Morphological and Compositional Analysis on Thermal Deposition of Supercritical Aviation Kerosene in Micro Channels
Abstract
:1. Introduction
2. Results
2.1. Morphology of Deposits
2.1.1. Differences in the Internal Surface of a Reaction Tube after Heat Transfer of Aviation Kerosene with High DOC
2.1.2. Differences in Internal Surface of the Reaction Tube after Heat Transfer of Aviation Kerosene with Low DOC
2.1.3. Element Analysis of the Internal Surface of the Reaction Tube
2.2. Raman Spectroscopy of Deposits Structure
2.3. Quantitative Analysis of Deposition
2.4. Analysis of Deposition Structure Produced at Higher Temperature
3. Materials and Methods
3.1. Materials
3.2. Simulating Fuel Flow and Heat Transfer
3.2.1. Preparation of Aviation Kerosene with Different DOCs
3.2.2. Thermal Deposition of RP-3 Fuel
3.3. Structural and Morphological Analysis of Deposits on the Internal Surface of Reaction Tubes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Petley, D.H.; Jones, S.C. Thermal management for a Mach 5 cruise aircraft using endothermic fuel. J. Aircr. 1992, 29, 384–389. [Google Scholar] [CrossRef]
- Maurice, L.Q.; Lander, H.; Edwards, T.; Harrison, W.E. Advanced aviation fuels: A look ahead via a historical perspective. Fuel 2001, 80, 747–756. [Google Scholar] [CrossRef]
- Qin, J.; Bao, W.; Zhang, S.L.; Song, Y.F.; Yu, D.R. Thermodynamic analysis for a chemically recuperated scramjet. Sci. China Technol. Sci. 2012, 55, 3204–3212. [Google Scholar] [CrossRef]
- Edwards, T. Liquid fuels and propellants for aerospace propulsion: 1903–2003. J. Propuls. Power 2003, 19, 1089–1107. [Google Scholar] [CrossRef]
- Edwards, T.; Zabarnick, S. Supercritical fuel deposition mechanisms. Ind. Eng. Chem. Res. 1993, 32, 3117–3122. [Google Scholar] [CrossRef]
- Sharma, P.; Bhattacharya, A.; Basu, S. Formation of hollow and solid carbon spheres in thermally stressed jet fuel in the low temperature autoxidation regime. Chem. Eng. Sci. 2019, 206, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.H.; Pan, L.; Wang, X.Y.; Xie, J.W.; Gong, S.; Fang, Y.M.; Liu, H.; Zhang, X.W.; Zou, J.J. Mechanistic insights into the thermal oxidative deposition of C10 hydrocarbon fuels. Fuel 2020, 285, 119136. [Google Scholar] [CrossRef]
- Liu, G.Z.; Wang, X.Q.; Zhang, X.W. Pyrolytic depositions of hydrocarbon aviation fuels in regenerative cooling channels. J. Anal. Appl. Pyrolysis 2013, 104, 384–395. [Google Scholar] [CrossRef]
- Han, Z.X.; Zhou, W.X.; Zan, H.; Jia, Z.J.; Martynenko, S.; Yanovskiy, L. Numerical investigation on influences of inlet flow pattern on RP-3 thermal oxidation deposition. Fuel 2021, 303, 121314. [Google Scholar] [CrossRef]
- Dan, L.; Fang, W.J.; Yan, X.; Guo, Y.S.; Lin, R.S. Spectroscopic studies on thermal-oxidation stability of hydrocarbon fuels. Fuel 2008, 87, 3286–3291. [Google Scholar]
- Yao, X.X.; Pang, W.Q.; Li, T.; Shentu, J.T.; Li, Z.R.; Zhu, Q.; Li, X.Y. High-pressure-limit and pressure-dependent rate rules for unimolecular reactions related to hydroperoxy alkyl radicals in normal alkyl cyclohexane combustion. 1. concerted HO2 elimination reaction class and beta-scission reaction class. J. Phys. Chem. A 2021, 125, 8942–8958. [Google Scholar] [CrossRef]
- Yao, X.X.; Pang, W.Q.; Li, T.; Shentu, J.T.; Li, Z.R.; Zhu, Q.; Li, X.Y. High-pressure-limit and pressure-dependent rate rules for unimolecular reactions related to hydroperoxy alkyl radicals in normal-alkyl cyclohexane combustion. 2. cyclization reaction class. J. Phys. Chem. A 2021, 125, 8959–8977. [Google Scholar] [CrossRef] [PubMed]
- Alborzi, E.; Gadsby, P.; Ismail, M.S.; Sheikhansari, A.; Dwyer, M.R.; Meijer, A.J.H.M.; Blakey, S.G.; Pourkashanian, M. Comparative study of the effect of fuel deoxygenation and polar species removal on jet fuel surface deposition. Energy Fuels 2019, 33, 1825–1836. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.Y.; Dong, N.; Ren, Z.Y.; Zhang, B.; Hu, S.L. Cooling and coke deposition of hydrocarbon fuel with catalytic steam reforming. Fuel Process. Technol. 2014, 128, 128–133. [Google Scholar] [CrossRef]
- Jia, T.H.; Zhang, X.W.; Liu, Y.; Gong, S.; Deng, C.; Pan, L.; Zou, J.J. A comprehensive review of the thermal oxidation stability of jet fuels. Chem. Eng. Sci. 2020, 229, 116157. [Google Scholar] [CrossRef]
- Petrukhina, N.N.; Maksimov, A.A. Physicochemical properties and performance characteristics of naphthenoaromatic jet and diesel fuels obtained by hydrotreating of highly aromatic fractions. Pet. Chem. 2018, 58, 347–374. [Google Scholar] [CrossRef]
- Pei, X.-Y.; Hou, L.-Y. Effect of dissolved oxygen concentration on coke deposition of kerosene. Fuel Process. Technol. 2016, 142, 86–91. [Google Scholar] [CrossRef]
- Pei, X.Y.; Hou, L.Y.; Roberts, W.L. Experimental and numerical study on oxidation deposition properties of aviation kerosene. Energy Fuels 2018, 32, 7444–7450. [Google Scholar] [CrossRef]
- Zabarnick, S.Y.; West, Z.J.; Arts, A.; Griesenbrock, M.; Wrzesinski, P. Studies of the impact of fuel deoxygenation on the formation of autoxidative deposits. Energy Fuels 2020, 34, 13814–13821. [Google Scholar] [CrossRef]
- Doungthip, T.; Ervin, J.S.; Zabarnick, S.; Williams, T.F. Simulation of the effect of metal-surface catalysis on the thermal oxidation of jet fuel. Energy Fuels 2004, 18, 425–437. [Google Scholar] [CrossRef]
- Balster, L.M.; Zabarnick, S.; Striebich, R.C.; Shafer, L.M.; West, Z.J. Analysis of polar species in jet fuel and determination of their role in autoxidative deposit formation. Energy Fuels 2006, 20, 2564–2571. [Google Scholar] [CrossRef]
- Jia, T.H.; Gong, S.; Pan, L.; Deng, C.; Zou, J.J.; Zhang, X.W. Impact of deep hydrogenation on jet fuel oxidation and deposition. Fuel 2019, 264, 116843. [Google Scholar] [CrossRef]
- Zabarnick, S.; West, Z.J.; Shafer, L.M.; Mueller, S.S.; Striebich, R.C.; Wrzesinski, P.J. Studies of the role of heteroatomic species in jet fuel thermal stability: Model fuel mixtures and real fuels. Energy Fuels 2019, 33, 8557–8565. [Google Scholar] [CrossRef]
- Wu, H.; Deng, H.W.; Xu, G.Q.; Xu, G.Q.; Ju, Y.C.; Sun, J.N. Effects of flow orientations on the coking characteristic of jet fuel RP-3. J. Aerosp. Power 2011, 26, 1341–1345. [Google Scholar]
- Tao, Z.; Fu, Y.C.; Xu, G.Q.; Deng, H.W.; Jia, Z.X. Experimental study on influences of physical factors to supercritical rp-3 surface and liquid-space thermal oxidation coking. Energy Fuels 2014, 28, 6098–6106. [Google Scholar] [CrossRef]
- Han, Z.X.; Zhou, W.X.; Zhao, X.D.; Zhang, M. Thermal oxidation deposition characteristics of RP-3 kerosene in serpentine tubes under supercritical pressure. Fuel 2021, 310, 122369. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Gong, S.Y.; Wang, L.; Liu, G.Z. Experimental investigation and modeling of thermal oxidation deposition of RP-3 jet fuel under high Reynolds number. Fuel 2021, 311, 122553. [Google Scholar] [CrossRef]
- Kabana, C.G.; Botha, S.; Schmucker, C.; Woolard, C.; Beaver, B. Oxidative stability of middle distillate fuels. Part 1: Exploring the soluble macromo-lecular oxidatively reactive species (SMORS) mechanism with jet fuels. Energy Fuels 2015, 25, 5145–5157. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Guo, Y.S.; Fang, W.J.; He, G.J. A sulfur-rich segmental hyperbranched polymer as a coking inhibitor for endothermic hydrocarbon fuels. Fuel 2020, 287, 119477. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Reddy, B.R.; Zhou, J. Preparation of coal-based carbon nanotubes using catalytical pyrolysis: A brief review. Fuel Process. Technol. 2022, 229, 107171. [Google Scholar] [CrossRef]
Sample Name | RP-3 |
---|---|
Denstity (g/cm3) | 0.811 |
Dynamic viscosity (mm2/s) | 2.022 |
Closed-cup flash point (°C) | 44.5 |
Total acid value (mg KOH/g) | 0.0038 |
Aromatics content (v/v %) | 9.4 |
Olefin content (v/v %) | 1.4 |
Dissolved oxygen content at atmospheric conditions (ppm) | 9.2 |
T501 content (mg/L) | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, A.; Ye, C.; Yao, C.; Zhang, L.; Mi, J.; Fang, W. Morphological and Compositional Analysis on Thermal Deposition of Supercritical Aviation Kerosene in Micro Channels. Molecules 2023, 28, 4508. https://doi.org/10.3390/molecules28114508
Sun A, Ye C, Yao C, Zhang L, Mi J, Fang W. Morphological and Compositional Analysis on Thermal Deposition of Supercritical Aviation Kerosene in Micro Channels. Molecules. 2023; 28(11):4508. https://doi.org/10.3390/molecules28114508
Chicago/Turabian StyleSun, Ao, Cui Ye, Chenyang Yao, Lifeng Zhang, Ji Mi, and Wenjun Fang. 2023. "Morphological and Compositional Analysis on Thermal Deposition of Supercritical Aviation Kerosene in Micro Channels" Molecules 28, no. 11: 4508. https://doi.org/10.3390/molecules28114508
APA StyleSun, A., Ye, C., Yao, C., Zhang, L., Mi, J., & Fang, W. (2023). Morphological and Compositional Analysis on Thermal Deposition of Supercritical Aviation Kerosene in Micro Channels. Molecules, 28(11), 4508. https://doi.org/10.3390/molecules28114508