Design, Synthesis, and Evaluation of the COX-2 Inhibitory Activities of New 1,3-Dihydro-2H-indolin-2-one Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Chemistry
3.2. General Procedure for the Synthesis of Oxindole Analogues Incorporating α, β-unsaturated Ketones (4a-4x)
- Compound 4a: Yield: 35.2%, yellow solid, m.p. 131.2–132.1 °C; 1H NMR (600 MHz, CDCl3) δ 8.61 (s, 1H), 8.41 (s, 1H), 8.39 (d, J = 8.0 Hz, 1H), 7.76 (s, 1H), 7.74 (s, 1H), 7.71 (s, 1H), 7.65 (s, 1H), 7.55 (d, J = 0.8 Hz, 1H), 2.77 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.92, 165.44, 139.10, 138.95, 134.91, 133.37, 131.70 (q, J = 32.5 Hz), 131.06 (q, J = 32.8 Hz), 130.95, 129.02, 128.80 (q, J = 3.9 Hz), 127.84 (q, J = 3.7 Hz), 127.32, 123.80 (q, J = 272.5 Hz), 121.88 (q, J = 4.1 Hz), 119.08, 119.08, 114.03 (q, J = 4.1 Hz), 26.88 ppm; ESI-HRMS m/z calculated for C19H11F6NO2Na [M + Na]+ 422.05927, found 422.05862.
- Compound 4b: Yield: 36.1%, yellow solid, m.p. 91.3–92.8 °C; 1H NMR (600 MHz, CDCl3) δ 8.65 (s, 1H), 8.01 (s, 1H), 7.90 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.36–7.30 (m, 1H), 2.80 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.67, 167.44, 140.66, 139.06, 134.64, 132.30 (q, J = 32.6 Hz), 132.17, 131.68 (q, J = 32.9 Hz), 129.68, 127.03 (q, J = 3.7 Hz), 126.51, 125.91 (q, J = 3.7 Hz), 124.49 (d, J = 8.5 Hz), 124.30, 122.68 (d, J = 8.7 Hz), 122.14, 121.62 (q, J = 4.0 Hz), 114.09 (q, J = 3.9 Hz), 26.77 ppm; ESI-HRMS m/z calculated for C19H11F6NO2Na [M + Na]+ 422.05917, found 422.05862.
- Compound 4c: Yield: 34.2%, yellow amorphous solid, m.p. 139.1–142.8 °C; 1H NMR (600 MHz, CDCl3) δ 8.31 (d, J = 8.8 Hz, 1H), 7.92 (s, 1H), 7.90 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 2.1 Hz, 1H), 7.34 (dd, J = 2.2, 8.8 Hz, 1H), 2.78 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.58, 167.58, 138.99, 137.70, 134.66, 132.11, 131.66 (q, J = 32.3 Hz), 130.61, 130.24, 129.65, 126.91 (q, J = 3.7 Hz), 126.61, 125.97 (q, J = 3.8 Hz), 122.38 (d, J = 97.9 Hz), 122.06, 118.14, 118.13, 26.82 ppm; ESI-HRMS m/z calculated for C18H11ClF3NO2Na [M + Na]+ 388.03226, found 388.03226.
- Compound 4d: Yield: 40.2%, yellow amorphous solid, m.p. 119.4–121.7 °C; 1H NMR (600 MHz, CDCl3) δ 8.40 (d, J = 2.0 Hz, 1H), 8.07 (s, 2H), 7.99 (s, 1H), 7.84 (s, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.06 (dd, J = 2.0, 8.4 Hz, 1H), 2.77 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.43, 167.37, 141.65, 137.35, 136.33, 133.88, 132.59 (q, J = 33.5, 34.0 Hz), 129.02, 129.00, 128.07, 125.46 (d, J = 45.0 Hz), 124.99, 123.80, 123.35 (p, J = 3.7 Hz), 122.55, 121.99, 118.44 (q, J = 197.3 Hz), 117.78, 26.74 ppm; ESI-HRMS m/z calculated for C19H10ClF6NO2Na [M + Na]+ 456.01996, found 456.01965.
- Compound 4e: Yield: 34.4%, red solid, m.p. 165.9–166.2 °C. 1H NMR (600 MHz, CDCl3) δ 8.15 (d, J = 8.7 Hz, 1H), 7.92 (dq, J = 1.0, 2.0 Hz, 1H), 7.81 (d, J = 9.5 Hz, 2H), 7.76–7.70 (m, 1H), 7.64 (t, J = 7.9 Hz, 1H), 6.87 (d, J = 2.4 Hz, 1H), 6.70 (dd, J = 2.5, 8.7 Hz, 1H), 3.57 (s, 2H), 2.75 (s, 3H) ppm; 13C NMR (150 MHz, DMSO) δ 165.56, 163.61, 138.53, 130.86, 130.60, 128.52, 127.53, 126.54 (q, J = 32.9 Hz), 124.66, 124.65, 123.30, 121.50 (q, J = 3.8 Hz), 121.14 (q, J = 3.7 Hz), 117.40, 113.21, 112.66, 103.70, 21.95 ppm; ESI-HRMS m/z calculated for C18H13F3N2O2Na [M + Na]+ 456.02078, found 456.01965.
- Compound 4f: Yield: 39.5%, yellow amorphous solid, m.p. 163.4–164.0 °C; 1H NMR (600 MHz, CDCl3) δ 8.55 (d, J = 1.7 Hz, 2H), 8.36 (d, J = 1.9 Hz, 1H), 7.96 (s, 1H), 7.59 (s, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.27 (dd, J = 1.9, 8.2 Hz, 1H), 2.74 (s, 2H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.70, 165.54, 139.97, 136.61, 134.74, 134.26, 131.80 (q, J = 34.0, 34.5 Hz),131.24 (d, J = 3.7 Hz), 127.35, 125.34, 124.03, 123.75 (q, J = 4.0 Hz), 123.12(q, J = 273.31 Hz), 122.02, 120.11, 120.10, 117.48, 26.85, 1.03 ppm; ESI-HRMS m/z calculated for C19H10ClF6NO2Na [M + Na]+ 456.02078, found 456.01965.
- Compound 4g: Yield, 54.4%, yellow solid, m.p. 145–146 °C; 1H NMR (600 MHz, CDCl3) δ 8.34 (d, J = 8.4 Hz, 1H), 7.91(s, 1H), 7.72 (d, J = 7. 2 Hz, 1H), 7.66 (d, J = 7.2 Hz, 2H), 7.50 (ddd, J = 8.4 Hz, 7.8 Hz, 6.0 Hz, 3H), 7.37–7.32 (m, 1H), 7.05 (td, J = 7.8Hz, 1.2 Hz, 1H), 2.79 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.91, 168.62, 140.28, 138.71, 134.42, 130.28, 130.07, 129.21, 128.81, 124.49, 122.16, 121.88, 116.75, 27.00, 26.93 ppm; ESI-HRMS m/z calculated for C17H13NO2Na [M + Na]+ 286.0838, found 286.0831.
- Compound 4h: Yield: 31.5%, yellow solid, m.p. 142.1–143.4 °C; 1H NMR (600 MHz, CDCl3) δ 8.41 (d, J = 1.8 Hz, 1H), 7.87 (d, J = 1.8 Hz, 2H), 7.81 (d, J = 12.0 Hz, 1H), 7.75 (d, J = 12.0 Hz, 1H), 7.66 (t, J = 6.0 Hz, 1H), 7.46 (d, J = 6.0 Hz, 1H), 7.05 (dd, J = 12.0 Hz, 1.8 Hz, 1H), 2.74 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.84, 165.69, 139.53, 136.87, 134.59, 134.59, 133.67, 130.94 (d, J = 32.8 Hz), 128.91, 128.48 (q, J = 3.9 Hz), 127.31 (q, J = 3.7 Hz), 125.61, 125.16, 123.85 (q, J = 14.2 Hz, 272.5 Hz), 122.65, 119.78, 117.32, 26.86. ESI-HRMS m/z calculated for C18H11NO2F3ClNa [M + Na]+ 388.0323, found 388.0311.
- Compound 4i: Yield: 25.7%, yellow solid, m.p. 142.9–144.1 °C; 1H NMR (600 MHz, CDCl3) δ 8.43 (d, J = 1.8 Hz, 1H), 7.84 (s, 1H), 7.59–7.51 (m, 3H), 7.49 (s, 1H), 7.35 (d, J = 6.6 Hz, 1H), 7.06 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 2.78(s, 3H); 13C NMR (150 MHz, CDCl3) δ 170.91, 168.22, 140.28, 138.71, 134.48, 135.28, 130.07,129.21 (q, J = 59.7 Hz), 128.81(q, J = 59.7 Hz), 126.07, 124.49, 122.16, 121.88, 116.75, 77.27, 77.06, 76.83, 26.92 ppm. ESI-HRMS m/z calculated for C18H11NO2F3ClNa [M + Na]+ 388.0323, found 388.0311.
- Compound 4j: Yield: 30.2%, yellow solid, m.p.121.5–123.3 °C; 1H NMR (600 MHz, CDCl3) δ 8.36 (d, J = 8.4 Hz, 1H), 7.92 (s, 1H), 7.87 (s, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.65 (dd, J = 18.0 Hz, 8.4 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.38(t, J = 7.8 Hz, 1H), 7.07 (t, J = 7. 8 Hz, 1H), 2.80 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 170.78, 168.21, 140.66, 136.05, 135.27 (d, J = 119.0 Hz), 132.19, 130.93 (d, J = 32.7 Hz), 129.45, 127.61, 126.43 (q, J = 3.7 Hz), 125.89 (q, J = 3.8 Hz), 124.68, 122.08, 121.28, 117.00, 26.92 ppm; ESI-HRMS m/z calculated for C18H12NO2F3Na [M + Na]+ 354.0712, found 354.0705.
- Compound 4k: Yield: 25.3%, yellow solid, m.p. 131.0–133.6 °C; 1H NMR (600 MHz, CDCl3) δ 8.66 (d, J = 6.0 Hz, 1H), 7.96 (s, 1H), 7.56–7.60 (m, 3H), 7.40 (d, J = 8. 4 Hz, 1H), 7.04 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 2.98 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.65, 167.13, 156.79, 155.10, 140.73, 133.41, 132.44 (d, J = 16.4 Hz), 132.38, 130.26, 128.16, 127.67, 124.91 (d, J = 4.5 Hz), 124.28, 124.50 (d, J = 14.6 Hz), 122.64, 121.70 (q, J = 4.0 Hz), 119.60, 114.03 (q, J = 4.1 Hz), 26.79; ESI-HRMS m/z calculated for C18H11NO2FCl3Na [M + Na]+ 388.0323, found 388.0311.
- Compound 4l: Yield: 29.6%, yellow solid, m.p. 142.3–144.1 °C; 1H NMR (600 MHz, CDCl3) δ 8.41 (d, J = 1.8 Hz, 1H), 8.36 (d, J = 1.8 Hz, 1H), 8.33 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.55–7.51 (m, 2H), 7.26 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 2.75 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.76, 165.76, 139.61, 135.78 (d, J = 88.6 Hz), 135.48, 132.22, 131.86, 131.56, 130.89 (q, J = 5.4 Hz), 128.58 (q, J = 31.7 Hz), 125.95, 125.24, 124.93, 122.48, 121.68, 119.84, 117.38, 26.87 ppm; ESI-HRMS m/z calculated for C18H11NO2F3Cl2Na [M + H]+ 400.0113, found 400.0121.
- Compound 4m: Yield: 26.2%, yellow solid, m.p. 151.6–153.3 °C; 1H NMR (600 MHz, CDCl3) δ 8.35 (d, J = 1.8 Hz, 1H), 8.21 (dd, J = 10.8 Hz, 1.8 Hz, 1H), 7.81–7.71 (m, 1H), 7.49 (dd, J = 15.6 Hz, 7.2 Hz, 3H), 7.24 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 2.75 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.80, 165.77, 139.44, 136.24, 136.22, 135.82, 133.24 (d, J = 7.6 Hz), 130.48, 128.81 (d, J = 7.6 Hz), 128.78, 125.15, 122.68, 119.69, 119.36, 119.21, 117.31, 26.88, 26.79 ppm; ESI-HRMS m/z calculated for C18H12NO2FCl2 [M + H]+ 350.0547, found 350.0422.
- Compound 4n: Yield: 34.4%, yellow soild, m.p. 136.3–137.2 °C; 1H NMR (600 MHz, CDCl3) δ 8.41 (d, J = 1.8 Hz, 1H), 7.83 (s, 1H), 7.40 (d, J = 7.8 Hz, 2H), 7.35–7.29 (m, 1H), 7.26–7.18 (m, 1H), 7. 08 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 2.79 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 170.59, 167.51, 141.34, 136.73, 129.50 (t, J = 3.1 Hz), 127.91, 124.91, 124.71 (d, J = 3.7 Hz), 124.70 (q, J = 4.1 Hz), 124.47, 123.26, 120.31, 119.72, 119.16, 119.05, 117.47, 26.79 ppm; ESI-HRMS m/z calculated for C17H10NO2F2ClNa [M + Na]+ 356.0260, found 356.0250.
- Compound 4o: Yield: 24.3%, yellow solid, m.p. 141.3–142.4 °C; 1H NMR (600 MHz, CDCl3) δ 8.30 (d, J = 9.0 Hz, 1H), 7.87 (s, 1H), 7.59–7.55 (m, 2H), 7.43 (d, J = 1.8 Hz, 1H), 7.36–7.31 (m, 1H), 7.26 (t, J = 7.8 Hz, 1H), 2.78 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 170.58, 167.48, 141.32, 136.71, 132.48, 129.87, 128.15, 127.80, 125.23, 124.92, 124.78, 123.21, 120.28, 119.71, 117.46, 26.78 ppm; ESI-HRMS m/z calculated for C18H13NO2FCl2 [M + H]+ 350.0547, found 350.0422.
- Compound 4p: Yield: 32.6%, yellow soild, m.p. 120.1–122.4 °C; 1H NMR (600 MHz, CDCl3) δ 2.81 (s, 3H), 7.25 (t, J = 7.8 Hz, 1H) 7.36 (dd, J = 0.6, 8.4 Hz, 1H), 7.56 (d, J = 7.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H), 8.66 (s, 1H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.65, 167.13, 155.94 (d, J = 254.8 Hz), 140.73, 133.41, 132.88, 132.38 (d, J = 16.7 Hz), 130.26, 128.16, 127.67, 124.92 (d, J = 4.5 Hz), 124.28, 123.57, 122.64, 121.70 (q, J = 4.0 Hz), 119.60, 114.05, 26.79 ppm; ESI-HRMS m/z calculated for C16H13O2N2Cl [M + H]+ 406.0582, found: 406.0576.
- Compound 4q: Yield: 35.2%, yellow solid, m.p. 135.3–136.2 °C; 1H NMR (600 MHz, CDCl3) δ 8.40 (d, J = 1.8 Hz, 1H), 7.81(s, 1H), 7.58–7.53 (m, 2H), 7.37 (d, J = 8.4 Hz, 1H), 7.27–7.19 (m, 1H), 7.06 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 2.78 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.69, 167.48, 139.09, 137.61,132.80, 131.39 (q, J = 150 Hz), 131.16 (d, J = 2.8 Hz), 130.69, 130.13 (d, J = 5.6 Hz), 128.04, 127.68, 124.88, 124.85 (q, J = 104 Hz), 122.70, 122.40, 119.55, 118.07, 26.79 ppm; ESI-HRMS m/z calculated for C18H10NO2FCl2Na [M + Na]+ 350.0547, found 350.0422.
- Compound 4r: Yield: 27.5%, yellow solid, m.p. 140.5–142.4 °C; 1H NMR (600 MHz, CDCl3) δ 8.40 (d, J = 1.8 Hz, 1H), 7.83 (s, 1H), 7.52–7.49 (m, 1H), 7.23 (s, 2H), 7.06 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 3.91 (s, 3H), 2.77(s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.74, 167.82, 160.29, 159.66, 141.19, 136.58, 135.37 (d, J = 133.0 Hz), 132.73 (q, J = 32.8 Hz), 126.83, 124.84, 122.99, 119.70 (t, J = 4.0 Hz), 117.91 (q, J = 4.0 Hz), 117.52, 117.27, 113.49, 112.23 (q, J = 3.7 Hz), 55.80, 26.79; ESI-HRMS m/z calculated for C19H15NO3F3Cl [M + H]+ 396.0609, found 396.0616.
- Compound 4s: Yield: 32.6%, yellow solid; m.p. 141.3–143.2 °C; 1H NMR (600 MHz, CDCl3) δ 8.39 (d, J = 1.8 Hz, 1H), 7.88 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.21 (d, J = 7.2 Hz, 1H), 7.13(s, 1H), 7.06–6.99(m, 2H), 3.86(s, 3H), 2.77(s, 3H) ppm; 13C NMR (150 MHz, CDCl3) δ 170.73, 168.22, 159.84, 140.92, 139.07, 135.88, 135.38, 135.09, 130.05, 125.32, 124.64, 123.10, 121.49, 117.28, 116.10, 114.23, 55.42, 26.82 ppm; ESI-HRMS m/z calculated for C18H14NO3ClNa [M + Na]+ 350.0554, found 350.0546.
- Compound 4t: Yield: 31.8%, yellow solid, m.p. 138.4–139.5 °C; 1H NMR (600 MHz, CDCl3) δ 8.39 (d, J = 1.8 Hz, 1H), 8.11 (d, J = 8.4 Hz, 2H), 7.89 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.03 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 2.77 (s, 3H), 1.65 (s, 9H); 13C NMR (150 MHz, CDCl3) δ 170.63, 167.94, 164.91, 141.15,138.12, 137.60, 136.37, 133.32, 129.93, 128.87, 126.40, 124.78, 123.04, 119.95, 117.41, 81.72, 28.19, 26.80 ppm; ESI-HRMS m/z calculated for C22H20NO4ClNa [M + Na]+ 420.0946, found 420.0963.
- Compound 4u: Yield: 26.8%, yellow solid, m.p. 135.4–136.6 °C; 1H NMR (600 MHz, CDCl3) δ 8.41 (d, J = 1.8 Hz, 1H), 7.84 (s, 1H), 7.59–7.51 (m, 3H), 7.49 (s, 1H), 7.35 (d, J = 6.6 Hz, 1H), 7.06 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 2.78 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 170.61, 167.89, 141.22, 136.58, 136.53, 136.12, 130.60, 127.48, 126.50, 124.81, 122.94, 122.53, 121.28, 119.74, 117. 49, 26.87, 26.80; ESI-HRMS m/z calculated for C18H12NO3F3Cl [M + H]+ 382.0452, found 382.0441.
- Compound 4v: Yield: 34.2%, yellow soild, m.p. 137.1–139.5 °C; 1H NMR (600 MHz, CDCl3) δ 2.77 (s, 3H), 7.04 (dd, J = 1.8, 8.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 5.4 Hz, 2H), 7.76 (s, 1H), 8.39 (s, 1H), 8.78 (d, J = 6.0 Hz, 2H) ppm; 13C NMR (150 MHz, CDCl3) δ 26.7, 117.5, 119.3, 122.6, 123.3, 124.9, 128.1, 134.6, 137.1, 141.5, 142.2, 150.6, 167.5, 170.5 ppm. ESI-HRMS m/z calculated for C16H13O2N2Cl [M + H]+ 299.0582, found: 299.0576.
- Compound 4w: Yield: 32.3%, yellow solid, m.p. 143.1–144.5 °C; 1H NMR (600 MHz, CDCl3) δ 8.79 (d, J = 6.0 Hz, 2H), 8.39 (s, 1H), 7.46 (d, J = 5.4 Hz, 1H), 7.40 (d, J = 8. 4 Hz, 1H), 7.04 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 2.77 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 170.80, 165.77, 158.52 (q, J = 248.8 Hz), 156.87, 139.45, 136.24, 135.82, 133.38, 130.48, 128.81 (d, J = 3.4 Hz), 125.15, 122.68 (q, J = 18.0 Hz, 130.3 Hz), 119.69, 119.36, 117.31, 26.88, 26.80 ppm; ESI-HRMS m/z calculated for C17H12N2O2F3Cl [M + H]+ 367.0456, found 367.0447.
- Compound 4x: Yield: 36.9%, yellow solid; m.p. 151.4–152.2 °C; 1H NMR (600 MHz, CDCl3) δ 8.03 (d, J = 1.8 Hz, 1H), 7.86 (d, J = 4.2 Hz, 2H), 7.78 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.01 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 1.70 (s, 9H); 13C NMR (150 MHz, CDCl3) δ 165.79, 150.21, 141.23, 136.46, 136.09, 135.23, 132.16, 129.51, 126.44 (q, J = 3.9 Hz), 125.78 (q, J = 3.7 Hz), 125.26, 125.13, 124.05, 122.95, 119.35, 116.18, 85.02, 28.10; ESI-HRMS m/z calculated for C21H17NO3F3ClNa [M + Na]+ 446.0741, found 446.0733.
3.3. General Procedure for the Synthesis of 9a-9g
- Compound 9a: Yield: 31.4%, orange powder, m.p. 205.7–206.1 °C; 1H NMR (600 MHz, Acetone-d6) δ 9.71 (s, 1H), 8.78 (s, 1H), 7.93 (td, J = 2.3, 5.2 Hz, 3H), 7.89–7.82 (m, 2H), 7.78 (dd, J = 1.5, 8.0 Hz, 1H), 7.75–7.70 (m, 3H), 7.41 (d, J = 2.1 Hz, 1H), 7.18 (dd, J = 2.1, 8.3 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H) ppm; 13C NMR (150 MHz, CD3OD) δ 169.70, 148.31, 141.14, 135.45, 133.90, 131.96, 131.71, 131.62, 131.15, 130.97, 130.29, 129.53, 128.98, 126.03 (d, J = 3.8 Hz), 125.69 (d, J = 3.7 Hz), 125.68, 124.87, 124.36, 123.07, 121.43, 119.22, 110.42 ppm. ESI-HRMS, m/z calculated for C22H14F3N3O5SNa [M + Na]+ 512.05011, found 512.04985.
- Compound 9b: Yield: 28.7%, yellow powder; m.p. 205.6–206.1 °C; 1H NMR (600 MHz, CD3OD) δ 7.91 (d, J = 7.7 Hz, 1H), 7.84 (d, J = 8.9 Hz, 2H), 7.79–7.73 (m, 2H), 7.66 (td, J = 6.1, 8.5 Hz, 1H), 7.31 (d, J = 2.1 Hz, 1H), 7.10 (ddd, J = 2.5, 8.8, 10.9 Hz, 1H), 7.02 (dd, J = 2.1, 8.3 Hz, 1H), 6.98 (td, J = 2.5, 8.4 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H) ppm; 13C NMR (150 MHz, CD3OD) δ 161.22, 158.60, 157.11, 153.09, 135.71, 131.22, 131.03, 128.45 (d, J = 9.6 Hz), 128.08, 127.36 (d, J = 28.4 Hz), 127.04, 125.98, 125.52, 122.85 (d, J = 4.1 Hz), 122.58 (d, J = 4.1 Hz), 122.35, 118.81, 115.64, 110.04 (dd, J = 3.3, 19.6 Hz), 109.96, 109.10, 104.41 (t, J = 23.1 Hz) ppm; ESI-HRMS, m/z calculated for C22H13F5N2O3SNa [M + Na]+ 503.04565, found 503.04593.
- Compound 9c: Yield: 21.5%, yellow powder, m.p. 128.1–128.7 °C; 1H NMR (600 MHz, CD3OD) δ 8.01 (d, J = 7.6 Hz, 1H), 7.92 (s, 1H), 7.80 (d, J = 3.2 Hz, 2H), 7.75 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 2.1 Hz, 1H), 7.22–7.09 (m, 1H), 7.00–6.80 (m, 1H), 3.00 (q, J = 7.4 Hz, 2H), 1.29 (t, J = 7.4 Hz, 3H) ppm; 13C NMR (150 MHz, CD3OD) δ 169.80, 140.47, 140.17, 135.59, 135.35, 134.67, 132.18, 132.06, 129.62, 129.21, 126.00 (q, J = 3.8 Hz), 125.70 (q, J = 4.6 Hz, 125.62, 124.42, 121.64, 117.06, 110.55, 44.74, 7.00 ppm; ESI-HRMS, m/z calculated for C18H15F3N2O3SNa [M + Na]+ 419.06436, found 419.06477.
- Compound 9d: Yield: 38.4%, orange solid; m.p. 226.5–226.9 °C; 1H NMR (600 MHz, CD3OCD3) δ 9.68 (s, 1H), 9.06 (s, 1H), 8.36 (d, J = 2.0 Hz, 1H), 8.35 (d, J = 2.0 Hz, 1H), 7.95 (d, J = 2.0 Hz, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.93 (s, 2H), 7.83 (d, J = 7.8 Hz, 1H), 7.76–7.71 (m, 2H), 7.39 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 2.2, 8.3 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H) ppm; 13C NMR (150 MHz, CD3OCD3) δ 168.30, 168.19, 150.22, 145.13, 141.40, 135.76, 134.76, 132.36, 130.84, 130.63, 130.36, 129.79, 128.99, 128.71, 128.60, 126.00 (d, J = 3.8 Hz), 125.70 (d, J = 4.6 Hz), 125.99, 124.22, 121.67, 118.52, 110.67 ppm; ESI-HRMS, m/z calculated for C22H14F3N3O5SNa [M + Na]+ 512.05066, found 512.04985.
- Compound 9e: Yield: 31.6%, yellow amorphous powder; m.p. 151.1–151.5 °C; 1H NMR (600 MHz, CDCl3) δ 8.22 (s, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.85 (d, J = 3.5 Hz, 2H), 7.74 (d, J = 7.9 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.42 (d, J = 2.2 Hz, 1H), 7.39 (dt, J = 2.8, 7.0 Hz, 1H), 7.34–7.30 (m, 1H), 7.27 (d, J = 2.0 Hz, 1H), 7.26 (d, J = 2.3 Hz, 2H), 7.07 (dd, J = 2.1, 8.3 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 4.26 (s, 2H) ppm; 13C NMR (150 MHz, CDCl3) δ 169.33, 139.38, 136.55, 135.13, 132.13, 131.13, 130.97, 130.75, 130.75, 129.64, 128.94, 128.79, 128.79, 128.52, 128.36, 126.58 (d, J = 2.7 Hz), 126.17 (d, J = 4.3 Hz), 124.28, 122.08, 117.25, 110.83, 57.69, 50.89 ppm; ESI-HRMS m/z calculated for C23H17F3N2O3SNa [M + Na]+ 481.08014, found 481.08042.
- Compound 9f: Yield: 41.3%, yellow powder; m.p. 191.1–191.5 °C; 1H NMR (600 MHz, CD3OCD3) δ 9.68 (s, 1H), 8.71 (s, 1H), 7.94 (s, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.71 (s, 1H), 7.56 (d, J = 2.0 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.37 (d, J = 2.1 Hz, 1H), 7.31 (s, 1H), 7.30 (s, 1H), 7.10 (dd, J = 2.1, 8.3 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 2.36 (s, 3H) ppm; 13C NMR (150 MHz, CD3OCD3) δ 168.33, 143.41, 140.81, 136.81, 135.82, 134.39, 132.24, 131.50, 130.75 (q, J = 32.2 Hz), 129.82, 129.43, 129.11, 127.17, 126.16 (q, J = 4.0 Hz), 126.05 (q, J = 3.9 Hz), 125.54, 125.09, 124.19 (q, J = 271.7 Hz), 123.29, 121.39, 117.97, 110.46, 20.51 ppm; ESI-HRMS, m/z calculated for C23H17F3N2O3SNa [M + Na]+ 481.08042, found 481.08042.
- Compound 9g: Yield: 41.2%, yellow powder; m.p. 258.4–259.3 °C; 1H NMR (600 MHz, DMSO-d6) δ 10.62 (d, J = 24.1 Hz, 1H), 10.02–9.79 (m, 1H), 8.89 (s, 1H), 8.55 (d, J = 7.9 Hz, 1H), 7.90–7.76 (m, 2H), 7.70 (dt, J = 7.9, 15.6 Hz, 1H), 7.66–7.58 (m, 2H), 7.55–7.42 (m, 1H), 7.31 (dd, J = 7.9, 34.4 Hz, 2H), 6.95–6.77 (m, 1H), 6.72 (dd, J = 8.3, 40.3 Hz, 1H), 2.32 (d, J = 13.5 Hz, 3H) ppm; 13C NMR (150 MHz, DMSO-d6) δ 167.42, 143.48, 139.02, 137.14, 136.13, 135.78, 135.04, 130.86 (q, J = 276.33 Hz), 130.07, 130.07, 129.96, 129.65, 128.72, 128.66 (d, J = 3.7 Hz), 127.29, 127.29, 127.15, 126.99, 125.37, 124.69, 115.88, 110.33, 21.42 ppm; ESI-HRMS m/z calculated for C23H17F3N2O3SNa [M + Na]+ 481.08020, found 481.08042.
3.4. General Procedure for the Synthesis of 9h-9i
- Compound 9h: Yield: 40.3%, grayish-white powder, m.p. 166.3–166.8 °C; 1H NMR (600 MHz, CD3OD) δ 8.69 (s, 1H), 8.25 (s, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.33 (d, J = 2.2 Hz, 1H), 7.26 (dd, J = 8.2, 2.2 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.79–6.61 (m, 1H). 3.34 (p, J = 1.7 Hz, 2H) ppm; 13C NMR (150 MHz, CD3OD) δ 178.52, 157.13, 145.60, 142.40, 137.31, 131.85, 129.39, 128.30, 127.09 (d, J = 3.9 Hz), 126.85, 124.51, 123.81, 121.26, 117.40, 117.38, 113.73 (d, J = 235.8 Hz), 109.74 ppm; ESI-HRMS m/z calculated for C16H11F3N2ONa [M + Na]+ 327.07193, found 327.07157.
- Compound 9i: Yield: 41.3%, yellow amorphous powder; m.p. 191.1–191.5 °C; 1H NMR (600 MHz, DMSO-d6) δ 10.49 (s, 1H), 8.76 (s, 1H), 8.42 (s, 2H), 8.09 (s, 1H), 7.23 (d, J = 3.23 Hz, 2H), 6.84 (s, 1H) ppm; 13C NMR (150 MHz, DMSO-d6) δ 176.87, 154.87, 144.05, 143.71, 139.10, 131.20 (q, J = 33.5 Hz), 128.59, 128.59, 127.33, 124.48, 124.01, 123.46 (q, J = 272.8 Hz), 122.47, 117.95, 109.88, 36.28 ppm. ESI-HRMS m/z calculated for C17H10F6N2ONa [M + Na]+ 395.05930, found 395.05895.
3.5. Cytotoxicity Assay
3.6. Determination of Anti-Inflammatory Activity
3.7. In Vitro COX-2 Inhibitory Assay
3.8. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gao, Y.; Duan, Y.Z. Increased COX-2 in the trigeminal nucleus caudalis is involved in orofacial pain induced by experimental tooth movement. Anat. Rec. 2010, 293, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kour, G.; Chibber, P.; Saroch, D.; Kumar, C.; Ahmed, Z. Novel alantolactone derivative AL-04 exhibits potential anti-inflammatory activity via modulation of iNOS, COX-2 and NF-kappa B. Cytokine 2022, 158, 155978. [Google Scholar] [CrossRef] [PubMed]
- Abdelall, E.K.A.; Lamie, P.F.; Ali, W.A.M. Cyclooxygenase-2 and 15-lipoxygenase inhibition, synthesis, anti-inflammatory activity and ulcer liability of new celecoxib analogues: Determination of region-specific pyrazole ring formation by NOESY. Bioorg. Med. Chem. Lett. 2016, 26, 2893–2899. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Kumari, S.; Prakash, A.; Yadav, R.; Tiwari, A.K.; Pandey, P.; Tiwari, M. Discovery of novel methylsulfonyl phenyl derivatives as potent human Cyclooxygenase-2 inhibitors with effective anticonvulsant action: Design, synthesis, in-silico, in vitro and in vivo evaluation. Eur. J. Med. Chem. 2018, 151, 520–532. [Google Scholar] [CrossRef]
- Zarghi, A.; Najafnia, L.; Daraee, B.; Dadrass, O.G.; Hedayati, M. Synthesis of 2, 3-diaryl-1,3-thiazolidine-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 5634–5637. [Google Scholar] [CrossRef]
- Zebardast, T.; Zarghi, A.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Design and synthesis of 3-alkyl-2-aryl-1,3-thiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 3162–3165. [Google Scholar] [CrossRef]
- Laine, L.; White, W.B.; Rostom, A.; Hochberg, M. COX-2 selective inhibitors in the treatment of osteoarthritis. Semin. Arthritis Rheum. 2008, 38, 165–187. [Google Scholar] [CrossRef]
- Dionne, R.A.; Berthold, C.W. Therapeutic uses of non-steroidal anti-inflammatory drugs in dentistry. Crit. Rev. Oral Biol. Med. 2001, 12, 315–330. [Google Scholar] [CrossRef]
- Huber, M.A.; Terezhalmy, G.T. The use of COX-2 inhibitors for acute dental pain: A second look. J. Am. Dent. Assoc. 2006, 137, 480–487. [Google Scholar] [CrossRef]
- Nekoofar, M.H.; Sadeghipanah, M.; Dehpour, A.R. Evaluation of meloxicam (A cox-2 inhibitor) for management of postoperative endodontic pain: A double-blind placebo-controlled study. J. Endod. 2003, 29, 634–637. [Google Scholar] [CrossRef]
- Gupta, A.; Bah, M. NSAIDs in the treatment of postoperative pain. Curr. Pain Headache Rep. 2016, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Al-Hourani, B.J.; Sharma, S.K.; Mane, J.Y.; Tuszynski, J.; Baracos, V.; Kniess, T.; Suresh, M.; Pietzsch, J.; Wuest, F. Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles as novel selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 1823–1826. [Google Scholar] [CrossRef]
- Abdellatif, K.R.; Fadaly, W.A.; Ali, W.A.; Kamel, G.M. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,5-diarylpyrazole derivatives. J. Enzym. Inhib. Med. Chem. 2016, 31, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanjal, J.K.; Sreenidhi, A.K.; Bafna, K.; Katiyar, S.P.; Goyal, S.; Grover, A.; Sundar, D. Computational structure-based de novo design of hypothetical inhibitors against the anti-inflammatory target COX-2. PLoS ONE 2015, 10, e0134691. [Google Scholar] [CrossRef] [Green Version]
- Grosser, T.; Ricciotti, E.; FitzGerald, G.A. The Cardiovascular pharmacology of nonsteroidal anti-inflammatory drugs. Trends Pharmacol. Sci. 2017, 38, 733–748. [Google Scholar] [CrossRef]
- Elshemy, H.A.H.; Abdelall, E.K.A.; Azouz, A.A.; Moawad, A.; Ali, W.A.M.; Safwat, N.M. Synthesis, anti-inflammatory, cyclooxygenases inhibitions assays and histopathological study of poly-substituted 1,3,5-triazines: Confirmation of regiospecific pyrazole cyclization by HMBC. Eur. J. Med. Chem. 2017, 127, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C.; Baigent, C. Coxibs, Traditional NSAIDs, and cardiovascular safety post-precision: What we thought we knew then and what we think we know now. Clin. Pharmacol. Ther. 2017, 102, 238–245. [Google Scholar] [CrossRef]
- Motika, S.E.; Hergenrother, P.J. Re-engineering natural products to engage new biological targets. Nat. Prod. Rep. 2020, 37, 1395–1403. [Google Scholar] [CrossRef]
- Guthikonda, R.N.; Cama, L.D.; Quesada, M.; Woods, M.F.; Salzmann, T.N.; Christensen, B.G. Modification of natural products to improve their biological properties. Pure Appl. Chem. 1987, 59, 455–458. [Google Scholar] [CrossRef]
- Zongru, G. The modification of natural products for medical use. Acta Pharm. Sin. B 2017, 7, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Viegas, J.C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef]
- Giselle, C.; Costa, F. Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents. J. Braz. Chem. Soc. 2006, 17, 1473. [Google Scholar] [CrossRef] [Green Version]
- Khetmalis, Y.M.; Shivani, M.; Murugesan, S.; Chandra Sekhar, K.V.G. Oxindole and its derivatives: A review on recent progress in biological activities. Biomed. Pharmacother. 2021, 141, 111842. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, M.; Chadha, N.; Silakari, O. Oxindole: A chemical prism carrying plethora of therapeutic benefits. Eur. J. Med. Chem. 2016, 123, 858–894. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Kundu, A.; Han, S.H.; Kim, K.S.; Park, J.H.; Yoon, S.; Kim, I.S.; Kim, H.S. Biological evaluation of exindole derivative as a novel anticancer agent against human kidney carcinoma cells. Biomolecules 2020, 10, 1260. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Yousaf, M.; Wadood, A.; Junaid, M.; Ashraf, M.; Alam, U.; Ali, M.; Arshad, M.; Hussain, Z.; Khan, K.M. Discovery of novel oxindole derivatives as potent alpha-glucosidase inhibitors. Bioorg. Med. Chem. 2014, 22, 3441–3448. [Google Scholar] [CrossRef]
- Dreifuss, A.A.; Bastos-Pereira, A.L.; Avila, T.V.; Soley, B.D.S.; Rivero, A.J.; Aguilar, J.L.; Acco, A. Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model. J. Ethnopharmacol. 2010, 130, 127–133. [Google Scholar] [CrossRef]
- Chaudhari, P.; Bari, S.; Surana, S.; Shirkhedkar, A.; Wakode, S.; Shelar, S.; Racharla, S.; Ugale, V.; Ghodke, M. Logical synthetic strategies and structure-activity relationship of indolin-2-one hybrids as small molecule anticancer agents: An overview. J. Mol. Struct. 2022, 1247, 131280. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.J.; Li, W.B.; Wang, X.R.; Wang, S.; Qiao, X.P.; Chen, S.W. Design, synthesis and biological evaluation of indole-2-one derivatives as potent BRD4 inhibitors. Eur. J. Med. Chem. 2020, 208, 112780. [Google Scholar] [CrossRef]
- Tseng, C.C.; Baillie, G.; Donvito, G.; Mustafa, M.A.; Juola, S.E.; Zanato, C.; Massarenti, C.; Dall’Angelo, S.; Harrison, W.T.A.; Lichtman, A.H.; et al. The trifluoromethyl group as a bioisosteric replacement of the aliphatic nitro group in CB (1) receptor positive allosteric modulators. J. Med. Chem. 2019, 62, 5049–5062. [Google Scholar] [CrossRef]
- Egami, H.; Sodeoka, M. Trifluoromethylation of alkenes with concomitant introduction of additional functional groups. Angew. Chem. Int. Ed. Engl. 2014, 53, 8294–8308. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Li, C.; Chen, D.; Zheng, X.; Yun, H.; Gao, L.; Shen, H.C. Discovery of methylsulfonyl indazoles as potent and orally active respiratory syncytial Virus (RSV) fusion inhibitors. Eur. J. Med. Chem. 2017, 138, 1147–1157. [Google Scholar] [CrossRef]
- Khurshid, A.; Saeed, A.; Erben, M.F.; Hökelek, T.; Jabeen, E. DFT guided substitution effect on azomethine reactive center in newly synthesized Schiff base aromatic scaffolds; syntheses, characterization, single crystal XRD, Hirshfeld surface and crystal void analyses. J. Mol. Struct. 2023, 1273, 134215. [Google Scholar] [CrossRef]
- Sondhi, S.M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorg. Med. Chem. 2006, 14, 3758–3765. [Google Scholar] [CrossRef]
- Vijesh, A.M.; Isloor, A.M.; Shetty, P.; Sundershan, S.; Fun, H.K. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur. J. Med. Chem. 2013, 62, 410–415. [Google Scholar] [CrossRef]
- Wei, D.; Ning, L.I.; Gui, L.U.; Yao, K. Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base. Sci. China Ser. B 2006, 49, 225–229. [Google Scholar] [CrossRef]
- John, W.C. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 2001, 1, 1397–1406. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Sungeun, A.; Muhammad, H.S.; Noh, H.Y.; Kim, Y.J.; Jin, C.G.; Yang, C.D. Anti-inflammatory activity of ginsenosides in LPS-stimulated RAW 264.7 cells. Sci. Bull. 2015, 60, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Futagami, A.; Ishizaki, M.; Fukuda, Y.; Seiji, K.; Nobuaki, Y. Wound healing involves induction of Cyclooxygenase-2 expression in rat skin. Lab. Investig. 2002, 82, 1503–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.M.; Zhang, H.X.; Liu, H.; Wang, Y.; Wu, J.B.; Li, Y.P.; Cheng, Y.X. (+/−)-Lucidumone, a COX-2 inhibitory ccaged fungal meroterpenoid from Ganoderma lucidum. Org. Lett. 2019, 21, 8523–8527. [Google Scholar] [CrossRef] [PubMed]
- Orlando, B.J.; Malkowski, M.G. Substrate-selective inhibition of Cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone. J. Biol. Chem. 2016, 291, 15069–15081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, F.Y.; Zhang, H.X.; Di, Q.Q.; Wang, Y.; Yan, Y.M.; Chen, W.L.; Cheng, Y.X. Ganoderma cochlear metabolites as probes to identify a COX-2 active site and as in vitro and in vivo anti-inflammatory agents. Org. Lett. 2020, 22, 2574–2578. [Google Scholar] [CrossRef] [PubMed]
Compd. | IC50 (μM) b |
---|---|
4a | 17.81 ± 1.86 |
4e | 13.51 ± 0.48 |
4i | 20.41 ± 1.61 |
4j | 16.31 ± 0.35 |
9d | 10.03 ± 0.27 |
9h | - |
9i | - |
PDTC a | 13.71 ± 0.88 |
Compd. | IC50 (μM) |
---|---|
4a | 19.90 ± 4.76 |
4e | 3.34 ± 0.05 |
9h | 2.35 ± 0.04 |
9i | 2.42 ± 0.10 |
4k | >20 |
9f | >20 |
Celecoxib * | 0.03 ± 0.97 |
The Resulting Docking Scores (Binding Energy) | |||
---|---|---|---|
Pose | 4e | 9i | 9h |
1 | −9.8 | −9.3 | −8.7 |
2 | −8.9 | −9.1 | −7.6 |
3 | −8.8 | −9.1 | −7.5 |
4 | −8.2 | −8.9 | −7.0 |
5 | −8.1 | −8.5 | −6.9 |
6 | −8.0 | −8.2 | −6.4 |
7 | −7.8 | −8.1 | −6.4 |
8 | −6.9 | −8.0 | −6.3 |
9 | −6.3 | −7.8 | −5.2 |
10 | −5.8 | −6.4 | −4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; He, M.; Deng, L.; Li, J.; Fan, Y.; Hao, X.; Mu, S. Design, Synthesis, and Evaluation of the COX-2 Inhibitory Activities of New 1,3-Dihydro-2H-indolin-2-one Derivatives. Molecules 2023, 28, 4668. https://doi.org/10.3390/molecules28124668
Pan T, He M, Deng L, Li J, Fan Y, Hao X, Mu S. Design, Synthesis, and Evaluation of the COX-2 Inhibitory Activities of New 1,3-Dihydro-2H-indolin-2-one Derivatives. Molecules. 2023; 28(12):4668. https://doi.org/10.3390/molecules28124668
Chicago/Turabian StylePan, Taohua, Maofei He, Lulu Deng, Jiang Li, Yanhua Fan, Xiaojiang Hao, and Shuzhen Mu. 2023. "Design, Synthesis, and Evaluation of the COX-2 Inhibitory Activities of New 1,3-Dihydro-2H-indolin-2-one Derivatives" Molecules 28, no. 12: 4668. https://doi.org/10.3390/molecules28124668
APA StylePan, T., He, M., Deng, L., Li, J., Fan, Y., Hao, X., & Mu, S. (2023). Design, Synthesis, and Evaluation of the COX-2 Inhibitory Activities of New 1,3-Dihydro-2H-indolin-2-one Derivatives. Molecules, 28(12), 4668. https://doi.org/10.3390/molecules28124668