization. J. Chromatogr. A 2013, 1289, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Margham, J.; McAdam, K.; Forster, M.; Liu, C.; Wright, C.; Mariner, D.; Proctor, C. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem. Res. Toxicol. 2016, 29, 1662–1678. [Google Scholar] [CrossRef]
- Papaefstathiou, E.; Stylianou, M.; Agapiou, A. Main and Side Stream Effects of Electronic Cigarettes. J. Environ. Manag. 2019, 238, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Rom, O.; Pecorelli, A.; Valacchi, G.; Reznick, A.Z. Are E-Cigarettes a Safe and Good Alternative to Cigarette Smoking? Ann. N. Y. Acad. Sci. 2015, 1340, 65–74. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Zhang, K.; Hou, R.; Xing, C.; Yu, Q.; Liu, E. Safety Assessment of Electronic Cigarettes and Their Relationship with Cardiovascular Disease. Int. J. Environ. Res. Public Health 2018, 15, 75. [Google Scholar] [CrossRef]
- Korfei, M. The Underestimated Danger of E-Cigarettes—Also in the Absence of Nicotine. Respir. Res. 2018, 19, 159. [Google Scholar] [CrossRef]
- Phillips, B.; Titz, B.; Kogel, U.; Sharma, D.; Leroy, P.; Xiang, Y.; Vuillaume, G.; Lebrun, S.; Sciuscio, D.; Ho, J.; et al. Toxicity of the Main Electronic Cigarette Components, Propylene Glycol, Glycerin, and Nicotine, in Sprague-Dawley Rats in a 90-Day OECD Inhalation Study Complemented by Molecular Endpoints. Food Chem. Toxicol. 2017, 109, 315–332. [Google Scholar] [CrossRef]
- Jin, L.; Lynch, J.; Richardson, A.; Lorkiewicz, P.; Srivastava, S.; Theis, W.; Shirk, G.; Hand, A.; Bhatnagar, A.; Srivastava, S.; et al. Electronic Cigarette Solvents, Pulmonary Irritation, and Endothelial Dysfunction: Role of Acetaldehyde and Formaldehyde. Am. J. Physiol.-Heart Circ. Physiol. 2021, 320, H1510–H1525. [Google Scholar] [CrossRef]
- Callahan-Lyon, P. Electronic Cigarettes: Human Health Effects. Tob. Control 2014, 23, ii36–ii40. [Google Scholar] [CrossRef] [PubMed]
- Erythropel, H.C.; Jabba, S.V.; DeWinter, T.M.; Mendizabal, M.; Anastas, P.T.; Jordt, S.E.; Zimmerman, J.B. Formation of Flavorant–Propylene Glycol Adducts with Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids. Nicotine Tob. Res. 2019, 21, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Jérôme, F. Glycerol as a Sustainable Solvent for Green Chemistry. Green Chem. 2010, 12, 1127. [Google Scholar] [CrossRef]
- Fowles, J.R.; Banton, M.I.; Pottenger, L.H. A Toxicological Review of the Propylene Glycols. Crit. Rev. Toxicol. 2013, 43, 363–390. [Google Scholar] [CrossRef] [PubMed]
- Khlystov, A.; Samburova, V. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping. Environ. Sci. Technol. 2016, 50, 13080–13085. [Google Scholar] [CrossRef] [PubMed]
- Aszyk, J.; Woźniak, M.K.; Kubica, P.; Kot-Wasik, A.; Namieśnik, J.; Wasik, A. Comprehensive Determination of Flavouring Additives and Nicotine in E-Cigarette Refill Solutions. Part II: Gas-Chromatography–Mass Spectrometry Analysis. J. Chromatogr. A 2017, 1517, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Aszyk, J.; Kubica, P.; Kot-Wasik, A.; Namieśnik, J.; Wasik, A. Comprehensive Determination of Flavouring Additives and Nicotine in E-Cigarette Refill Solutions. Part I: Liquid Chromatography-Tandem Mass Spectrometry Analysis. J. Chromatogr. A 2017, 1519, 45–54. [Google Scholar] [CrossRef]
- Kienhuis, A.S.; Soeteman-Hernandez, L.G.; Bos, P.M.; Cremers, H.W.; Klerx, W.N.; Talhout, R. Potential Harmful Health Effects of Inhaling Nicotine-Free Shisha-Pen Vapor: A Chemical Risk Assessment of the Main Components Propylene Glycol and Glycerol. Tob. Induc. Dis. 2015, 13, 15. [Google Scholar] [CrossRef]
- Chen, A.X.; Akmam Morsed, F.; Cheah, N.P. A Simple Method to Simultaneously Determine the Level of Nicotine, Glycerol, Propylene Glycol, and Triacetin in Heated Tobacco Products by Gas Chromatography–Flame-Ionization Detection. J. AOAC Int. 2022, 105, 46–53. [Google Scholar] [CrossRef]
- Geiss, O.; Bianchi, I.; Barahona, F.; Barrero-Moreno, J. Characterisation of Mainstream and Passive Vapours Emitted by Selected Electronic Cigarettes. Int. J. Hyg. Environ. Health 2015, 218, 169–180. [Google Scholar] [CrossRef]
- Kosmider, L.; Spindle, T.R.; Gawron, M.; Sobczak, A.; Goniewicz, M.L. Nicotine Emissions from Electronic Cigarettes: Individual and Interactive Effects of Propylene Glycol to Vegetable Glycerin Composition and Device Power Output. Food Chem. Toxicol. 2018, 115, 302–305. [Google Scholar] [CrossRef]
- Pérez, J.J.; Watson, C.H.; Blount, B.C.; Valentín-Blasini, L. Gas Chromatography-Tandem Mass Spectrometry Method for the Selective Detection of Glycols and Glycerol in the Liquids and Aerosols of E-Cigarette, or Vaping, Products. Front. Chem. 2021, 9, 709495. [Google Scholar] [CrossRef]
- Kerber, P.J.; Duell, A.K.; Peyton, D.H. Ratio of Propylene Glycol to Glycerol in E-Cigarette Reservoirs Is Unchanged by Vaping as Determined by 1H NMR Spectroscopy. Chem. Res. Toxicol. 2021, 34, 1846–1849. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, M.D.; Tefft, M.E.; Buehler, S.S.; Brinkman, M.C.; Clark, P.I.; Gordon, S.M. Determination of Nicotine, Glycerol, Propylene Glycol and Water in Electronic Cigarette Fluids Using Quantitative 1H NMR. Magn. Reson. Chem. MRC 2016, 54, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Kerber, P.J.; Duell, A.K.; Powers, M.; Strongin, R.M.; Peyton, D.H. Effects of Common E-Liquid Flavorants and Added Nicotine on Toxicant Formation during Vaping Analyzed by 1H NMR Spectroscopy. Chem. Res. Toxicol. 2022, 35, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Na, C.-J.; Botao, L.; Kim, K.-H.; Son, Y.-S. Quantitative Insights into Major Constituents Contained in or Released by Electronic Cigarettes: Propylene Glycol, Vegetable Glycerin, and Nicotine. Sci. Total Environ. 2020, 703, 134567. [Google Scholar] [CrossRef] [PubMed]
- Duell, A.K.; Pankow, J.F.; Peyton, D.H. Free-Base Nicotine Determination in Electronic Cigarette Liquids by 1 H NMR Spectroscopy. Chem. Res. Toxicol. 2018, 31, 431–434. [Google Scholar] [CrossRef] [PubMed]
- El-Hellani, A.; El-Hage, R.; Baalbaki, R.; Salman, R.; Talih, S.; Shihadeh, A.; Saliba, N.A. Free-Base and Protonated Nicotine in Electronic Cigarette Liquids and Aerosols. Chem. Res. Toxicol. 2015, 28, 1532–1537. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Gillman, G.; Poulas, K.; Voudris, V. Tobacco-Specific Nitrosamines in Electronic Cigarettes: Comparison between Liquid and Aerosol Levels. Int. J. Environ. Res. Public Health 2015, 12, 9046–9053. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Kistler, K.A.; Gillman, G.; Voudris, V. Evaluation of Electronic Cigarette Liquids and Aerosol for the Presence of Selected Inhalation Toxins. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2015, 17, 168–174. [Google Scholar] [CrossRef]
- Czogala, J.; Goniewicz, M.L.; Fidelus, B.; Zielinska-Danch, W.; Travers, M.J.; Sobczak, A. Secondhand Exposure to Vapors from Electronic Cigarettes. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2014, 16, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of Selected Carcinogens and Toxicants in Vapour from Electronic Cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Bekki, K.; Uchiyama, S.; Ohta, K.; Inaba, Y.; Nakagome, H.; Kunugita, N. Carbonyl Compounds Generated from Electronic Cigarettes. Int. J. Environ. Res. Public Health 2014, 11, 11192–11200. [Google Scholar] [CrossRef]
- Gamov, G.A.; Smirnov, N.N.; Aleksandriisky, V.V.; Sharnin, V.A. Thermal Decomposition of Electronic Cigarette Liquid. IR Study. Izv Vyss. Uchebn Zaved Khim Khim Tekhnol 2017, 60, 7–12. [Google Scholar] [CrossRef]
- Etter, J.-F.; Zäther, E.; Svensson, S. Analysis of Refill Liquids for Electronic Cigarettes. Addiction 2013, 108, 1671–1679. [Google Scholar] [CrossRef]
- Ooi, B.G.; Dutta, D.; Kazipeta, K.; Chong, N.S. Influence of the E-Cigarette Emission Profile by the Ratio of Glycerol to Propylene Glycol in E-Liquid Composition. ACS Omega 2019, 4, 13338–13348. [Google Scholar] [CrossRef]
- Pankow, J.F. Calculating Compound Dependent Gas-Droplet Distributions in Aerosols of Propylene Glycol and Glycerol from Electronic Cigarettes. J. Aerosol Sci. 2017, 107, 9–13. [Google Scholar] [CrossRef] [PubMed]
Analyte | Precursor Ion Ionization Type | Product Ions | Collision Energy [V] | Q1 Prerod [V] | Q3 Prerod [V] |
---|---|---|---|---|---|
Glycerol | 137.1 (M+FA-H)− | 45.0 1 91.0 | 10 15 | 25 25 | 11 11 |
Propylene glycol | 121.2 (M+FA-H)− | 45.0 1 77.1 | 8 14 | 18 17 | 10 11 |
Nicotine | 163.1 (M+H)+ | 117.1 1 130.1 | 26 19 | 12 12 | 24 24 |
Glycerol-d8 (IS) | 142.1 (M+FA-H)− | 45.0 1 142.1 2 | 10 5 | 16 16 | 16 16 |
Nicotine-d4 (IS) | 167.1 (M+H)+ | 121.1 1 134.1 | 27 21 | 11 11 | 26 26 |
Analyte | Equation of Calibration Curve | Sa | Sb | LOD | LOQ | R2 |
---|---|---|---|---|---|---|
Glycerol | y = 1.500x + 0.105 | 0.020 | 0.020 | 0.044 mg/mL | 0.13 mg/mL | 0.9975 |
Propylene glycol | y = 0.01897x − 0.00073 | 0.00022 | 0.00023 | 0.039 mg/mL | 0.12 mg/mL | 0.9991 |
Nicotine | y = 4.014x − 0.060 | 0.035 | 0.039 | 0.032 µg/mL | 0.095 µg/mL | 0.9967 |
Analyte | Fortified Level Based on Model Liquid | Recovery mg/mL (%) | SD | CV [%] |
---|---|---|---|---|
Glycerol | 60% | 631 (105) | 11 | 3.5 |
40% | 425 (106) | 13 | 3.3 | |
20% | 224 (112) | 10 | 6.4 | |
Propylene glycol | 80% | 830 (104) | 13 | 1.5 |
60% | 626 (104) | 14 | 2.3 | |
40% | 425 (106) | 11 | 2.8 | |
Nicotine | 3 mg/mL | 3.15 (105) | 0.13 | 4.2 |
6 mg/mL | 5.76 (96) | 0.14 | 2.4 | |
12 mg/mL | 11.67 (97) | 0.18 | 1.6 |
Sample | Declared Nicotine Content (mg/mL) | Declared Ratio of Propylene Glycol to Glycerol | Glycerol ± SD (mg/mL) | Propylene Glycol ± SD (mg/mL) | Nicotine ± SD (mg/mL) |
---|---|---|---|---|---|
1. Ice Mint | 12 | 70:30 | 272.3 ± 7.8 | 722 ± 16 | 10.66 ± 0.12 |
2. Grape | 12 | 70:30 | 261.7 ± 8.0 | 752 ± 13 | 11.24 ± 0.11 |
3. Bubble-gum | 6 | - | 224.0 ± 9.5 | 830 ± 10 | 5.85 ± 0.10 |
4. Pineapple and Maracuja | 3 | - | <LOD | 1073 ± 24 | 3.135 ± 0.084 |
5. Desert Ship | 3 | - | <LOD | 1086 ± 21 | 2.914 ± 0.094 |
6. Tobacco | 0 | - | 321.7 ± 7.0 | 732 ± 17 | <LOD |
7. Strawberry | 0 | - | <LOD | 1046 ± 18 | <LOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubica, P. Determination of Glycerol, Propylene Glycol, and Nicotine as the Main Components in Refill Liquids for Electronic Cigarettes. Molecules 2023, 28, 4425. https://doi.org/10.3390/molecules28114425
Kubica P. Determination of Glycerol, Propylene Glycol, and Nicotine as the Main Components in Refill Liquids for Electronic Cigarettes. Molecules. 2023; 28(11):4425. https://doi.org/10.3390/molecules28114425
Chicago/Turabian StyleKubica, Paweł. 2023. "Determination of Glycerol, Propylene Glycol, and Nicotine as the Main Components in Refill Liquids for Electronic Cigarettes" Molecules 28, no. 11: 4425. https://doi.org/10.3390/molecules28114425
APA StyleKubica, P. (2023). Determination of Glycerol, Propylene Glycol, and Nicotine as the Main Components in Refill Liquids for Electronic Cigarettes. Molecules, 28(11), 4425. https://doi.org/10.3390/molecules28114425