Yield, Chemical Composition and Bioactivity of Essential Oils from Common Juniper (Juniperus communis L.) from Different Spanish Origins
Abstract
:1. Introduction
2. Results
2.1. Yield of Steam Distillation and Chemical Composition of Essential Oils
2.2. Bioactive Properties
2.2.1. Antibacterial Activity
2.2.2. Antioxidant, Cytotoxicity and Anti-Inflammatory Activities
3. Discussion
3.1. Yield of Steam Distillation
3.2. Chemical Composition of Essential Oils
3.3. Bioactive Properties
3.3.1. Antibacterial Activity
3.3.2. Antioxidant, Cytotoxicity and Anti-Inflammatory Activities
3.3.3. Bioactivity Summary
4. Materials and Methods
4.1. Plant Material and Essential Oils Extraction
4.2. Chemical Composition of Essential Oils
4.3. Bioactivity
4.3.1. Antibacterial Activity
4.3.2. Antioxidant Activity
4.3.3. Cytotoxicity
4.3.4. Anti-Inflammatory Activity
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- McKeon, C. Juniperus Communis: Revisiting Use of Common Juniper for Modern Culinary Uses & Producing Drought Resistant Cultivars for Evolving Markets. Retrieved from the University of Minnesota Digital Conservancy. 2015. Available online: https://hdl.handle.net/11299/175834 (accessed on 25 March 2023).
- Enescu, C.M.; Houston Durrant, T.; Caudullo, G.; de Rigo, D. Juniperus communis in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. e01d2de+. [Google Scholar]
- Benito, L.; Villar, P.; García, I.; Gastón, A.; Prada, M.A. Producción y Manejo de Semillas y Plantas Forestales. Juniperus communis. In Organismo Autónomo Parques Nacionales; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2013; ISBN 978-84-8014-837-5. [Google Scholar]
- Broome, A. Growing Juniper: Propagation and Establishment Practices. Information Note. Forest Research Northern Research Station. 2003. Available online: https://www.researchgate.net/publication/267507172_Growing_Juniper_Propagation_and_Establishment_Practices (accessed on 18 March 2023).
- Berger, R.G. Flavours and Fragrances Chemistry, Bioprocessing and Sustainability; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ložienė, K.; Rimantas, P. Juniper (Juniperus communis L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Predy, V., Ed.; Academic Press: Cambridge, MA, USA, 2016; Chapter 56. [Google Scholar]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Butkienė, R.; Nivinskienė, N.; Mockutė, D. Two chemotypes of essential oils produced by the same Juniperus communis L. growing wild in Lithuania. Chemija 2009, 20, 195–201. [Google Scholar]
- Hajdari, A.; Mustafa, B.; Nebija, D.; Miftari, E.; Quave, C.L.; Novak, J. Chemical Composition of Juniperus communis L. Cone Essential Oil and Its Variability among Wild Populations in Kosovo. Chem. Biodivers. 2015, 12, 1706–1717. [Google Scholar] [CrossRef] [PubMed]
- Agastra, A.; Gixhari, B.; Kadiasi, N.; Ibraliu, A. Influence of environmental factors in the composition of essential oils content of Juniperus communis L. berries, in Southeast part of Albania. Int. J. Ecosyst. Ecol. 2021, 11, 943–948. [Google Scholar] [CrossRef]
- Raal, A.; Komarov, R.; Orav, A.; Kapp, K.; Grytsyk, A.; Koshovyi, O. Chemical composition of essential oil of common juniper (Juniperus communis L.) branches from Estonia. Sci. Rise Pharm. Sci. 2022, 6, 66–73. [Google Scholar] [CrossRef]
- Koundal, R.; Kumar, A.; Thakur, S.; Agnihotri, V.K.; Chand, G.; Singh, R.D. Seasonal variation in phytochemicals of essential oil from Juniperus communis needles in western Himalaya. J. Essent. Oil Res. 2015, 27, 406–411. [Google Scholar] [CrossRef]
- Rostaefar, A.; Hassani, A.; Sefidkon, F. Seasonal variations of essential oil content and composition in male and female plants of Juniperus communis L. ssp. hemisphaerica growing wild in Iran. J. Essent. Oil Res. 2017, 29, 357–360. [Google Scholar] [CrossRef]
- Scordia, D.; Papazoglou, E.G.; Kotoula, D.; Sanz, M.; Ciria, C.S.; Pérez, J.; Maliarenko, O.; Prysiazhniuk, O.; von Cossel, M.; Greiner, B.E.; et al. Towards identifying industrial crop types and associated agronomies to improve biomass production from marginal lands in Europe. GCB Bioenergy 2022, 14, 710–734. [Google Scholar] [CrossRef]
- The BeonNAT Project. Available online: https://beonnat.eu/ (accessed on 18 May 2023).
- European Pharmacopoeia Commission. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019. [Google Scholar]
- ISO 8897:2010; Oil of Juniper Berry (Juniperus communis L.). 2nd ed. International Organization for Standardization: Geneva, Switzerland, 2010.
- Mediavilla, I.; Guillamón, E.; Ruiz, A.; Esteban, L.S. Essential Oils from Residual Foliage of Forest Tree and Shrub Species: Yield and Antioxidant Capacity. Molecules 2021, 26, 3257. [Google Scholar] [CrossRef] [PubMed]
- Höferl, M.; Stoilova, I.; Schmidt, E.; Wanner, J.; Jirovetz, L.; Trifonova, D.; Krastev, L.; Krastanov, A. Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism. Antioxidants 2014, 3, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Angioni, A.; Barra, A.; Russo, M.T.; Coroneo, V.; Dessí, S.; Cabras, P. Chemical Composition of the Essential Oils of Juniperus from Ripe and Unripe Berries and Leaves and Their Antimicrobial Activity. J. Agric. Food Chem. 2003, 51, 3073–3078. [Google Scholar] [CrossRef] [PubMed]
- Falcão, S.; Bacém, I.; Igrejas, G.; Rodrigues, P.J.; Vilas-Boas, M.; Amaral, J.S. Chemical composition and antimicrobial activity of hydrodistilled oil from juniper berries. Ind. Crops Prod. 2018, 124, 878–884. [Google Scholar] [CrossRef]
- Emami, A.; Javadi, B.; Hassanzadeh, M. Antioxidant activity of the essential oils of different parts of Juniperus communis subsp hemisphaerica and Juniperus oblonga. Pharm. Biol. 2007, 45, 769–776. [Google Scholar] [CrossRef]
- Radoukova, T.; Zheljazkov, V.D.; Semerdjieva, I.; Dincheva, I.; Stoyanova, A.; Kačániová, M.; Marković, T.; Radanović, D.; Astatkie, T.; Salamon, I. Differences in essential oil yield, composition, and bioactivity of three juniper species from Eastern Europe. Ind. Crops Prod. 2018, 124, 643–652. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Flores-Félix, J.D.; Coutinho, P.; Alves, G.; Silva, L.R. Zimbro (Juniperus communis L.) as a promising source of bioactive compounds and biomedical activities: A review on recent trends. Int. J. Mol. Sci. 2022, 23, 3197. [Google Scholar] [CrossRef]
- Sela, F.; Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Trajkovska-Dokik, E.; Kaftandzieva, A.; Kulevanova, S. Chemical composition and antimicrobial activity of leaves essential oil of Juniperus communis (Cupressaceae) grown in Republic of Macedonia. Maced. Pharm. Bull. 2013, 59, 23–32. [Google Scholar] [CrossRef]
- Haziri, A.; Faiku, F.; Mehmeti, A.; Govori, S.; Abazi, S.; Daci, M.; Haziri, I.; Bytyqi-Damoni, A.; Mele, A. Antimicrobial Properties of the Essential Oil of Juniperus communis L. Growing Wild in East Part of Kosovo. Am. J. Pharmacol. Toxicol. 2013, 8, 128–133. [Google Scholar] [CrossRef]
- Raina, R.; Verma, P.K.; Preshin, R.; Koour, H. Potential of Juniperus communis L. as a nutraceutical in human and veterinary medicine. Helyon 2019, 5, e02376. [Google Scholar] [CrossRef]
- Ghouti, D.; Rached, W.; Abdallah, M.; Pires, T.C.S.P.; Calhelha, R.; Alves, M.J.; Abderrahmane, L.H.; Barros, L.; Ferreira, I.C.F.R. Phenolic profile and in vitro bioactive potential of Saharan Juniperus phoenicea L. and Cotula cinerea (Del) growing in Algeria. Food Funct. 2018, 9, 4664. [Google Scholar] [CrossRef]
- Xavier, V.; Finimundy, T.C.; Heleno, S.A.; Amaral, J.S.; Calhelha, R.C.; Vaz, J.; Pires, T.C.S.P.; Mediavilla, I.; Esteban, L.S.; Ferreira, I.C.F.R.; et al. Chemical and Bioactive Characterization of the Essential Oils Obtained from Three Mediterranean Plants. Molecules 2021, 26, 7472. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Parker, T.L. Anti-inflammatory activity of Juniper (Juniperus communis) berry essential oil in human dermal fibroblasts. Cogent Med. 2017, 4, 1306200. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, A.; Finimundy, T.C.; Pereira, C.; Alves, M.J.; Calhelha, R.C.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Lovage (Levisticum officinale W.D.J. Koch) roots: A source of bioactive compounds towards a circular economy. Resources 2020, 9, 81. [Google Scholar] [CrossRef]
- Pires, T.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Kostić, M.; Smiljković, M.; Petrović, J.; Glamočlija, J.; Barros, L.; Ferreira, I.C.F.R.; Ćirić, A.; Soković, M. Chemical, Nutritive Composition and a Wide Range of Bioactive Properties of Honey Mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food Funct. 2017, 8, 3239–3249. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Kang, X.K.; He, X.; Dong, M.; Zhang, Q.; Liu, R.H. Cellular antioxidant activity of common fruits. J. Agric. Food Chem. 2008, 56, 8418–8426. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Petrova, K.T.; Potewar, T.M.; Correia-da-Silva, P.; Barros, M.T.; Calhelha, R.C.; Ciric, A.; Sokovic, M.; Ferreira, I.C.F.R. Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr. Res. 2015, 417, 66–71. [Google Scholar] [CrossRef]
- Mandim, F.; Barros, L.; Calhelha, R.C.; Abreu, R.M.V.; Pinela, J.; Alves, M.J.; Heleno, S.; Ferreira, I.C.F.R. Calluna vulgaris (L.) Hull: Chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food Funct. 2019, 10, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Allured Pub Corp: Gruver, TX, USA, 2017. [Google Scholar]
L1F | L1M | L2F | L2M | L3F | L3M | L4F | L4M | |||
---|---|---|---|---|---|---|---|---|---|---|
Compound | ISO 8897 | Ph. Eur. 10th | ||||||||
alpha-pinene | 25–45 | 20–50 | 21.1 | 24.1 | 14.2 | 14.4 | 16.5 | 21.3 | 16.1 | 16.8 |
sabinene | 4–20 | 0–20 | 10.0 | 4.6 | 1.0 | 0.6 | 4.9 | 2.6 | 20.0 | 20.9 |
beta-pinene | 1–12 | 1–12 | 1.6 | 1.7 | 1.6 | 1.7 | 2.1 | 2.1 | 1.4 | 1.5 |
beta-myrcene | 3–22 | 1–35 | 5.3 | 2.8 | 3.8 | 4.1 | 3.1 | 3.9 | 6.3 | 4.0 |
alpha-phellandrene | - | 0–1 | 1.5 | 1.5 | 2.4 | 2.7 | 2.0 | 2.4 | 0.4 | 0.6 |
limonene | 2–8 | 2–12 | 20.7 | 15.1 | 25.1 | 19.6 | 20.2 | 19.5 | 5.9 | 7.3 |
terpinen-4-ol | 1–6 | 0.5–10 | 1.8 | 1.2 | 0.3 | 0.2 | 0.8 | 0.5 | 1.5 | 1.7 |
bornyl acetate | n.d.-0.6 | 0–2 | 0.5 | 0.7 | 0.4 | 0.4 | 0.4 | 0.4 | 0.2 | 0.2 |
beta-caryophyllene | 1.5–5 | 0–7 | 5.5 | 3.7 | 3.4 | 1.8 | 2.3 | 2.8 | 4.0 | 1.7 |
alpha-humulene | 1–4 | - | 3.8 | 2.5 | 2.2 | 1.0 | 1.5 | 2.0 | 3.0 | 1.1 |
germacrene D | 1–5 | - | 3.8 | 2.8 | 4.0 | 2.7 | 3.5 | 3.5 | 5.7 | 3.5 |
delta-cadinene | 1–3.5 | - | 1.7 | 2.4 | 2.3 | 1.7 | 2.8 | 1.7 | 1.9 | 2.6 |
EO YIELD | ||||||||||
Mean | 0.351 | 0.298 | 0.428 | 0.571 | 0.301 | 0.24 | 0.579 | 0.533 | ||
Standard deviation | ±0.010 | ±0.013 | ±0.015 | ±0.025 | ±0.020 | ±0.017 | ±0.008 | ±0.009 |
Juniperus communis Essential Oils (%, v/v) a | Positive Controls | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location 1 | Location 2 | Location 3 | Location 4 | Ampicilin | Imipenem | Vancomycin | ||||||||||||||||
Female | Male | Female | Male | Female | Male | Female | Male | |||||||||||||||
L1F | L1M | L2F | L2M | L3F | L3M | L4F | L4M | mg mL−1 | mg mL−1 | mg mL−1 | ||||||||||||
Antibacterial Activity | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
gram-negative bacteria | ||||||||||||||||||||||
Escherichia coli | 2.5 | 2.5 | >2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Klebsiella pneumoniae | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 10 | 20 | <0.0078 | <0.0078 | n.t. | n.t. |
Morganella morganii | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 20 | >20 | <0.0078 | <0.0078 | n.t. | n.t. |
Proteus mirabilis | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 1.25 | 2.5 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Pseudomonas aeruginosa | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >20 | >20 | 0.5 | 1 | n.t. | n.t. |
gram-positive bacteria | ||||||||||||||||||||||
Enterococcus faecalis | 1.25 | 2.5 | 1.25 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | 2.5 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 |
Listeria monocytogenes | 1.25 | >2.5 | 2.5 | >2.5 | >2.5 | >2.5 | 2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
MRSA | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.25 |
Juniperus communis | |||||||||
---|---|---|---|---|---|---|---|---|---|
Location 1 | Location 2 | Location 3 | Location 4 | Control | |||||
Female | Male | Female | Male | Female | Male | Female | Male | ||
L1F | L1M | L2F | L2M | L3F | L3M | L4F | L4M | ||
Antioxidant activity | Trolox | ||||||||
Reducing power (EC50 mg/mL) | 1.72 ± 0.06 b | 1.83 ± 0.03 a | 1.78 ± 0.02 a,b | 1.47 ± 0.03 c | 1.78 ± 0.04 a | 1.44 ± 0.02 c | 1.068 ± 0.006 d | 0.98 ± 0.02 e | 0.04 ± 0.01 |
Quercetin | |||||||||
CAA (% oxidation inhibition) * | >2000 | >2000 | >2000 | >2000 | >2000 | >2000 | >2000 | >2000 | 95.30 ± 4.60 ** |
Cytotoxicity GI50 (μg/mL) | Ellipticine (μg/mL) | ||||||||
AGS | 7 ± 1 d | 18.8 ± 0.3 c,d | 21 ± 2 c | 71 ± 7 a,b | 61 ± 2 b | 77 ± 5 a | 9.2 ± 0.1c,d | 11 ± 1 c,d | 1.23 ± 0.03 |
CaCo2 | 91 ± 3 d | 127 ± 9 c,d | 175 ± 2 a,b | 176 ± 11 a | 172 ± 13 a,b | 190 ± 5 a | 185 ± 19 a | 136 ± 7 b,c | 1.21 ± 0.02 |
MCF-7 | 54 ± 3 c,d | 13 ± 1 e | 20 ± 1 e | 70 ± 1 c | 22.7 ± 0.3 e | 127 ± 6 b | 47 ± 1 d | 148 ± 12 a | 1.02 ± 0.02 |
NCI-H460 | 67 ± 1 e | 59.0 ± 0.4 e | 213 ± 4 d | 216 ± 3 d | 248 ± 4 b,c | 228 ± 5 c,d | 287 ± 7 a | 255 ± 10 b | 1.01 ± 0.01 |
PLP2 | 64 ± 3 c,d | 58 ± 5 d | 71 ± 2 c,d | 170 ± 9 b | 78 ± 5 c | 199 ± 2 a | 35 ± 3 e | 23 ± 1 e | 1.4 ± 0.1 |
Vero | 185 ± 5 c | 208 ± 12 b,c | 221 ± 3 a,b | 230 ± 15 a,b | 175 ± 2 c | 204 ± 10 b,c | 243 ± 7 a | 246 ± 4 a | 1.41 ± 0.06 |
Anti-inflammatory activity IC50 (μg/mL) | Dexamethasone (μg/mL) | ||||||||
RAW 264.7 | >400 | 126 ± 8 c | 81 ± 1 d | 149 ± 1 b | 116 ± 3 c | 156 ± 2 b | 228 ± 6 a | 219 ± 4 a | 6.3 ± 0.4 |
Sample | Bioactivity | ||||
---|---|---|---|---|---|
Antibacterial | Antioxidant | Cytotoxicity | Hepatoxicity | Anti-Inflammatory | |
L1F | +++ | + | +++ | − − | na |
L1M | ++ | + | +++ | − − | + |
L2F | ++ | + | +++ | − − | ++ |
L2M | ++ | + | ++ | − | + |
L3F | + | + | +++ | − − | + |
L3M | + | + | ++ | − | + |
L4F | ++ | ++ | +++ | − − − | + |
L4M | +++ | ++ | +++ | − − − | + |
Location 1 | Location 2 | Location 3 | Location 4 | |
---|---|---|---|---|
Reference Male Sample | L1M | L2M | L3M | L4M |
Reference Female Sample | L1F | L2F | L3F | L4F |
Municipality/province | La Póveda/SO | Espeja/SO | Almazán/SO | Galbarra/NA |
Longitude | 41°59′48.1″ N | 41°47′4.5″ N | 41°33′50.9″ N | 42°42′51.8″ N |
Latitude | 2°27′20.5″ W | 3°14′4.6″ W | 2°32′55.4″ W | 2°9′5.5″ W |
Altitude (m) | 1407 | 1037 | 1080 | 932 |
Rainfall (mm) | 810 | 592 | 550 | 807 |
Mean Annual T (°C) | 8.0 | 10.0 | 10.0 | 11.2 |
Soil reaction | Acid | Acid | Acid | Alkaline |
Sampling Date | 21/09/2020 | 23/09/2020 | 14/10/2020 | 19/10/2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban, L.S.; Mediavilla, I.; Xavier, V.; Amaral, J.S.; Pires, T.C.S.P.; Calhelha, R.C.; López, C.; Barros, L. Yield, Chemical Composition and Bioactivity of Essential Oils from Common Juniper (Juniperus communis L.) from Different Spanish Origins. Molecules 2023, 28, 4448. https://doi.org/10.3390/molecules28114448
Esteban LS, Mediavilla I, Xavier V, Amaral JS, Pires TCSP, Calhelha RC, López C, Barros L. Yield, Chemical Composition and Bioactivity of Essential Oils from Common Juniper (Juniperus communis L.) from Different Spanish Origins. Molecules. 2023; 28(11):4448. https://doi.org/10.3390/molecules28114448
Chicago/Turabian StyleEsteban, Luis Saúl, Irene Mediavilla, Virginie Xavier, Joana S. Amaral, Tânia C. S. P. Pires, Ricardo C. Calhelha, César López, and Lillian Barros. 2023. "Yield, Chemical Composition and Bioactivity of Essential Oils from Common Juniper (Juniperus communis L.) from Different Spanish Origins" Molecules 28, no. 11: 4448. https://doi.org/10.3390/molecules28114448
APA StyleEsteban, L. S., Mediavilla, I., Xavier, V., Amaral, J. S., Pires, T. C. S. P., Calhelha, R. C., López, C., & Barros, L. (2023). Yield, Chemical Composition and Bioactivity of Essential Oils from Common Juniper (Juniperus communis L.) from Different Spanish Origins. Molecules, 28(11), 4448. https://doi.org/10.3390/molecules28114448