Chemical Composition, Antioxidant Properties, and Antibacterial Activity of Essential Oils of Satureja macrostema (Moc. and Sessé ex Benth.) Briq
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of Essential Oils
2.2. DPPH and TEAC Free Radical Scavenging Assay
2.3. Antimicrobial Activity In Vitro
2.4. Thin Layer Chromatography–Direct Bioautography (TLC-DB)
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oils Isolation
4.3. DPPH and TEAC Free Radical Scavenging Assay
4.4. Antimicrobial Activity In Vitro
4.5. Thin Layer Chromatography–Direct Bioautography (TLC-DB)
4.6. Gas Chromatography-Mass Spectrometry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cantino, P.D.; Harley, R.M.; Wagstaff, S.J. Genera of Labiatae Status and Classification. In Advances In Labiatae Science; Harley, R.M., Reynolds, T., Eds.; Royal Botanic Gardens Press: Kew, Richmond; Surrey, UK, 1992; pp. 511–522. [Google Scholar]
- Rzedowski, G.C.; Rzedowski, J. Flora Fanerogámica del Valle de México, 2nd ed.; Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodivervisidad: Pátzcuaro, Michoacán, México, 2005; 1406p, Available online: https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/Flora_del_Valle_de_Mx1.pdf (accessed on 1 June 2022).
- Esquivel-García, R.; Pérez-Calix, E.; Ochoa-Zarzosa, A.; García-Pérez, M.E. Ethnomedicinal plants used for the treatment of dermatological affections on the Purépecha Plateau, Michoacán, Mexico. Acta Bot. Mex. 2018, 125, 1339. [Google Scholar] [CrossRef]
- Martínez-Gordillo, M.; Fragoso-Martínez, I.; García-Peña, M.R.; Montiel, O. Géneros de Lamiaceae de México, diversidad y endemismo. Rev. Mex. Biodivers. 2013, 84, 30–86. Available online: https://www.redalyc.org/articulo.oa?id=42526150034 (accessed on 15 June 2022). [CrossRef] [Green Version]
- Bello González, M.Á.; Garciglia, R.S.; Carmona Fernández, J. Propagación y crecimiento de Satureja macrostema Briq.(Lamiaceae) bajo condiciones controladas en Uruapan, Michoacán. Cienc. Nicolaita 2013, 58, 105–115. Available online: https://www.cic.cn.umich.mx/cn/issue/view/6 (accessed on 20 May 2022).
- Sefidkon, F.; Askari, F.; Sadeghzadeh, F.; Oulia, P. Antimicrobial effects of the essential oils of Satureja mutica, S. edmondi and S. bachtiarica against salmonella paratifi a and b. Iran. J. Biol. 2009, 22, 249–258. Available online: https://www.sid.ir/en/journal/ViewPaper.aspx?id=159158 (accessed on 20 September 2022).
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour. Fragr. J. 2010, 25, 291–312. [Google Scholar] [CrossRef]
- Slavkovkovsaka, V.; Jancic, J.; Bojovic, S.; Milosavljevic, S.; Djovovic, D. Variability of essential oils of Satureja montana L. and Satureja kitaibelii Wierzb. from the central part of the Balkan península. Phytochemistry 2001, 57, 71–76. [Google Scholar] [CrossRef]
- Eminagaoglu, O.; Tepe, B.; Yumrutas, O.; Askin, A.; Daferera, D.; Polissiou, M.; Sokmen, A. The in vitro antioxidative properties of the essential oils and methanol extracts of Satureja spicigera (K.Koch) Boiss. and Satureja cunifolia ten. Food Chem. 2007, 100, 339–343. [Google Scholar] [CrossRef]
- Güllüce, M.; Sokmen, M.; Daferera, D.; Agar, G.; Ozkan, H.; Kartal, N. In vitro antibacterial, antifungal and antioxidant activities of the essential oil, methanol extracts of herbal parts and callus culture of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef]
- Ayub, M.A.; Goksen, G.; Fatima, A.; Zubair, M.; Abid, M.A.; Starowicz, M. Comparison of Conventional Extraction Techniques with Superheated Steam Distillation on Chemical Characterization and Biological Activities of Syzygium aromaticum L. Essential Oil. Separations 2023, 10, 27. [Google Scholar] [CrossRef]
- NIST Standard Reference Database. NIST/EPA/NIH Mass Spectral Library with Search Program; NIST: Gaithersburg, MD, USA, 2008; Data Version NIST 05:2008. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 804. ISBN 978-1-932633-21-4. [Google Scholar]
- Torres-Martínez, R.; García-Rodríguez, M.Y.; Ríos-Chávez, P.; Saavedra-Molina, A.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Salgado Garciglia, R. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. And Sessé ex Benth.) Briq. Pharmacogn. Mag. 2008, 13, 5875–5880. [Google Scholar]
- Ahmed, A.H.; Hussein, K.; Masaoud, M.; Al-Sham, F. Radical Scavenging, Antibacterial Activities and Chemical Composition of Volatile Oil of Edible Mentha longifolia (L.) Hudson, Subs. Schimperi (Briq.) Briq, from Yemen. AJMAP 2017, 4, 19–35. [Google Scholar]
- Sharopov, F.S.; Sulaimonova, V.A.; Setzer, W.N. Essential oil composition of Mentha longifolia from wild populations growing in Tajikistan. J. Med. Act. Plants 2012, 1, 76–84. [Google Scholar] [CrossRef]
- Espino Garibay, F. Clasificación Molecular de Satureja macrostema (Benth) Briq y Erngium carlinae Delar F. y Evaluación de Actividad Antimicrobiana de sus Terpenoides. Master’s Thesis, Michoacana University of San Nicolás de Hidalgo, Morelia, Mexico, 2010. [Google Scholar]
- Rojas-Olivos, A.; Solano-Gómez, R.; Granados-Echegoyen, C.; Santiago-Santiago, L.A.; García-Dávila, J.; Pérez-Pacheco, R.; Lagunez-Rivera, L. Larvicidal effect of Clinopodium macrostemum essential oil extracted by microwave-assisted hydrodistillation against Culex quinquefasciatus (Diptera: Culicidae). Rev. Soc. Bras. Med. Trop. 2018, 51, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viturro, C.I.; Molina, A.C.; Heit, C.; Elechosa, M.; Molina, A.M.; Juares, M. Evaluation of the composition of the essential oils of Satureja boliviana, S. odora and S. parvifolia obtained from samples collected in Tucumán, Argentina. Bol. Latinoam. Caribe Plantas Med. Aromát. 2007, 6, 288–289. [Google Scholar]
- Jennan, S.; Fouad, R.; Nordine, A.; Farah, A.; Bennani, B.; Moja, S.; Greche, H.; Mahjoubi, F. Chemical Composition and Antibacterial Screening of Aerial Parts of Essential Oils of Three Satureja species (Satureja briquetti, Satureja atlantica and Satureja alpina) Growing Wild in the Middle Atlas Mountains of Morocco. J. Essent. Oil Bear. Plants 2018, 21, 741–748. [Google Scholar] [CrossRef]
- Viturro, C.I.; Molina, A.; Guy, I.; Charles, B.; Guinaudeau, H.; Fournet, A. Essential oils of Satureja boliviana and S. parvifolia growing in the region of Jujuy, Argentina. Flavour. Fragr. J. 2000, 15, 377–382. [Google Scholar] [CrossRef]
- Odumosu, P.; Ojerinde, S.; Egbuchiem, M. Polyphenolic contents of some instant tea brands and their antioxidant activities. J. Appl. Pharm. Sci. 2015, 5, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Mihajilov-Krstev, T.; Radnovic, D.; Kitic, D.; Stojanovic-Radic, Z.; Zlatkovic, B. Antimicrobial Activity of Satureja Hortensis L. Essential Oil Against Pathogenic Microbial Strains. Biotechnol. Biotechnol. Equip. 2009, 23, 1492–1496. [Google Scholar] [CrossRef] [Green Version]
- Eftekhara, F.; Raeia, F.; Yousefzadib, S.; Ebrahimic, N.; Hadiand, J. Antibacterial Activity and Essential Oil Composition of Satureja spicigera from Iran. Z. Nat. 2009, 64, 20–24. [Google Scholar] [CrossRef]
- Sefidkon, F.; Salehyar, S.; Mirza, M.; Dabiri, M. The essential oil of Tagetes erecta L. occurring in Iran. Flavour. Fragr. J. 2004, 19, 579–581. [Google Scholar] [CrossRef]
- O’Neil, M.J. RSC Publishing, Ed.; The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed.; Royal Society of Chemistry: Cambridge, UK, 2013; p. 2708. Available online: www.rsc.org/merck-index (accessed on 10 July 2021).
- Picard, M.; Lytra, G.; Tempere, S.; Barbe, J.-C.; de Revel, G.; Marchand, S. Identification of Piperitone as an Aroma Compound Contributing to the Positive Mint Nuances Perceived in Aged Red Bordeaux Wines. J. Agric. Food Chem. 2016, 64, 451–460. [Google Scholar] [CrossRef]
- TMIC (The Metabolomics Innovation Centre); INNOVATION.CA (Canada Foundation For Innovation). Available online: https://foodb.ca/compounds/FDB015974 (accessed on 2 March 2023).
- Tavakkoli-Khaledi, S.; Asgarpanah, J. Essential Oil Chemical Composition of Mentha mozaffarianii Jamzad Seeds. J. Mex. Chem. Soc. 2016, 60, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, H.; van Os, F.H.L. Essential oil of two chemotypes of Mentha suaveolens during ontogenesis. Phytochemistry 1976, 15, 1127–1130. [Google Scholar] [CrossRef]
- Riani, L.R.; Macedo, A.L.; Chedier, L.M.; Pimenta, D.S. Chemical analysis of essential oil and hydrolates of leaves, inflorescences and stems of Piper chimonanthifolium Kunth. Rev. Virtual Quim. 2017, 9, 1560–1569. [Google Scholar] [CrossRef]
- Sohell, S.; Rodney, B. Menthofuran regulates essential oil biosynthesis in peppermint b controlling a downstream monoterpene reductactase. Proc. Natl. Acad. Sci. USA 2003, 100, 14481–14486. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, B.E.; Stashenko, E.; Martínez, J.R. Volatile chemical composition of the Colombian Satureja brownie (Sw.) Briq. and determination of its antioxidant activity. Rev. Cuba. Plantas Med. 2010, 15, 52–63. [Google Scholar]
- Petrakis, A.E.; Kimbaris, C.A.; Polissious, G.M. Quantitative Determination of Pulegone in Pennyroyal oil by FT-IR Spectroscopy. J. Agric. Food Chem 2009, 57, 10044–10048. [Google Scholar] [CrossRef]
- Madyastha, K.M.; Gaikwad, N.W. Metabolic disposition of a monoterpene ketone, piperitenone, in rats: Evidence for the formation of a known toxin, p-cresol. Drug Metab. Dispos. 1999, 27, 74–80. [Google Scholar]
- Orduña Trejo, C.; Castro Campillo, A.; Ramírez Pulido, J. Mammals from the Tarascan Plateau, Michoacán, México. Rev. Mex. Mastozool. 1999, 4, 53–68. [Google Scholar] [CrossRef]
- Guerra-Boone, L.; Alvarez-Román, R.; Salazar-Aranda, R.; Torres-Cirio, A.; Rivas-Galindo, V.M.; Waksman de Torres, N.; González González, G.M.; Pérez-López, L.A. Chemical compositions and antimicrobial and antioxidant activities of the essential oils from Magnolia grandiflora, Chrysactinia mexicana, and Schinus molle found in northeast Mexico. Nat. Prod. Commun. 2013, 8, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives—Inter-laboratory evaluation study. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2014, 30, 717–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olszowy Tomczyk, M. How to express the antioxidant properties of substances properly? Chem. Pap. 2021, 75, 6157–6167. [Google Scholar] [CrossRef]
- Borges, C.; Ferreira, M.; Saavedra, J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, W.; Móricz, Á.M.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-Direct Bioautography and LC/MS as Complementary Methods in Identification of Antibacterial Agents in Plant Tinctures from the Asteraceae Family. J. AOAC Int. 2015, 98, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Scalvenzi, L.; Grandini, A.; Spagnoletti, A.; Tacchini, M.; Neill, D.; Ballesteros, J.L.; Sacchetti, G.; Guerrini, A. Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile. Molecules 2017, 22, 1163. [Google Scholar] [CrossRef] [Green Version]
- Van Den Dool, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
No. | Compound | LRI (Calculated) | LRI (Literature) | CAS # | Retention Time (Min) | % Relative Area | S.D. |
---|---|---|---|---|---|---|---|
1 | 2E-hexenal | 845 | 846 | 6728-26-3 | 4.2 | 0.08 | ±0.0 |
2 | α-pinene | 928 | 932 | 99-83-2 | 6.3 | 0.1 | ±0.0 |
3 | β-thujene | 967 | 968 | 28634-89-1 | 7.8 | 1 | ±0.0 |
4 | β-pinene | 972 | 974 | 127-91-3 | 8.0 | 0.3 | ±1.0 |
5 | 3-octanol | 994 | 988 | 589-98-0 | 8.8 | 0.3 | ±0.1 |
6 | limonene | 1021 | 1024 | 138-86-3 | 10.6 | 0.4 | ±0.1 |
7 | linalool | 1094 | 1095 | 78-70-6 | 16.1 | 5 | ±1.0 |
8 | 1-octen-3-yl-acetate | 1105 | 1110 | 2442-10-6 | 17.1 | 0.2 | ±0.0 |
9 | 3-octanol, acetate | 1116 | 1120 | 4864-61-3 | 18.4 | 6 | ±0.2 |
10 | menthone | 1145 | 1148 | 89-80-5 | 21.9 | 3 | ±0.0 |
11 | iso-menthone | 1154 | 1150 | 491-07-6 | 22.9 | 0.2 | ±0.1 |
12 | neoiso-menthol | 1160 | 1184 | 491-02-1 | 23.6 | 0.1 | ±0.1 |
13 | pulegone | 1226 | 1233 | 89-82-7 | 31.7 | 3 | ±0.4 |
14 | cis-piperitone epoxide | 1240 | 1250 | 4713-37-5 | 33.4 | 22 | ±1.4 |
15 | trans-piperitone epoxide | 1243 | 1252 | 57130-28-6 | 33.7 | 46 | ±4.2 |
16 | acetic acid, 2-phenylethyl ester | 1246 | 1254 | 103-45-7 | 34.1 | 1 | ±0.0 |
17 | piperitenone oxide | 1360 | 1366 | 35178-55-3 | 47 | 11 | ±1.1 |
18 | caryophyllene | 1404 | 1417 | 87-44-5 | 50.5 | 1 | ±0.1 |
19 | bicyclogermacrene | 1486 | 1500 | 24703-35-3 | 54.0 | 0.2 | ±0.0 |
20 | spathulenol | 1568 | 1577 | 6750-60-3 | 56.8 | 0.3 | ±0.1 |
21 | cyclocolorenone | 1747 | 1759 | 489-45-2 | 61.5 | 1 | ±0.5 |
Not identified | 0.7 | ||||||
Oxygenated Hydrocarbons | 0.3 | ||||||
Monoterpenes | 1 | ||||||
Oxygenated monoterpenes | 96 | ||||||
Sesquiterpenes | 1 | ||||||
Oxygenated sesquiterpenes | 1 | ||||||
Total | 100 |
mg/mL | |||
---|---|---|---|
Essential Oil | Limonene | Trolox | |
0.00 | nd | nd | nd |
0.04 | nd | nd | 51 ± 2.3 |
0.06 | nd | nd | 79 ± 1.5 |
0.08 | nd | nd | 82 ± 0.2 |
0.1 | nd | 0.3 ± 0.16 | 83 ± 0.1 |
1 | 12 ± 0.4 | 0.2 ± 0.1 | nr |
10 | 67 ± 1.7 | 1 ± 0.8 | nr |
50 | 82 ± 0.2 | 3 ± 1.1 | nr |
100 | 82 ± 0.2 | 9 ± 0.9 | nr |
Dilution, v/v, % | % Inhibition, | |
---|---|---|
E. coli | S. aureus | |
Direct (100%) | 73 ± 1.6 | 81 ± 1.7 |
1:10 (10%) | 51 ± 2.2 | 46 ± 3.2 |
1:100 (1%) | 31 ± 1.4 | 28 ± 2.5 |
1:500 (0.5%) | 6 ± 0.9 | 20 ± 2.9 |
1:1000 (0.1%) | nd | 6 ± 2.1 |
S. macrostema Essential Oils Fractions with Antimicrobial Properties | |||
---|---|---|---|
f1 | f2 | f3 | |
Retention factor (Rf) values | |||
E. coli S. aureus | 0.02 0.02 | 0.31 0.35 | 0.62 * 0.61 * |
Detected compounds | |||
linalool (>) caryophyllene trans-thujene piperitenone spathulenol | pulegone piperitone oxide (>) | cis-piperitone epoxide trans-piperitone epoxide (>) iso-menthone 2-phenil ethyl acetate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrientos Ramírez, L.; Silva Guzmán, J.A.; Osorio Muñoz, E.A.; Alvarez Moya, C.; Reynoso Silva, M.; Cetina Corona, A.F.; Casas Solis, J.; Vargas Radillo, J.J. Chemical Composition, Antioxidant Properties, and Antibacterial Activity of Essential Oils of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Molecules 2023, 28, 4719. https://doi.org/10.3390/molecules28124719
Barrientos Ramírez L, Silva Guzmán JA, Osorio Muñoz EA, Alvarez Moya C, Reynoso Silva M, Cetina Corona AF, Casas Solis J, Vargas Radillo JJ. Chemical Composition, Antioxidant Properties, and Antibacterial Activity of Essential Oils of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Molecules. 2023; 28(12):4719. https://doi.org/10.3390/molecules28124719
Chicago/Turabian StyleBarrientos Ramírez, Lucia, José Antonio Silva Guzmán, Edison Antonio Osorio Muñoz, Carlos Alvarez Moya, Mónica Reynoso Silva, Abraham Francisco Cetina Corona, Josefina Casas Solis, and J. Jesús Vargas Radillo. 2023. "Chemical Composition, Antioxidant Properties, and Antibacterial Activity of Essential Oils of Satureja macrostema (Moc. and Sessé ex Benth.) Briq" Molecules 28, no. 12: 4719. https://doi.org/10.3390/molecules28124719
APA StyleBarrientos Ramírez, L., Silva Guzmán, J. A., Osorio Muñoz, E. A., Alvarez Moya, C., Reynoso Silva, M., Cetina Corona, A. F., Casas Solis, J., & Vargas Radillo, J. J. (2023). Chemical Composition, Antioxidant Properties, and Antibacterial Activity of Essential Oils of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Molecules, 28(12), 4719. https://doi.org/10.3390/molecules28124719