Combing Seeding Crystallization with Flotation for Recovery of Fluorine from Wastewater: Experimental and Molecular Simulation Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Removal of Fluorine
2.1.1. Removal of Fluorine by Chemical Precipitation
2.1.2. Removal of Fluorine by Seeding Crystallization
2.1.3. Analysis of Precipitates
2.2. Solution and Interfacial Behaviors of Ions
2.2.1. Solution Behaviors of Ions in Chemical Precipitation
2.2.2. Interfacial Behaviors of Ions in Seeding Crystallization
2.3. Flotation Recovery of Fluorine
2.3.1. Flotation of Precipitates after Chemical Precipitation
2.3.2. Flotation of Precipitates after Seeding Crystallization
3. Materials and Methods
3.1. Materials
3.2. Experimental Procedures
3.3. Analytical Methods
3.4. Molecular Simulation Details
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Arora, H.C.; Chattopadhya, S.N. A study of the effluent disposal of superphosphate fertilizer factory. Indian J. Environ. Health 1974, 16, 140–150. [Google Scholar]
- Liu, Y.; Wang, P.; Dalconi, M.C.; Molinari, S.; Valentini, L.; Wang, Y.; Sun, S.; Chen, Q.; Artioli, G. The sponge effect of phosphogypsum-based cemented paste backfill in the atmospheric carbon capture: Roles of fluorides, phosphates, and alkalinity. Sep. Purif. Technol. 2023, 315, 123702. [Google Scholar] [CrossRef]
- Harrison, P.T.C. Fluoride in water: A UK perspective. J. Fluor. Chem. 2005, 126, 1448–1456. [Google Scholar] [CrossRef]
- Liu, H.; Cui, Y.; Zhang, B. Effects of iodine and fluorine in drinking water on human health. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J., Ed.; Elsevier: Oxford, UK, 2019; pp. 256–263. [Google Scholar]
- Wan, K.; Huang, L.; Yan, J.; Ma, B.; Huang, X.; Luo, Z.; Zhang, H.; Xiao, T. Removal of fluoride from industrial wastewater by using different adsorbents: A review. Sci. Total Environ. 2021, 773, 145535. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wu, F.; Qu, G.; Ren, N.; Ning, P.; Chen, X.; He, M.; Yang, Y.; Wang, Z.; Hu, Y. Extraction and preparation of metal organic frameworks from secondary aluminum ash for removal mechanism study of fluoride in wastewater. J. Mater. Res. Technol. 2023, 23, 3023–3034. [Google Scholar] [CrossRef]
- Shen, F.; Chen, X.; Gao, P.; Chen, G. Electrochemical removal of fluoride ions from industrial wastewater. Chem. Eng. Sci. 2003, 58, 987–993. [Google Scholar] [CrossRef]
- Ren, Y.; He, M.; Qu, G.; Ren, N.; Ning, P.; Yang, Y.; Chen, X.; Wang, Z.; Hu, Y. Study on the mechanism of removing fluoride from wastewater by oxalic acid modified aluminum ash-carbon slag-carbon black doped composite. Arab. J. Chem. 2023, 16, 104668. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, W.; Che, J.; Chen, J.; Wen, P.; Ma, B.; Wang, C. Stepwise removal and recovery of phosphate and fluoride from wastewater via pH-dependent precipitation: Thermodynamics, experiment and mechanism investigation. J. Clean. Prod. 2021, 320, 128872. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 2017, 307, 696–706. [Google Scholar] [CrossRef]
- Ren, J.; Li, N.; Wei, H.; Li, A.; Yang, H. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant. Water Res. 2020, 170, 115361. [Google Scholar] [CrossRef]
- Li, S.; Liu, M.; Meng, F.; Hu, X.; Yu, W. Removal of F− and organic matter from coking wastewater by coupling dosing FeCl3 and AlCl3. J. Environ. Sci. 2021, 110, 2–11. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Saini, V.K. Defluoridation of wastewaters using waste carbon slurry. Water Res. 2007, 41, 3307–3316. [Google Scholar] [CrossRef]
- Zeng, G.; Ling, B.; Li, Z.; Luo, S.; Sui, X.; Guan, Q. Fluorine removal and calcium fluoride recovery from rare-earth smelting wastewater using fluidized bed crystallization process. J. Hazard. Mater. 2019, 373, 313–320. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Sun, N.; Sun, W.; Hu, Y.; Tang, H. Precipitation methods using calcium-containing ores for fluoride removal in wastewater. Minerals 2019, 9, 511. [Google Scholar] [CrossRef]
- Myasnikov, S.K.; Tikhonov, A.Y.; Kulov, N.N. Kinetics of chemical precipitation: General evolutionary patterns in different models. Theor. Found. Chem. Eng. 2020, 54, 249–257. [Google Scholar] [CrossRef]
- Ulrich, J.; Jones, M.J. Seeding technique in batch crystallization. Ind. Cryst. Process Monit. Control 2012, 12, 127–138. [Google Scholar]
- He, Y.; Gao, Z.; Zhang, T.; Sun, J.; Ma, Y.; Tian, N.; Gong, J. Seeding techniques and optimization of solution crystallization processes. Org. Process Res. Dev. 2020, 24, 1839–1849. [Google Scholar] [CrossRef]
- Christopher, O.T.; Pérez, E.; István, T.H.; Roger, A.S.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699. [Google Scholar]
- Aldaco, R.; Garea, A.; Irabien, A. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor. Water Res. 2007, 41, 810–818. [Google Scholar] [CrossRef]
- Lacson, C.F.Z.; Lu, M.C.; Huang, Y.H. Chemical precipitation at extreme fluoride concentration and potential recovery of CaF2 particles by fluidized-bed homogenous crystallization process. Chem. Eng. J. 2021, 415, 128917. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Sun, N.; Liu, R.; Wang, Z.; Wang, L.; Sun, W. Systematic review of feldspar beneficiation and its comprehensive application. Miner. Eng. 2018, 128, 141–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, S. Beneficiation of fluorite by flotation in a new chemical scheme. Miner. Eng. 2003, 16, 597–600. [Google Scholar] [CrossRef]
- Tian, J.; Hong, K.; Zhang, X.; Wang, Y.; Han, H.; Sun, W.; Zeng, X. Investigation on the flotation separation of fluorite from celestite using a novel depressant: Sodium polynaphthalene formaldehyde sulfonate. Miner. Eng. 2021, 171, 107080. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, C.; Sun, W.; Gao, Y.; Kowalczuk, P.B. Froth flotation of fluorite: A review. Adv. Colloid Interface Sci. 2021, 290, 102382. [Google Scholar] [CrossRef] [PubMed]
- Damtie, M.M.; Hailemariam, R.H.; Woo, Y.C.; Park, K.D.; Choi, J.S. Membrane-based technologies for zero liquid discharge and fluoride removal from industrial wastewater. Chemosphere 2019, 236, 124288. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hens, A.; Kulashrestha, S.; Chandra Murmu, N.; Banerjee, P. Calculation of diffusion coefficient of long chain molecules using molecular dynamics. Phys. E Low-Dimens. Syst. Nanostructures 2015, 69, 371–377. [Google Scholar] [CrossRef]
- Miracle-Sole, S. Wulff shape of equilibrium crystals. Physics 2013, 1307, 5180. [Google Scholar]
- Liu, X. Modeling of the fluid-phase interfacial effect on the growth morphology of crystals. Phys. Rev. B 1999, 60, 2810–2817. [Google Scholar] [CrossRef]
- Kawasaki, T.; Tanaka, H. Formation of a crystal nucleus from liquid. Proc. Natl. Acad. Sci. USA 2010, 107, 14036. [Google Scholar] [CrossRef]
- Hao, H.; Yuan, Z.; Li, L.; Zhang, C. Mechanism of faces growth in preparing calcium sulphate whiskers using sodium oleate. J. Inorg. Mater. 2016, 31, 1184–1190. [Google Scholar]
- Mao, X.; Song, X.; Lu, G.; Xu, Y.; Sun, Y.; Yu, J. Effect of additives on the morphology of calcium sulfate hemihydrate: Experimental and molecular dynamics simulation studies. Chem. Eng. J. 2015, 278, 320–327. [Google Scholar] [CrossRef]
- Zhang, F.; Shan, B.; Wang, Y.; Zhu, Z.; Yu, Z.Q.; Ma, C.Y. Progress and opportunities for utilizing seeding techniques in crystallization processes. Org. Process Res. Dev. 2021, 25, 1496–1511. [Google Scholar] [CrossRef]
- Nguyen, T.Y.C.; Tran, L.H.; Mueller, K.K.; Coudert, L.; Mercier, G.; Blais, J.F. Pre-concentration of fluorite from a rare earth element carbonatite deposit through the combination of magnetic separation and leaching. Miner. Eng. 2021, 174, 106998. [Google Scholar] [CrossRef]
- Speziale, S.; Duffy, T.S. Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa. Phys. Chem. Miner. 2002, 29, 465–472. [Google Scholar] [CrossRef]
- Hartman, P.; Bennema, P. The attachment energy as a habit controlling factor: I: Theoretical considerations. J. Cryst. Growth 1980, 49, 145–156. [Google Scholar] [CrossRef]
- Hao, H.; Cao, Y.; Li, L.; Fan, G.; Liu, J. Dispersion and depression mechanism of sodium silicate on quartz: Combined molecular dynamics simulations and density functional theory calculations. Appl. Surf. Sci. 2021, 537, 147926. [Google Scholar] [CrossRef]
- Zhang, H.; Kou, J.; Sun, C.; Wang, P.; Lin, J.; Li, J.; Jiang, Y. Insights into the distribution characteristic changes of leaching solution in the gap between chalcopyrite and passivation layer with polyvinyl pyrrolidone: A molecular view. Appl. Surf. Sci. 2023, 614, 156158. [Google Scholar] [CrossRef]
(h k l) | Eatt/(Kcal mol−1) |
---|---|
1 1 1 | −76.26 |
2 0 0 | −1304.59 |
2 2 0 | −301.71 |
3 1 1 | −753.34 |
3 3 1 | −259.54 |
4 2 0 | −805.34 |
4 2 2 | −813.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Kou, J.; Sun, C. Combing Seeding Crystallization with Flotation for Recovery of Fluorine from Wastewater: Experimental and Molecular Simulation Studies. Molecules 2023, 28, 4490. https://doi.org/10.3390/molecules28114490
Zhang H, Kou J, Sun C. Combing Seeding Crystallization with Flotation for Recovery of Fluorine from Wastewater: Experimental and Molecular Simulation Studies. Molecules. 2023; 28(11):4490. https://doi.org/10.3390/molecules28114490
Chicago/Turabian StyleZhang, Hao, Jue Kou, and Chunbao Sun. 2023. "Combing Seeding Crystallization with Flotation for Recovery of Fluorine from Wastewater: Experimental and Molecular Simulation Studies" Molecules 28, no. 11: 4490. https://doi.org/10.3390/molecules28114490
APA StyleZhang, H., Kou, J., & Sun, C. (2023). Combing Seeding Crystallization with Flotation for Recovery of Fluorine from Wastewater: Experimental and Molecular Simulation Studies. Molecules, 28(11), 4490. https://doi.org/10.3390/molecules28114490