Single and Binary Removals of Pb(II) and Cd(II) with Chemically Modified Opuntia ficus indica Cladodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. pHPZC Measurements: Effect of Alkaline Treatment
2.2. FTIR Analysis: Morphological and Structural Characterization (SEM/EDX)
2.3. Influence of pH Solution in the Single and Binary Adsorptions
2.4. Influence of OFICM Dose in Single and Binary Systems
2.5. Influence of Initial Concentration of Pb(II) and/or Cd(II) Ions, C0
2.6. Kinetic Data of Biosorption in Single and Binary Systems
2.7. Adsorption Isotherms in Single and Binary Systems
Biomass | qmax (mg g−1) | Reference | |
---|---|---|---|
Pb(II) | Cd(II) | ||
Olive Stone a | 15 | - | [49] |
≤25.48 | - | [50] | |
Rice bran a | 78.9 | - | [51] |
Moringa oleifera tree leaves a | 209.55 | - | [52] |
Auricularia auricular a | 36.35 | - | [37] |
Arabica-coffee a | 223.1 | - | [33] |
Theobroma-cocoa a | 303.0 | - | [33] |
Apricot shells a | 37.37 | - | [21] |
Mangifera indica seed shells a | 59.25 | - | [36] |
Coconut Shaft | 22.1 | [39] | |
Nostoc commune a | 384.6 | [53] | |
Algae waste biomass a | - | 53.19 | [38] |
Mauritia flexuosa a | 202.43 (56.48) b | 178.94 (22.05) b | [54] |
Carob shells a | - | 49.63 | [35] |
Alga (Hydrodictyon reticulatum) a | - | 12.74 | [34] |
Soy waste biomass a | 82.8 | 46.08 | [22] |
Water hyacinth, Eichhornia crassipes c | 26.32 (25.38) b | 12.59 (4.05) b | [31] |
Opuntia ficus indica cladodes a | 116.8 (102.66) b | 64.7 (19.03) b | This work |
2.8. Biosorption Thermodynamics
2.9. Desorption and Regeneration of OFICM
3. Materials and Methods
3.1. Preparation of Opuntia ficus indica
3.2. Preparation of Pb and Cd Solutions
3.3. Bisorbent Characterization
3.4. Biosorption Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Syeda, H.I.; Sultan, I.; Razavi, K.S.; Yap, P.S. Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. J. Water Process Eng. 2022, 46, 102446. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Bonilla-Mancilla, H.; Toro, R.O.; Villabona-Ortíz, A.; Díaz-Illanes, M. The elimination of lead(II) ions in a solution by bio-adsorption: Kinetics, equilibrium, and thermodynamics. J. Water Land Dev. 2022, 53, 118–127. [Google Scholar]
- Liu, J.; Zhang, C.; Tao, B.; Beckerman, J. Revealing the roles of biomass components in the biosorption of heavy metals in wastewater by various chemically treated hemp stalks. J. Taiwan Inst. Chem. Eng. 2023, 143, 104701. [Google Scholar] [CrossRef]
- Kushwaha, S.; Suhas; Chaudhary, M.; Tyagi, I.; Bhutiani, R.; Goscianska, J.; Ahmed, J.; Manila; Chaudhary, S. Utilization of Phyllanthus emblica fruit stone as a Potential Biomaterial for Sustainable Remediation of Lead and Cadmium Ions from Aqueous Solutions. Molecules 2022, 27, 3355. [Google Scholar] [CrossRef]
- Chwastowski, J.; Bradło, D.; Żukowski, W. Adsorption of cadmium, manganese, and lead ions from aqueous solutions using spent coffee grounds and biochar produced by its pyrolysis in the fluidized bed reactor. Materials 2020, 13, 2782. [Google Scholar] [CrossRef]
- Madadgar, S.; Doulati Ardejani, F.; Boroumand, Z.; Sadeghpour, H.; Taherdangkoo, R.; Butscher, C. Biosorption of Aqueous Pb(II), Co(II), Cd(II) and Ni(II) Ions from Sungun Copper Mine Wastewater by Chrysopogon zizanioides Root Powder. Minerals 2023, 13, 106. [Google Scholar] [CrossRef]
- Alzahrani, O.M.; Abo-Amer, A.E.; Mohamed, R.M. Improvement of Zn (II) and Cd (II) Biosorption by Priestia megaterium PRJNA526404 Isolated from Agricultural Waste Water. Microorganisms 2022, 12, 2510. [Google Scholar] [CrossRef]
- Flores-Trujillo, A.K.I.; Mussali-Galante, P.; de Hoces, M.C.; Blázquez-García, G.; Saldarriaga-Noreña, H.A.; Rodríguez-Solís, A.; Tovar-Sánchez, E.; Sánchez-Salinas, E.; Ortiz-Hernández, L. Biosorption of heavy metals on Opuntia fuliginosa and Agave angustifolia fibers for their elimination from water. Int. J. Environ. Sci. Technol. 2021, 18, 441–454. [Google Scholar] [CrossRef]
- Lavado-Meza, C.; Sun-Kou, M.R.; Castro-Arroyo, T.K.; Bonilla-Mancilla, H.D. Biosorción de plomo (II) en solución acuosa con biomasa de los cladodios de la tuna (opuntia ficus indica). Rev. Colomb. Quim. 2020, 49, 36–46. [Google Scholar] [CrossRef]
- Barka, N.; Abdennouri, M.; El Makhfouk, M.; Qourzal, S. Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. 2013, 1, 144–149. [Google Scholar] [CrossRef]
- Aiyesanmi, A.F.; Adebayo, M.A.; Arowojobe, Y. Biosorption of Lead and Cadmium from Aqueous Solution in Single and Binary Systems Using Avocado Pear Exocarp: Effects of Competing Ions. Anal. Lett. 2020, 53, 2868–2885. [Google Scholar] [CrossRef]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption of Lead on Cucumber Peel. J. Clean. Prod. 2017, 151, 603–615. [Google Scholar] [CrossRef]
- Morosanu, I.; Teodosiu, C.; Paduraru, C.; Ibanescu, D.; Tofan, L. Biosorption of lead ions from aqueous effluents by rapeseed biomass. N. Biotechnol. 2017, 39, 110–124. [Google Scholar] [CrossRef]
- Saha, G.C.; Hoque, M.I.U.; Miah, M.A.M.; Holze, R.; Chowdhury, D.A.; Khandaker, S.; Chowdhury, S. Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta(L.) Schott) as a low cost bioadsorbent: Characterization, equilibria, kinetics and biosorption-mechanism studies. J. Environ. Chem. Eng. 2017, 5, 2151–2162. [Google Scholar] [CrossRef]
- Taşar, Ş.; Kaya, F.; Özer, A. Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. J. Environ. Chem. Eng. 2014, 2, 1018–1026. [Google Scholar] [CrossRef]
- Lavado-Meza, C.; De la Cruz-Cerrón, L.; Cisneros-Santos, G.; De la Cruz, A.H.; Angeles-Suazo, J.; Dávalos-Prado, J.Z. Arabica-coffee and teobroma-cocoa agro-industrial waste biosorbents, for Pb(II) removal in aqueous solutions. Environ. Sci. Pollut. Res. 2022, 30, 2991–3001. [Google Scholar] [CrossRef]
- Figueirôa, J.A.; Menezes Novaes, G.U.; de Souza Gomes, H.; de Morais Silva, V.L.M.; de Moraes Lucena, D.; Lima, L.M.R.; de Souza, S.A.; Viana, L.G.F.C.; Rolim, L.A.; da Silva Almeida, J.R.G.; et al. Opuntia ficus-indica is an excellent eco-friendly biosorbent for the removal of chromium in leather industry effluents. Heliyon 2021, 7, e07292. [Google Scholar] [CrossRef]
- Kadda, S.; Belabed, A.; Conte, R.; Ouahhoud, S.; Hamdaoui, H.; Mechchate, H.; Elarbi, Z. Phytochemical analysis for the residues of Opuntia ficus indica l seed oil of eastern region of Morocco. Mater. Today Proc. 2023, 72, 3662–3668. [Google Scholar] [CrossRef]
- Tineo Canchari, J.I. Caracterización Morfológica y Análisis de la Variabilidad Genética de la Colección Nacional de Gemoplasma de Tuna (opuntia sp.) del Perú; Instituto Nacional de Innovación Agraria: La Molina, Peru, 2019.
- Tatjana, D.Š.; Petrovi, M.S.; Pastor, F.T.; Lon, D.R.; Petrovi, J.T.; Milojkovi, J.V.; Stojanovi, M.D. Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. J. Mol. Liq. 2018, 259, 340–349. [Google Scholar]
- Petrović, J.T.; Stojanović, M.D.; Milojković, J.V.; Petrović, M.S.; Šoštarić, T.D.; Laušević, M.D.; Mihajlović, M.L. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb2+ from aqueous solution. J. Environ. Manag. 2016, 182, 292–300. [Google Scholar] [CrossRef]
- Bulgariu, L.; Ferţu, D.I.; Cara, I.G.; Gavrilescu, M. Efficacy of alkaline-treated soy waste biomass for the removal of heavy-metal ions and opportunities for their recovery. Materials 2021, 14, 7413. [Google Scholar] [CrossRef] [PubMed]
- Bansal, M.; Garg, R.; Garg, V.K.; Garg, R.; Singh, D. Sequestration of heavy metal ions from multi-metal simulated wastewater systems using processed agricultural biomass. Chemosphere 2022, 296, 133966. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Rodríguez, E.M.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E.; Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A. Activated carbon manufacturing via alternative Mexican lignocellulosic biomass and their application in water treatment: Preparation conditions, surface chemistry analysis and heavy metal adsorption properties. Chem. Eng. Res. Des. 2022, 187, 9–26. [Google Scholar] [CrossRef]
- Gu, S.; Lan, C.Q. Biosorption of heavy metal ions by green alga Neochloris oleoabundans: Effects of metal ion properties and cell wall structure. J. Hazard. Mater. 2021, 418, 126336. [Google Scholar] [CrossRef]
- Pan, J.; Gao, B.; Guo, K.; Gao, Y.; Xu, X.; Yue, Q. Insights into selective adsorption mechanism of copper and zinc ions onto biogas residue-based adsorbent: Theoretical calculation and electronegativity difference. Sci. Total Environ. 2022, 805, 150413. [Google Scholar] [CrossRef]
- Sandoval-Flores, G.; Alvarado-Reyna, S.; Elvir-Padilla, L.G.; Mendoza-Castillo, D.I.; Reynel-Avila, H.E.; Bonilla-Petriciolet, A. Kinetics, Thermodynamics, and Competitive Adsorption of Heavy Metals from Water Using Orange Biomass. Water Environ. Res. 2018, 90, 2114–2125. [Google Scholar] [CrossRef]
- Sen, B.; Goswami, S.; Devi, G.; Sarma, H.P.; Bind, A. Valorization of Adenanthera pavonina seeds as a potential biosorbent for lead and cadmium removal from single and binary contaminated system. Geol. Ecol. Landsc. 2018, 2, 275–287. [Google Scholar] [CrossRef]
- Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Olumide, A.A.; Bonilla-Petriciolet, A.A. Survey of multi-component sorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomasses. J. Mol. Liq. 2016, 224, 1041–1054. [Google Scholar] [CrossRef]
- Sulaymon, A.H.; Ebrahim, S.E.; Mohammed-Ridha, M.J. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater. Environ. Sci. Pollut. Res. 2013, 20, 175–187. [Google Scholar] [CrossRef]
- Mahamadi, C.; Nharingo, T. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour. Technol. 2010, 101, 859–864. [Google Scholar] [CrossRef]
- Şengil, I.A.; Özacar, M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. J. Hazard. Mater. 2009, 166, 1488–1494. [Google Scholar] [CrossRef]
- Lavado-Meza, C.; De la Cruz-Cerrón, L.; Asencios, Y.J.O.; Marcos, F.C.F.; Dávalos-Prado, J.Z. Alkaline Modification of Arabica-Coffee and Theobroma-Cocoa Agroindustrial Waste for Effective Removal of Pb(II) from Aqueous Solutions. Molecules 2023, 28, 683. [Google Scholar] [CrossRef]
- Ammari, T.G.; Al-Atiyat, M.; Abu-Nameh, E.S.; Ghrair, A.; Jaradat, D.; Abu-Romman, S. Bioremediation of cadmium-contaminated water systems using intact and alkaline-treated alga (Hydrodictyon reticulatum) naturally grown in an ecosystem. Int. J. Phytoremediat. 2017, 19, 453–462. [Google Scholar] [CrossRef]
- Farnane, M.; Tounsadi, H.; Elmoubarki, R.; Mahjoubi, F.Z.; Elhalil, A.; Saqrane, S.; Abdennouri, M.; Qourzal, S.; Barka, N. Alkaline treated carob shells as sustainable biosorbent for clean recovery of heavy metals: Kinetics, equilibrium, ions interference and process optimisation. Ecol. Eng. 2017, 101, 9–20. [Google Scholar] [CrossRef]
- Moyo, M.; Pakade, V.E.; Modise, S.J. Biosorption of lead(II) by chemically modified Mangifera indica seed shells: Adsorbent preparation, characterization and performance assessment. Process Saf Environ Prot. 2017, 111, 40–51. [Google Scholar] [CrossRef]
- Song, T.; Yu, S.; Wang, X.; Teng, C.; Bai, X.; Liang, J.; Dong, L.; Ouyang, F.; Qu, J.; Jin, Y. Biosorption of Lead(II) from Aqueous Solution by Sodium Hydroxide Modified Auricularia auricular Spent Substrate: Isotherms, Kinetics, and Mechanisms. Water Air Soil Pollut. 2017, 228, 236. [Google Scholar] [CrossRef]
- Bulgariu, D.; Bulgariu, L. Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: Batch and column studies. J. Clean. Prod. 2016, 112, 4525–4533. [Google Scholar] [CrossRef]
- Ofudje, E.A.; Akiode, O.K.; Oladipo, G.O.; Adedapo, A.E.; Adebayo, L.O.; Awotula, A.O. Application of raw and alkaline-modified coconut shaft as a biosorbent for Pb2+ removal. BioResources 2015, 10, 3462–3480. [Google Scholar] [CrossRef]
- Villaescusa, I.; Fiol, N.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 2004, 38, 992–1002. [Google Scholar] [CrossRef]
- Dupont, L.; Bouanda, J.; Ghanbaja, J.; Dumonceau, J.; Aplincourt, M. Use of analytical microscopy to analyze the speciation of copper and chromium ions onto a low-cost biomaterial. J. Colloid Interface Sci. 2004, 279, 418–424. [Google Scholar] [CrossRef]
- Gérente, C.; Couespel, D.; Mesnil, P.; Andrès, Y.; Thibault, J.F.; Le Cloirec, P. Removal of metal ions from aqueous solution on low cost natural polysaccharides. Sorption mechanism approach. React. Funct. Polym. 2000, 46, 135–144. [Google Scholar] [CrossRef]
- Panda, G.C.; Das, S.K.; Chatterjee, S.; Maity, P.B.; Bandopadhyay, T.S.; Guha, A.K. Adsorption of cadmium on husk of Lathyrus sativus: Physico-chemical study. Colloids Surf. B Biointerfaces 2006, 50, 49–54. [Google Scholar] [CrossRef]
- Lugo-Lugo, V.; Barrera-Díaz, C.; Ureña-Núñez, F.; Bilyeu, B.; Linares-Hernández, I. Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel. J. Environ. Manag. 2012, 112, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.S. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol Rep. 2021, 30, e00614. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Zhao, H.; Yan, F.; Li, S.; Guo, B.; Luo, C.; Huang, X.; Ji, P. Utilization of KOH-modified fly ash for elimination from aqueous solutions of potentially toxic metal ions. Environ. Res. 2023, 223, 115396. [Google Scholar] [CrossRef] [PubMed]
- Moreira, V.R.; Lebron, Y.A.R.; Lange, L.C.; Santos, L.V.S. Simultaneous biosorption of Cd(II), Ni(II) and Pb(II) onto a brown macroalgae Fucus vesiculosus: Mono- and multi-component isotherms, kinetics and thermodynamics. J. Environ. Manag. 2019, 251, 109587. [Google Scholar]
- Verma, A.; Agarwal, M.; Sharma, S.; Singh, N. Competitive removal of cadmium and lead ions from synthetic wastewater using Kappaphycus striatum. Environ Nanotechnology, Monit. Manag. 2021, 15, 100449. [Google Scholar] [CrossRef]
- Blázquez, G.; Calero, M.; Ronda, A.; Tenorio, G.; Martín-Lara, M.A. Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. J. Ind. Eng. Chem. 2014, 20, 2754–2760. [Google Scholar] [CrossRef]
- Ronda, A.; Martín-Lara, M.A.; Almendros, A.I.; Pérez, A.; Blázquez, G. Comparison of two models for the biosorption of Pb(II) using untreated and chemically treated olive stone: Experimental design methodology and adaptive neural fuzzy inference system (ANFIS). J. Taiwan Inst. Chem. Eng. 2015, 54, 45–56. [Google Scholar] [CrossRef]
- Ye, H.; Yu, Z. Adsorption of Pb(II) onto Modified Rice Bran. Nat. Resour. 2010, 1, 104–109. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Harinath, Y.; Seshaiah, K.; Reddy, A.V.R. Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chem. Eng. J. 2010, 162, 626–634. [Google Scholar] [CrossRef]
- Lavado-Meza, C.; De la Cruz-Cerrón, L.; Lavado-Puente, C.; Angeles-Suazo, J.; Dávalos-Prado, J.Z. Efficient Lead Pb(II) Removal with Chemically Modified Nostoc commune Biomass. Molecules 2023, 28, 268. [Google Scholar] [CrossRef]
- Melo, D.D.Q.; Vidal, C.B.; Medeiros, T.C.; Raulino, G.S.C.; Dervanoski, A.; Pinheiro, M.D.C.; Nascimento, R.F.D. Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): Experimental design and mathematical modeling. Environ. Technol. 2016, 37, 2157–2171. [Google Scholar] [CrossRef]
- Do Nascimento, J.M.; de Oliveira, J.D.; Leite, S.G.F. Chemical characterization of biomass flour of the babassu coconut mesocarp (Orbignya speciosa) during biosorption process of copper ions. Environ. Technol. Innov. 2019, 16, 100440. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pal, A. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. J. Environ. Manag. 2017, 200, 145–159. [Google Scholar] [CrossRef]
Model/Parameter | Single System | Binary System | ||
---|---|---|---|---|
Lead | Cadmium | Lead | Cadmium | |
Pseudo-first-order | ||||
qe (mg g−1) | 86.2 | 31.4 | 75.6 | 12.4 |
k1 (min−1) | 1.27 | 0.89 | 0.96 | 0.31 |
R2 | 0.71 | 0.80 | 0.81 | 0.85 |
Pseudo-second-order | ||||
qe | 88.9 | 32.7 | 78.6 | 13.0 |
k2 | 0.023 | 0.040 | 0.019 | 0.043 |
h | 181.6 | 42.8 | 117.2 | 7.2 |
R2 | 0.93 | 0.97 | 0.97 | 0.97 |
Intra-particle diffusion | ||||
kd,I | 9.64 | 5.14 | 12.27 | 2.49 |
R2 | 0.98 | 0.96 | 0.98 | 0.97 |
kd,II | 0.77 | 0.35 | 0.61 | 0.17 |
R2 | 0.89 | 0.92 | 0.96 | 0.85 |
Model/Parameter | Single System | Binary System | ||
---|---|---|---|---|
Pb(II) | Cd(II) | Pb(II) | Cd(II) | |
Langmuir | ||||
qmax (mg g−1) | 116.8 | 64.7 | - | - |
kL (L mg−1) | 0.35 | 0.04 | - | - |
R2 | 0.91 | 0.98 | - | - |
Freundlich | ||||
KF (mg g−1 L(1/n) mg−(1/n)) | 43.22 | 8.00 | - | - |
nF | 4.35 | 23.34 | - | - |
R2 | 0.90 | 0.96 | - | - |
Modified-Langmuir (MLM) | ||||
qmax | - | - | 102.7 | 19.0 |
kL | - | - | 0.049 | 0.045 |
- | - | 0.86 | 0.96 | |
R2 | - | - | 0.98 | 1 |
Extended Langmuir (ELM) | ||||
qmax, | - | - | 96.8 | 12.2 |
kL | - | - | 0.07 | 0.02 |
R2 | - | - | 0.97 | 0.91 |
∆H0 (kJ mol−1) | ∆S0 (J mol−1 K−1) | ∆G0 (kJ mol−1) | |||
---|---|---|---|---|---|
293 K | 303 K | 313 K | |||
Single | |||||
Pb | 52.36 | 197.61 | −5.62 | −7.19 | −11.13 |
Cd | 17.06 | 55.57 | −0.31 | −0.71 | −0.89 |
Binary | |||||
Pb | 17.06 | 62.60 | −1.26 | −1.93 | −3.05 |
Cd | 17.05 | 46.52 | −2.61 | −3.36 | −4.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavado-Meza, C.; Fernandez-Pezua, M.C.; Gamarra-Gómez, F.; Sacari-Sacari, E.; Angeles-Suazo, J.; Dávalos-Prado, J.Z. Single and Binary Removals of Pb(II) and Cd(II) with Chemically Modified Opuntia ficus indica Cladodes. Molecules 2023, 28, 4451. https://doi.org/10.3390/molecules28114451
Lavado-Meza C, Fernandez-Pezua MC, Gamarra-Gómez F, Sacari-Sacari E, Angeles-Suazo J, Dávalos-Prado JZ. Single and Binary Removals of Pb(II) and Cd(II) with Chemically Modified Opuntia ficus indica Cladodes. Molecules. 2023; 28(11):4451. https://doi.org/10.3390/molecules28114451
Chicago/Turabian StyleLavado-Meza, Carmencita, Miguel C. Fernandez-Pezua, Francisco Gamarra-Gómez, Elisban Sacari-Sacari, Julio Angeles-Suazo, and Juan Z. Dávalos-Prado. 2023. "Single and Binary Removals of Pb(II) and Cd(II) with Chemically Modified Opuntia ficus indica Cladodes" Molecules 28, no. 11: 4451. https://doi.org/10.3390/molecules28114451
APA StyleLavado-Meza, C., Fernandez-Pezua, M. C., Gamarra-Gómez, F., Sacari-Sacari, E., Angeles-Suazo, J., & Dávalos-Prado, J. Z. (2023). Single and Binary Removals of Pb(II) and Cd(II) with Chemically Modified Opuntia ficus indica Cladodes. Molecules, 28(11), 4451. https://doi.org/10.3390/molecules28114451