Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants
Abstract
:1. Introduction
2. Results
2.1. Properties of the Investigated Acyclic Monoterpenes
2.2. Cytotoxicity of the Investigated Acyclic Monoterpenes
2.3. Predicted Pharmacokinetics and Toxicological Effects of the Investigated Acyclic Monoterpenes
2.4. Molecular Modeling Regarding the Interactions of Investigated Monoterpenes with Human Cytochrome 2B6
3. Discussion
3.1. Cytotoxicity of the Investigated Acyclic Monoterpenes
3.2. Predicted Pharmacokinetics and Toxicological Effects of the Investigated Acyclic Monoterpenes
3.3. Interactions of Investigated Monoterpenes with Human Cytochrome 2B6
4. Materials and Methods
4.1. Materials
4.2. Cell-Line Cytotoxicity Prediction
4.3. Prediction of Biological and/or Toxicological Effects of Acyclic Monoterpenes in Humans
4.4. Molecular Docking Study Regarding the Interactions of Acyclic Monoterpenes with Human Cytochrome 2B6
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- De Groot, A.C.; Schmidt, E. Essential oils, Part III: Chemical Composition. Dermatitis 2016, 27, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Volcho, K.P.; Anikeev, V.I. Environmentally benign transformations of monoterpenes and monoterpenoids in supercritical fluids. In Supercritical Fluid Technology for Energy and Environmental Applications; Anikeev, V., Fan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 69–87. [Google Scholar]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Kasprzak-Drozd, K.; Oniszczuk, A.; Borowicz-Reutt, K. Activity of selected group of monoterpenes in alzheimer’s disease symptoms in experimental model studies—A non-systematic review. Int. J. Mol. Sci. 2021, 22, 7366. [Google Scholar] [CrossRef] [PubMed]
- Noriega, P. Terpenes in Essential Oils: Bioactivity and applications. In Terpenes and Terpenoids; Perveen, S., Al-Taweel, A.M., Eds.; IntechOpen: London, UK, 2020; pp. 1–14. [Google Scholar]
- Kozioł, A.; Stryjewska, A.; Librowski, T.; Sałat, K.; Gaweł, M.; Moniczewski, A.; Lochyński, S. An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini Rev. Med. Chem. 2014, 14, 1156–1168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-D.; Jiang, L.-L.; Li, H.-Y.; Yan, P.-F.; Zhang, Y.-L. Chemical components and pharmacological activities of terpene natural products from the genus Paeonia. Molecules 2016, 21, 1362. [Google Scholar] [CrossRef]
- Tetali, S.D. Terpenes and isoprenoids: A wealth of compounds for global use. Planta 2019, 249, 1–8. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. Chem. Biodivers. 2019, 16, e1900434. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef]
- Agus, H.H. Terpene toxicity and oxidative stress. In Toxicology—Oxidative Stress and Dietary Antioxidants; Patel, V.B., Preedy, V.R., Eds.; Academic Press: Amsterdam, The Netherlands, 2021; pp. 33–42. [Google Scholar]
- Stojanović, N.M.; Randjelović, P.J.; Mladenović, M.Z.; Ilić, I.R.; Petrović, V.; Stojiljković, N.; Ilić, S.; Radulović, N.S. Toxic essential oils, part VI: Acute oral toxicity of lemon balm (Melissa officinalis L.) essential oil in BALB/c mice. Food Chem. Toxicol 2019, 133, 110794. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Lima, S.A.C.; Yousef, I.; Reis, S. Evaluating the skin interactions and permeation of alginate/fucoidan hydrogels per se and associated with different essential oils. Pharmaceutics 2023, 15, 190. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Chan, C.K.Y.; Gegechkori, V.; Morton, D.W. Models for skin and brain penetration of major components from essential oils used in aromatherapy for dementia patients. J. Biomol. Struct. Dyn. 2020, 38, 2402–2411. [Google Scholar] [CrossRef]
- Basketter, D.A.; Wright, Z.M.; Colson, N.R.; Patlewicz, G.Y.; Pease, C.K. Investigation of the skin sensitizing activity of linalool. Contact Dermat. 2002, 47, 161–164. [Google Scholar] [CrossRef]
- Zehetner, P.; Höferl, M.; Buchbauer, G. Essential oil components and cytochrome P450 enzymes: A review. Flavour. Fragr. J. 2019, 34, 223–240. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Höferl, M.; Krist, S.; Buchbauer, G. Chirality influences the effects of linalool on physiological parameters of stress. Planta Med. 2006, 72, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Machado, T.Q.; da Fonseca, A.C.C.; Duarte, A.B.S.; Robbs, B.K.; de Sousa, D.P. A narrative review of the antitumor activity of monoterpenes from essential oils: An update. Biomed Res. Int. 2022, 2022, 6317201. [Google Scholar] [CrossRef]
- Medeiros, K.A.A.L.; Dos Santos, J.R.; Melo, T.C.S.; de Souza, M.F.; Santos, L.G.; de Gois, A.M.; Cintra, R.R.; Lins, L.C.R.F.; Ribeiro, A.M.; Marchioro, M. Depressant effect of geraniol on the central nervous system of rats: Behavior and ECoG power spectra. Biomed. J. 2018, 41, 298–305. [Google Scholar] [CrossRef]
- Api, A.M.; Belmonte, F.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A., Jr.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; et al. RIFM fragrance ingredient safety assessment, myrcene, CAS Registry Number 123-35-3. Food Chem. Toxicol. 2020, 144, 111631. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Bhatia, S.; Bruze, M.; Calow, P.; Dagli, M.L.; Dekant, W.; Fryer, A.D.; Kromidas, L.; La Cava, S.; et al. RIFM fragrance ingredient safety assessment, Linalool, CAS registry number 78-70-6. Food Chem. Toxicol. 2015, 82, S29–S38. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Bhatia, S.; Bruze, M.; Calow, P.; Dagli, M.L.; Dekant, W.; Fryer, A.D.; Kromidas, L.; La Cava, S.; et al. RIFM fragrance ingredient safety assessment, Linalyl acetate, CAS Registry Number 115-95-7. Food Chem. Toxicol. 2015, 82, S39–S48. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, citral, CAS Registry Number 5392-40-5. Food Chem. Toxicol. 2020, 141, 111339. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belmonte, F.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; et al. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-1,3,6-octatriene, CAS registry number 13877-91-3. Food Chem. Toxicol. 2021, 149, 111989. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, citronellal, CAS registry number 106-23-0. Food Chem. Toxicol. 2021, 149, 111991. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; et al. RIFM fragrance ingredient safety assessment, 3,7-dimethyloct-1-en-3-ol, CAS Registry Number 18479-49-7. Food Chem. Toxicol. 2022, 163, 113047. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; et al. RIFM fragrance ingredient safety assessment, citronellyl acetate, CAS Registry Number 150-84-5. Food Chem. Toxicol. 2022, 159, 112710. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Chon, H.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, geraniol, CAS registry number 106-24-1. Food Chem. Toxicol. 2022, 167, 113341. [Google Scholar] [CrossRef]
- Di Sotto, A.; Mazzanti, G.; Carbone, F.; Hrelia, P.; Maffei, F. Genotoxicity of lavender oil, linalyl acetate, and linalool on human lymphocytes in vitro. Environ. Mol. Mutagen. 2011, 52, 69–71. [Google Scholar] [CrossRef]
- Seo, K.A.; Kim, H.; Ku, H.Y.; Ahn, H.J.; Park, S.J.; Bae, S.K.; Shin, J.G.; Liu, K.H. The monoterpenoids citral and geraniol are moderate inhibitors of CYP2B6 hydroxylase activity. Chem. Biol. Interact. 2008, 174, 141–146. [Google Scholar] [CrossRef]
- Zanger, U.M.; Klein, K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): Advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet. 2013, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Langmia, I.M.; Just, K.S.; Yamoune, S.; Brockmöller, J.; Masimirembwa, C.; Stingl, J.C. CYP2B6 functional variability in drug metabolism and exposure across populations-implication for drug safety, dosing, and individualized therapy. Front. Genet. 2021, 12, 692234. [Google Scholar] [CrossRef]
- Mączka, W.; Wińska, K.; Grabarczyk, M. One hundred faces of geraniol. Molecules 2020, 25, 3303. [Google Scholar] [CrossRef]
- Liao, P.-C.; Yang, T.-S.; Chou, J.-C.; Chen, J.; Lee, S.-C.; Kuo, Y.-H.; Ho, C.-L.; Chao, L.K.-P. Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. J. Funct. Foods 2015, 19, 248–258. [Google Scholar] [CrossRef]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-what are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef] [Green Version]
- Lagunin, A.A.; Rudik, A.V.; Pogodin, P.V.; Savosina, P.I.; Tarasova, O.A.; Dmitriev, A.V.; Ivanov, S.M.; Biziukova, N.Y.; Druzhilovskiy, D.S.; Filimonov, D.A.; et al. CLC-Pred 2.0: A freely available web application for in silico prediction of human cell line cytotoxicity and molecular mechanisms of action for druglike compounds. Int. J. Mol. Sci. 2023, 24, 1689. [Google Scholar] [CrossRef]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [Green Version]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Poroikov, V.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Druzhilovskiy, D.S.; Stolbov, L.A.; Dmitriev, A.V.; Tarasova, O.A.; Ivanov, S.M.; Pogodin, P.V. Computer-aided prediction of biological activity spectra for organic compounds: The possibilities and limitations. Russ. Chem. Bull. 2019, 68, 2143–2154. [Google Scholar] [CrossRef]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.-P.; Cao, D.-S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.C.; Alves, V.M.; Muratov, E.N.; Strickland, J.; Kleinstreuer, N.; Trospsha, A.; Andrade, C.H. Pred-Skin: A fast and reliable web application to assess skin sensitization effect of chemicals. J. Chem. Inf. Model. 2017, 57, 1013–1017. [Google Scholar] [CrossRef]
- Alves, V.M.; Capuzzi, S.J.; Braga, R.C.; Borba, J.V.B.; Silva, A.C.; Luechtefeld, T.; Hartung, T.; Andrade, C.H.; Muratov, E.N.; Tropsha, A. A perspective and a new integrated computational strategy for skin sensitization assessment. ACS Sustain. Chem. Eng. 2018, 6, 2845–2859. [Google Scholar] [CrossRef]
- Craciun, D.; Modra, D.; Isvoran, A. ADME-Tox profiles of some food additives and pesticides. In Proceedings of the AIP Conference TIM14 Physics Conference-Pphysics without Frontiers, Timisoara, Romania, 20–22 November 2014; Volume 1694, p. 040007. [Google Scholar]
- Alves, V.M.; Muratov, E.N.; Zakharov, A.; Muratov, N.N.; Andrade, C.H.; Tropsha, A. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem. Toxicol. 2018, 112, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Gridan, I.M.; Ciorsac, A.A.; Isvoran, A. Prediction of ADME-Tox properties and toxicological endpoints of triazole fungicides used for cereals protection. ADMET DMPK 2019, 7, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Roman, D.L.; Voiculescu, D.I.; Matica, M.A.; Baerle, V.; Filimon, M.N.; Ostafe, V.; Isvoran, A. Assessment of the effects of triticonazole on soil and human health. Molecules 2022, 27, 6554. [Google Scholar] [CrossRef]
- Voiculescu, D.I.; Ostafe, V.; Isvoran, A. Computational assessment of the pharmacokinetics and toxicity of the intensive sweeteners. Farmacia 2021, 69, 1032–1041. [Google Scholar] [CrossRef]
- Isvoran, A.; Ciorsac, A.; Ostafe, V. ADME-Tox profiling of some low molecular weight water soluble chitosan derivatives. ADMET DMPK 2017, 5, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.; Roman, D.L.; Ostafe, V.; Isvoran, A. Computational assessment of biological effects of methyl-, ethyl-, propyl- and butyl-parabens. JSM Bioinform. Genom. Proteom. 2018, 3, 1029. [Google Scholar]
- Roman, M.; Roman, D.L.; Ostafe, V.; Ciorsac, A.; Isvoran, A. Computational assessment of pharmacokinetics and biological effects of some anabolic and androgenic steroids. Pharm. Res. 2018, 35, 41. [Google Scholar] [CrossRef]
- Roman, D.L.; Roman, M.; Som, C.; Schmutz, M.; Hernandez, E.; Wick, P.; Casalini, T.; Perale, G.; Ostafe, V.; Isvoran, A. Computational assessment of the pharmacological profiles of degradation products of chitosan. Front. Bioeng. Biotechnol. 2019, 7, 214. [Google Scholar] [CrossRef]
- Roman, D.L.; Isvoran, A.; Filip, M.; Ostafe, V.; Zinn, M. In silico assessment of pharmacological profile of low molecular weight oligo-hydroxyalkanoates. Front. Bioeng. Biotechnol. 2020, 8, 584010. [Google Scholar] [CrossRef]
- Dascalu, D.; Roman, D.L.; Filip, M.; Ciorsac, A.; Ostafe, V.; Isvoran, A. Solubility and ADMET profiles of short oligomers of lactic acid. ADMET DMPK 2020, 8, 425–436. [Google Scholar]
- Alves, V.M.; Borba, J.V.B.; Braga, R.C.; Korn, D.R.; Kleinstreuer, N.; Causey, K.; Tropsha, A.; Rua, D.; Muratov, E.N. PreS/MD: Predictor of sensitization hazard for chemical substances released from medical devices. Toxicol. Sci. 2022, 189, 250–259. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [Green Version]
- Grosdidier, A.; Zoete, V.; Michielin, O. Fast docking using the CHARMM force field with EADock DSS. J. Comput. Chem. 2011, 32, 2149–2159. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.B.; Wilderman, P.R.; Liu, J.; Jang, H.-H.; Zhang, Q.; Stout, C.D.; Halpert, J.R. Structural and biophysical characterization of human cytochromes p450 2b6 and 2a6 bound to volatile hydrocarbons: Analysis and comparison. Mol. Pharmacol. 2015, 87, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 13, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Roman, D.L.; Ostafe, V.; Isvoran, A. Computational assessment of chito-oligosaccharides interactions with plasma proteins. Mar. Drugs 2021, 19, 120. [Google Scholar] [CrossRef]
- Matica, M.A.; Roman, D.L.; Ostafe, V.; Isvoran, A. Deeper inside the use of chitooligosaccharides in wound healing process: A computational approach. J. Serb. Chem. Soc. 2023, 88, 251–265. [Google Scholar] [CrossRef]
- Voiculescu, D.I.; Roman, D.L.; Ostafe, V.; Isvoran, A. A cheminformatics study regarding the human health risks assessment of the stereoisomers of difenoconazole. Molecules 2022, 27, 4682. [Google Scholar] [CrossRef] [PubMed]
Compound | Cytotoxicity against Cell Lines | Pa (Probability to Be Active) | IAP (Invariant Accuracy of Prediction) |
---|---|---|---|
beta-ocimene | cisplatin-resistant ovarian carcinoma | 0.883 | 0.838 |
beta-myrcene | cisplatin-resistant ovarian carcinoma | 0.883 | 0.838 |
geranial (citral) | cisplatin-resistant ovarian carcinoma | 0.898 | 0.838 |
astrocytoma | 0.724 | 0.883 | |
non-small cell lung carcinoma | 0.712 | 0.881 | |
citronellal | cisplatin-resistant ovarian carcinoma | 0.864 | 0.838 |
geraniol | cisplatin-resistant ovarian carcinoma | 0.918 | 0.838 |
HTLV-I-infected human T-cell | 0.861 | 0.964 | |
linalool | cisplatin-resistant ovarian carcinoma | 0.901 | 0.838 |
citronellol | cisplatin-resistant ovarian carcinoma | 0.903 | 0.838 |
linalyl acetate | cisplatin-resistant ovarian carcinoma | 0.929 | 0.838 |
citronellyl acetate | cisplatin-resistant ovarian carcinoma | 0.922 | 0.838 |
Compound/ Side Effect | Skin Irritation | Eye Irritation | Contact Dermatitis | Hyperglycemic | Embryotoxic | Hepatotoxic | Hematotoxic | Hypomagnesemia | Shivering | Twitching | Anemia | Toxic through Respiration | Dyspnea | Ataxia | Toxic Gastrointestinal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
beta- ocimene | |||||||||||||||
beta-myrcene | |||||||||||||||
geranial | |||||||||||||||
citronellal | |||||||||||||||
geraniol | |||||||||||||||
linalool | |||||||||||||||
citronellol | |||||||||||||||
linalyl acetate | |||||||||||||||
citronellyl acetate |
Compound/ Biological Activity | BBB | PPB (%) | hERG | H-HT | Mut | Skin Sen | Carcino | EI | Respiratory Toxicity |
---|---|---|---|---|---|---|---|---|---|
beta-ocimene | 0.944 | 95.67 | 0.009 | 0.951 | 0.834 | 0.713 | 0.838 | 0.989 | 0.958 |
beta-myrcene | 0.852 | 89.87 | 0.009 | 0.610 | 0.025 | 0.940 | 0.802 | 0.986 | 0.935 |
geranial | 0.918 | 92.92 | 0.014 | 0.535 | 0.427 | 0.928 | 0.880 | 0.988 | 0.931 |
citronellal | 0.990 | 68.87 | 0.012 | 0.508 | 0.024 | 0.961 | 0.491 | 0.987 | 0.859 |
geraniol | 0.998 | 90.83 | 0.011 | 0.782 | 0.003 | 0.951 | 0.061 | 0.986 | 0.023 |
linalool | 0.953 | 85.37 | 0.019 | 0.338 | 0.006 | 0.631 | 0.236 | 0.988 | 0.039 |
citronellol | 0.948 | 93.48 | 0.018 | 0.573 | 0.004 | 0.857 | 0.224 | 0.985 | 0.045 |
linalyl acetate | 0.899 | 82.27 | 0.018 | 0.667 | 0.006 | 0.877 | 0.297 | 0.970 | 0.073 |
citronellyl acetate | 0.842 | 92.74 | 0.014 | 0.384 | 0.006 | 0.931 | 0.220 | 0.983 | 0.067 |
Compound | Beta-Ocimene | Beta-Myrcene | Geranial | Citronellal | Geraniol | Linalool | Citronellol | Citronellyl Acetate | Linalyl Acetate |
---|---|---|---|---|---|---|---|---|---|
ΔG (kcal/mol) | −6.68 | −6.37 | −6.84 | −6.80 | −6.87 | −6.75 | −6.84 | −7.25 | −6.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dascalu, D.; Isvoran, A.; Ianovici, N. Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules 2023, 28, 4640. https://doi.org/10.3390/molecules28124640
Dascalu D, Isvoran A, Ianovici N. Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules. 2023; 28(12):4640. https://doi.org/10.3390/molecules28124640
Chicago/Turabian StyleDascalu, Daniela, Adriana Isvoran, and Nicoleta Ianovici. 2023. "Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants" Molecules 28, no. 12: 4640. https://doi.org/10.3390/molecules28124640
APA StyleDascalu, D., Isvoran, A., & Ianovici, N. (2023). Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules, 28(12), 4640. https://doi.org/10.3390/molecules28124640