Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antiproliferative and Cytotoxic Activities of Seasonal SPE and SPC on RAW 264.7 Cells
2.2. Effect of SPE and SPC on NO Production
2.3. Effect of SPE and SPC on Protein Denaturation
2.4. Effect of SPE and SPC on Hypotonicity-Induced Hemolysis of HRBC
2.5. Effect of SPE and SPC on Heat-Induced Hemolysis of HRBC
3. Materials and Methods
3.1. Propolis Samples Collection
3.2. Preparation and Characterization of Methanolic Extract of Propolis
3.3. Cell Culture Conditions
3.4. Antiproliferative Activity Assay
3.5. Nitric Oxide Inhibitory Assay
3.6. Inhibition of Heat-Induced Bovine Serum Albumin (BSA) Denaturation Assay
3.7. Preparation of Human Red Blood Cells (HRBC) Suspension
3.8. Hypotonicity-Induced Hemolysis
3.9. Heat-Induced Hemolysis
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.; Karin, M. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 1997, 336, 1066–1067. [Google Scholar] [CrossRef]
- Xie, Q.; Kashiwabara, Y.; Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 1994, 269, 4705–4708. [Google Scholar] [CrossRef]
- Kuropakornpong, P.; Itharat, A.; Panthong, S.; Sireeratawong, S.; Ooraikul, B. In Vitro and in Vivo Anti-Inflammatory Activities of Benjakul: A Potential Medicinal Product from Thai Traditional Medicine. Evid. -Based Complement. Altern. Med. 2020, 2020, 9760948. [Google Scholar] [CrossRef]
- Chan, G.C.F.; Cheung, K.W.; Sze, D.M.Y. The immunomodulatory and anticancer properties of propolis. Clin. Rev. Allergy Immunol. 2013, 44, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Conti, B.J.; Santiago, K.B.; Búfalo, M.C.; Herrera, Y.F.; Alday, E.; Velazquez, C.; Hernandez, J.; Sforcin, J.M. Modulatory effects of propolis samples from Latin America (Brazil, Cuba and Mexico) on cytokine production by human monocytes. J. Pharm. Pharmacol. 2015, 67, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Alday, E.; Valencia, D.; Carreño, A.L.; Picerno, P.; Piccinelli, A.L.; Rastrelli, L.; Robles-Zepeda, R.; Hernandez, J.; Velazquez, C. Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line. Chem. Biol. Interact. 2015, 242, 35–44. [Google Scholar] [CrossRef]
- Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J.C.; Salas-Reyes, M.; Jiménez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef]
- Sforcin, J. Biological Properties and Therapeutic Applications of Propolis. Phyther. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Do Nascimento, T.G.; dos Santos Arruda, R.E.; da Cruz Almeida, E.T.; dos Santos Oliveira, J.M.; Basílio-Júnior, I.D.; Celerino de Moraes Porto, I.C.; Rodrigues Sabino, A.; Tonholo, J.; Gray, A.; Ebel, R.E. multivariate correlations between climatic effect, metabolite-profile, antioxidant capacity and antibacterial activity of Brazilian red propolis metabolites during seasonal study. Sci. Rep. 2019, 9, 18293. [Google Scholar] [CrossRef]
- Alday, E.; Valencia, D.; Garibay-Escobar, A.; Domínguez-Esquivel, Z.; Piccinelli, A.L.; Rastrelli, L.; Monribot-Villanueva, J.; Guerrero-Analco, J.A.; Robles-Zepeda, R.E.; Hernandez, J. Plant origin authentication of Sonoran Desert propolis: An antiproliferative propolis from a semi-arid region. Sci. Nat. 2019, 106, 25. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Pfeiffer, P.; Alday, E.; Carreño, A.L.; Hernández-Tánori, J.; Montaño-Leyva, B.; Ortega-García, J.; Valdez, J.; Garibay-Escobar, A.; Hernandez, J.; Valencia, D.; et al. Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative E ff ect of Sonoran Desert Propolis. Antioxidants 2020, 9, 1294. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, C.; Navarro, M.; Acosta, A.; Angulo, A.; Dominguez, Z.; Robles, R.; Robles-Zepeda, R.; Lugo, E.; Goycoolea, F.M.; Velazquez, E.F.; et al. Antibacterial and free-radical scavenging activities of Sonoran propolis. J. Appl. Microbiol. 2007, 103, 1747–1756. [Google Scholar] [CrossRef]
- Navarro-Navarro, M.; Ruiz-Bustos, P.; Valencia, D.; Robles-Zepeda, R.; Ruiz-Bustos, E.; Virués, C.; Hernandez, J.; Domínguez, Z.; Velazquez, C. Antibacterial activity of Sonoran propolis and some of its constituents against clinically significant Vibrio species. Foodborne Pathog. Dis. 2013, 10, 150–158. [Google Scholar] [CrossRef]
- Hernandez, J.; Goycoolea, F.M.; Quintero, J.; Acosta, A.; Castañeda, M.; Dominguez, Z.; Robles, R.; Vazquez-Moreno, L.; Velazquez, E.F.; Astiazaran, H.; et al. Sonoran propolis: Chemical composition and antiproliferative activity on cancer cell lines. Planta Med. 2007, 73, 1469–1474. [Google Scholar] [CrossRef]
- Carreño, A.L.; Alday, E.; Quintero, J.; Pérez, L.; Valencia, D.; Robles-Zepeda, R.; Valdez-Ortega, J.; Hernandez, J.; Velazquez, C. Protective effect of Caffeic Acid Phenethyl Ester (CAPE) against oxidative stress. J. Funct. Foods 2017, 29, 179–184. [Google Scholar] [CrossRef]
- Akindele, A.J.; Wani, Z.A.; Sharma, S.; Mahajan, G.; Satti, N.K.; Adeyemi, O.O.; Mondhe, D.M.; Saxena, A.K. In vitro and in vivo anticancer activity of root extracts of sansevieria liberica gerome and labroy (agavaceae). Evid. -Based Complement. Altern. Med. 2015, 2015, 560404. [Google Scholar] [CrossRef]
- Bueno-silva, B.; Kawamoto, D.; Ando-suguimoto, E.S.; Alencar, S.M. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages. PLoS ONE 2015, 10, e0144954. [Google Scholar] [CrossRef]
- Knowles, R.G.; Palacios, M.; Palmer, R.M.; Moncada, S. Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA 1989, 86, 5159–5162. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, S.A.; Ondua, M.; Shai, L.J.; Lebelo, S.L. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. J. Inflamm. Res. 2019, 12, 195–203. [Google Scholar] [CrossRef]
- Alanazi, S.; Alenzi, N.; Fearnley, J.; Harnett, W.; Watson, D.G. Temperate Propolis Has Anti-Inflammatory E ff ects and Is a Potent Inhibitor of Nitric Oxide Formation in Macrophages. Metabolites 2020, 10, 413. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Tsai, S.-H.; Tsai, D.-C.; Lin-Shiau, S.-Y.; Lin, J.-K. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor- by flavonoids in mouse macrophages. FEBS Lett. 2001, 496, 12–18. [Google Scholar] [CrossRef]
- Matsuda, H.; Morikawa, T.; Ando, S.; Toguchida, I.; Yoshikawa, M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg. Med. Chem. 2003, 11, 1995–2000. [Google Scholar] [CrossRef]
- Hendriks, J.J.; de Vries, H.E.; van der Pol, S.M.; van den Berg, T.K.; van Tol, E.A.; Dijkstra, C.D. Flavonoids inhibit myelin phagocytosis by macrophages; A structure-activity relationship study. Biochem. Pharmacol. 2003, 65, 877–885. [Google Scholar] [CrossRef]
- Xu, W.; Lu, H.; Yuan, Y.; Deng, Z.; Zheng, L.; Li, H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways. Foods 2022, 11, 2439. [Google Scholar] [CrossRef] [PubMed]
- Angel, G.R.; Vimala, B.; Nambisan, B. Antioxidant and anti-inflammatory activities of proteins isolated from eight Curcuma species. Phytopharmacology 2013, 4, 96–105. [Google Scholar]
- Opie, E.L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med. 1962, 115, 597. [Google Scholar] [CrossRef]
- Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B.; Menziwa, P.; Nkeh-Chungag, B.N.; Iputo, J.E. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res. 2010, 4, 789–795. [Google Scholar]
- Williams, L.; O’Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro Anti-denaturation Effects Induced by Natural Products and Non- steroidal Compounds in Heat Treated (Immunogenic) Bovine Serum Albumin is Proposed as a Screening Assay for the in vitro Anti-denaturation Effects Induced by Natural Products. West Indian Med. J. 2008, 57, 327. [Google Scholar] [CrossRef]
- Araújo, C.; Oliveira Dias, R.; Pinto-Ribeiro, F.; Almeida-Aguiar, C. An Insight on the Biomedical Potential of Portuguese Propolis from Gerês. Foods 2022, 11, 3431. [Google Scholar] [CrossRef]
- Afonso, A.M.; Gonçalves, J.; Lu, Â.; Gallardo, E.; Duarte, A.P. Evaluation of the In Vitro Wound-Healing Activity and Phytochemical Characterization of Propolis and Honey. Appl. Sci. 2020, 10, 1845. [Google Scholar] [CrossRef]
- Bukhari, I.A.; Alhumayyd, M.S.; Mahesar, A.L.; Gilani, A.H. The analgesic and anticonvulsant effects of piperine in mice. J. Physiol. Pharmacol. 2013, 64, 789. [Google Scholar] [PubMed]
- Chaitanya, R.; Sandhya, S.; David, B.; Vinod, K.R.; Murali, S. HRBC membrane stabilizing property of roor, stem and leaf of glochidion velutinum. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 256–259. [Google Scholar]
- Zheng, Q.; Tan, W.; Feng, X.; Feng, K.; Zhong, W.; Liao, C.; Liu, Y.; Li, S.; Hu, W. Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules 2022, 27, 7625. [Google Scholar] [CrossRef]
- An, F.; Cao, X.; Qu, H.; Wang, S. Attenuation of oxidative stress of erythrocytes by the plant-derived flavonoids vitexin and apigenin. Pharmazie 2015, 70, 724–732. [Google Scholar] [CrossRef]
- Holtomo, O.; Nsangou, M.; Fifen, J.J.; Motapon, O. Dft study of the effect of solvent on the h-atom transfer involved in the scavenging of the free radicals •HO2 and •O2− by caffeic acid phenethyl ester and some of its derivatives. J. Mol. Model. 2014, 20, 2509. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Banerjee, A.; Basu, K.; Sengupta, B.; Sengupta, P.K. Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects. Int. J. Biol. Macromol. 2007, 41, 42–48. [Google Scholar] [CrossRef]
- Sonter, S.; Mishra, S.; Dwivedi, M.K.; Singh, P.K. Chemical profiling, in vitro antioxidant, membrane stabilizing and antimicrobial properties of wild growing Murraya paniculata from Amarkantak (M.P.). Sci. Rep. 2021, 11, 9691. [Google Scholar] [CrossRef]
- Nunes, C.D.R.; Barreto Arantes, M.; Menezes de Faria Pereira, S.; Leandro da Cruz, L.; de Souza Passos, M.; Pereira de Moraes, L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as Sources of Anti-Inflammatory Agents. Molecules 2020, 25, 3726. [Google Scholar] [CrossRef]
- Oyedapo, O.O.; Akinpelu, B.A.; Orefuwa, S.O. Anti-inflammatory effect of Theobroma cacao root extract. J. Trop. Med. Plants 2004, 5, 161–166. [Google Scholar]
- Oyedapo, O. Red blood cell membrane stabilizing potentials of extracts of Lantana camara and its fractions. Int. J. Plant Physiol. Biochem. 2010, 2, 46–51. [Google Scholar]
- Oteiza, P.I.; Erlejman, A.G.; Verstraeten, S.V.; Keen, C.L.; Fraga, C.G. Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005, 12, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Tarahovsky, Y.S.; Kim, Y.A.; Yagolnik, E.A.; Muzafarov, E.N. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival—Application to proliferation and cyto-toxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Paulino, N.; Lemos-Abreu, S.R.; Uto, Y.; Koyama, D.; Nagasawa, H.; Hori, H.; Dirsch, V.M.; Vollmar, A.M.; Scremin, A.; Bretz, W.A. Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur. J. Pharmacol. 2008, 587, 296–301. [Google Scholar] [CrossRef]
- Williams, L.A.D.; Rosner, H.; Conrad, J.; Moller, W.; Beifuss, U.; Chiba, K.; Nkurunziza, J.P.; Kraus, W. Selected secondary metabolites from Phyto-laccaceae and their biological/pharmaceutical significance. Phytochemistry 2002, 6, 13–68. [Google Scholar]
- Oyedapo, O.O.; Famurewa, A.J. Antiprotease and membrane stabilizing activities of extracts of Fagara zanthoxyloides, Olax subscorpioides and Tetrapleura tetraptera. Int. J. Pharmacogn. 1995, 33, 65–69. [Google Scholar] [CrossRef]
- Sadique, J.; Al-Rqobahs, W.; Bughaith, A. The bioactivity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia 1989, 60, 525–532. [Google Scholar]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines 2018, 6, 107. [Google Scholar] [CrossRef] [PubMed]
Sample | IC50 (µg/mL or µM) |
---|---|
Spring (S) | 26.60 ± 2.00 b |
Summer (M) | 49.40 ± 1.80 a |
Autumn (A) | 26.50 ± 1.50 b |
Winter (W) | 30.20 ± 2.00 b |
Chrysin | 56.20 ± 1.10 a |
Galangin | 52.40 ± 0.50 a |
Pinocembrin | 56.16 ± 2.30 a |
Sample | IC50 (µg/mL or µM) |
---|---|
Spring (S) | 3.35 ± 0.30 a |
Summer (M) | 8.68 ± 0.01 d |
Autumn (A) | 4.59 ± 0.02 b |
Winter (W) | 5.80 ± 0.04 c |
Chrysin | 5.80 ± 0.20 |
Galangin | >10 |
Pinocembrin | >10 |
Concentration (µg/mL) | Spring | Summer | Autumn | Winter | Diclofenac Sodium |
Inhibition (%) | |||||
50 | 95.56 ± 1.62 a | 93.40 ± 3.75 a | 100.00 ± 2.94 b | 93.89 ± 3.49 a | 111.45 ± 1.47 c |
25 | 86.26 ± 0.00 b | 91.03 ± 1.88 c | 93.12 ± 3.96 d | 89.69 ± 1.61 c | 83.33 ± 2.94 a |
12.5 | 86.20 ± 0.00 a | 90.35 ± 1.61 b | 91.04 ± 2.20 b | 87.02 ± 1.32 a | 85.41 ± 5.89 a |
6.25 | 81.67 ± 3.23 a | 83.02 ± 1.90 a | 93.89 ± 1.22 c | 89.31 ± 1.32 b | 79.16 ± 0.98 a |
Concentration (µM) | Chrysin | Galangin | Pinocembrin | ||
Inhibition (%) | |||||
20 | 76.20 ± 1.18 c | 60.33 ± 0.16 b | 57.36 ± 1.43 a | ||
10 | 38.04 ± 1.58 c | 25.84 ± 1.69 a | 35.02 ± 1.43 b | ||
5 | 28.36 ± 1.52 b | 12.5 ± 1.35 a | 31.97 ± 1.43 c | ||
2.5 | 26.34 ± 1.49 c | 11.16 ± 1.13 a | 15.14 ± 0.74 b |
Compound | Concentration (µg/mg) | |||
---|---|---|---|---|
Spring | Summer | Autumn | Winter | |
Pinocembrin | 12.80 ± 2.30 | 45.80 ± 3.80 | 19.10 ± 3.00 | 30.10 ± 0.20 |
Pinobanksin-3-O-acetate | ˂5.00 | 24.90 ± 0.50 | 9.10 ± 0.10 | 13.70 ± 1.50 |
Chrysin | ˂5.00 | ˂5.00 | ˂5.00 | ˂5.00 |
Galangin | ˂5.00 | ˂5.00 | ˂5.00 | 7.40 ± 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez-Encinas, M.A.; Valencia, D.; Ortega-García, J.; Carvajal-Millan, E.; Díaz-Ríos, J.C.; Mendez-Pfeiffer, P.; Soto-Bracamontes, C.M.; Garibay-Escobar, A.; Alday, E.; Velazquez, C. Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules 2023, 28, 4496. https://doi.org/10.3390/molecules28114496
Mendez-Encinas MA, Valencia D, Ortega-García J, Carvajal-Millan E, Díaz-Ríos JC, Mendez-Pfeiffer P, Soto-Bracamontes CM, Garibay-Escobar A, Alday E, Velazquez C. Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules. 2023; 28(11):4496. https://doi.org/10.3390/molecules28114496
Chicago/Turabian StyleMendez-Encinas, Mayra A., Dora Valencia, Jesús Ortega-García, Elizabeth Carvajal-Millan, José C. Díaz-Ríos, Pablo Mendez-Pfeiffer, Cinthia M. Soto-Bracamontes, Adriana Garibay-Escobar, Efrain Alday, and Carlos Velazquez. 2023. "Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents" Molecules 28, no. 11: 4496. https://doi.org/10.3390/molecules28114496
APA StyleMendez-Encinas, M. A., Valencia, D., Ortega-García, J., Carvajal-Millan, E., Díaz-Ríos, J. C., Mendez-Pfeiffer, P., Soto-Bracamontes, C. M., Garibay-Escobar, A., Alday, E., & Velazquez, C. (2023). Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules, 28(11), 4496. https://doi.org/10.3390/molecules28114496