Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in Porphyrin-Based Covalent Organic Frameworks
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69. [Google Scholar] [CrossRef]
- Karazhanov, S.; Kharton, V. Novel materials for batteries, supercapacitors, fuel cells and other advanced technologies. Mater. Lett. 2018, 229, 5. [Google Scholar] [CrossRef]
- Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dinca, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Li, H.; Chen, J.; Ma, F.X.; Zhen, L.; Wen, Z.; Xu, C.Y. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery. Small 2022, 18, e2202476. [Google Scholar] [CrossRef]
- Fu, J.; Cano, Z.P.; Park, M.G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 1604685. [Google Scholar] [CrossRef]
- Pan, J.; Xu, Y.Y.; Yang, H.; Dong, Z.; Liu, H.; Xia, B.Y. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Adv. Sci. 2018, 5, 1700691. [Google Scholar] [CrossRef]
- Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef]
- Chung, H.T.; Cullen, D.A.; Drew, H.; Sneed, B.T.; Holby, E.F.; More, K.L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y.M.; et al. High-performance transition metal-doped Pt₃Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230. [Google Scholar] [CrossRef] [Green Version]
- Bhoyate, S.D.; Kim, J.; de Souza, F.M.; Lin, J.; Lee, E.; Kumar, A.; Gupta, R.K. Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coord Chem. Rev. 2023, 474, 214854. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, X.; Wang, Y.; Ye, H.; Gao, J.; Qiu, Y.; Wang, S.; Zhao, W.; Wang, Y.; Zhou, J.; et al. A binary single atom Fe3C|Fesingle bondNsingle bondC catalyst by an atomic fence evaporation strategy for high performance ORR/OER and flexible Zinc-air battery. Chem. Eng. J. 2023, 454, 140512. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, X.; Wang, X.; Zhang, Z.; Wang, Y. Encapsulating covalent organic frameworks (COFs) in cellulose aerogels for efficient iodine uptake. Sep. Purif. Technol. 2023, 309, 123108. [Google Scholar] [CrossRef]
- Xiong, M.; Wang, B.; Wang, H.; Xu, F.; Zeng, Y.; Ren, H.; Zeng, H. Probing the adsorption behavior and mechanism of NO2 and NH2 functionalized covalent organic frameworks (COFs) for removal of bisphenol A. Microporous Mesoporous Mater. 2022, 346, 112299. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.J.; Huang, X.; Dong, L.Z.; Lu, M.; Guo, C.; Yuan, D.; Chen, Y.; Xu, G.; Li, S.L.; et al. Porphyrin-Based COF 2D Materials: Variable Modification of Sensing Performances by Post-Metallization. Angew. Chem. Int. Ed. 2022, 61, e202115308. [Google Scholar]
- Bhadra, M.; Kandambeth, S.; Sahoo, M.K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine Functionalized Porous Covalent Organic Framework for Photo-organocatalytic E–Z Isomerization of Olefins. J. Am. Chem. Soc. 2019, 141, 6152–6156. [Google Scholar] [CrossRef]
- Bi, S.; Yang, C.; Zhang, W.; Xu, J.; Liu, L.; Wu, D.; Wang, X.; Han, Y.; Liang, Q.; Zhang, F. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 2019, 10, 2467. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhang, Y.; Dong, Y.; Li, J.; Li, S.; Shao, P.; Feng, X.; Wang, B. Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 1923–1927. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Xie, Z.; Li, Y.; Liu, Y.; Sun, J.; Ma, Y.; Terasaki, O.; Chen, L. Conjugated Copper–Catecholate Framework Electrodes for Efficient Energy Storage. Angew. Chem. Int. Ed. 2020, 59, 1081–1086. [Google Scholar] [CrossRef]
- Han, B.; Ding, X.; Yu, B.; Wu, H.; Zhou, W.; Liu, W.; Wei, C.; Chen, B.; Qi, D.; Wang, H.; et al. Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. J. Am. Chem. Soc. 2021, 143, 7104. [Google Scholar] [CrossRef]
- Liu, J.; Yang, D.; Zhou, Y.; Zhang, G.; Xing, G.; Liu, Y.; Ma, Y.; Terasaki, O.; Yang, S.; Chen, L. Tricycloquinazoline Based 2D Conductive Metal-Organic Frameworks as Promising Electrcatalysts for CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 14473–14479. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, X.X.; Da, L.; Wang, Y.; Xiang, Z.; Wang, W.; Zhang, Y.B.; Cao, D. A Three-Dimensional sp2 Carbon-Conjugated Covalent Organic Framework. J. Am. Chem. Soc. 2021, 143, 15562–15566. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Cai, P.; Xu, K.; Li, H.; Chen, H.; Zhou, H.C.; Huang, N. Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. J. Am. Chem. Soc. 2021, 143, 18052–18060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-D.; Si, D.-H.; Yi, J.-D.; Zhao, S.-S.; Huang, Y.-B.; Cao. R. Conductive Phthalocyanine-Based Covalent Organic Framework for Highly Efficient Electroreduction of Carbon Dioxide. Small. 2020, 16, 2005254. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Li, J.; Chen, F.; Ma, L.; Li, Q.; Zhang, M.; Zhou, J.; Yin, A.; Feng, X.; Wang, B. Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angew. Chem. Int. Ed. 2018, 57, 16501–16505. [Google Scholar] [CrossRef]
- Dai, H.; Li, H.; Yang, Q. Construction of COF–COF heterojunctions for visible-light driven alcohol oxidation. Microporous Mesoporous Mater. 2022, 342, 112121. [Google Scholar] [CrossRef]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553. [Google Scholar] [CrossRef] [Green Version]
- Ying, Y.; Tong, M.; Ning, S.; Ravi, S.K.; Peh, S.B.; Tan, S.C.; Pennycook, S.J.; Zhao, D. Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation. J. Am. Chem. Soc. 2020, 142, 4472–4480. [Google Scholar] [CrossRef]
- Liu, R.; Tan, K.; Gong, Y.; Chen, Y.; Li, Z.; Xie, S.; He, T.; Lu, Z.; Yang, H.; Jiang, D. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120. [Google Scholar] [CrossRef]
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; Matzger, A.J.; O’Keeffe, M.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Liu, M.; Li, X.; Yang, S.; Liu, S.; Xu, Q.; Zeng, G. Integrating Multifunctional Catalytic Sites in COF@ZIF-67 Derived Carbon for HER and ORR. Chem. Commun. 2022, 58, 13214–13217. [Google Scholar] [CrossRef]
- Sun, Y.-N.; Yang, J.; Ding, X.; Ji, W.; Jaworski, A.; Hedin, N.; Han, B.-H. Synergetic contribution of nitrogen and fluorine species in porous carbons as metal-free and bifunctional oxygen electrocatalysts for zinc—Air batteries. Appl. Catal. B 2021, 297, 120448. [Google Scholar] [CrossRef]
- Miao, Q.; Yang, S.; Xu, Q.; Liu, M.; Wu, P.; Liu, G.; Yu, C.; Jiang, Z.; Sun, Y.; Zeng, G. Immobilization of Platinum Nanoparticles on Covalent Organic Framework-Derived Carbon for Oxygen Reduction Catalysis. Small Struct. 2022, 3, 2270013. [Google Scholar] [CrossRef]
- An, S.; Li, X.; Shang, S.; Xu, T.; Yang, S.; Cui, C.-X.; Peng, C.; Liu, H.; Xu, Q.; Jiang, Z.; et al. One Dimensional Covalent Organic Frameworks for 2e- Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2023, 62, e202218742. [Google Scholar] [CrossRef]
- Liu, M.; Liu, S.; Cui, C.-X.; Miao, Q.; He, Y.; Li, X.; Xu, Q.; Zeng, G. Construction of Catalytic Covalent Organic Frameworks with Redox-Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 134, e202213522. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, P.; Hu, L.; Sun, C.; Li, J.; Feng, X.; Wang, B. Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. J. Am. Chem. Soc. 2021, 143, 7897–7902. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhao, J.; Wang, J.; Li, Y.; Han, B.; Li, J.; Ding, X.; Xie, Z.; Wang, H.; Zhou, S. Nonlinear optical properties of porphyrin-based covalent organic frameworks determined by steric-orientation of conjugation. J. Mater. Chem. C 2023, 11, 3354–3359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zhao, Z.; Shi, R.; Yang, L.; Zhao, B.; Qiao, H.; Zhai, L. Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in Porphyrin-Based Covalent Organic Frameworks. Molecules 2023, 28, 4680. https://doi.org/10.3390/molecules28124680
Liang X, Zhao Z, Shi R, Yang L, Zhao B, Qiao H, Zhai L. Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in Porphyrin-Based Covalent Organic Frameworks. Molecules. 2023; 28(12):4680. https://doi.org/10.3390/molecules28124680
Chicago/Turabian StyleLiang, Xiaoqing, Zhi Zhao, Ruili Shi, Liting Yang, Bin Zhao, Huijie Qiao, and Lipeng Zhai. 2023. "Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in Porphyrin-Based Covalent Organic Frameworks" Molecules 28, no. 12: 4680. https://doi.org/10.3390/molecules28124680
APA StyleLiang, X., Zhao, Z., Shi, R., Yang, L., Zhao, B., Qiao, H., & Zhai, L. (2023). Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in Porphyrin-Based Covalent Organic Frameworks. Molecules, 28(12), 4680. https://doi.org/10.3390/molecules28124680