Enantioselective Toxic Effects of Prothioconazole toward Scenedesmus obliquus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enantioselective Growth Inhibition of PTC on S. obliquus
2.2. Effects of PTC Racemates and Enantiomerson Algal Photosynthetic Pigments
2.3. Effects of PTC on Intracellular Oxidative Stress and Esterase Activities
2.4. FTIR Analysis to Evaluate the Interaction between PTC and Microalgae
2.5. Effects of PTC on Cell Morphology and Membrane Permeability of S. obliquus
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Algal Growth Inhibition Test
3.3. Determination of Photosynthetic Pigments
3.4. CAT and MDA Analysis
3.5. Esterase Activity and Cell Viability Analysis
3.6. FTIR Characterization of the Interactions between PTC and Algae
3.7. Cell Morphology Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tian, S.; Teng, M.; Meng, Z.; Yan, S.; Jia, M.; Li, R.; Liu, L.; Yan, J.; Zhou, Z.; Zhu, W. Toxicity effects in zebrafish embryos (Danio rerio) induced by prothioconazole. Environ. Pollut. 2019, 255, 113269. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, G.; Gao, B.; Hu, K.; Kaziem, A.E.; Li, L.; Wang, M. Stereoselective endocrine-disrupting effects of the chiral triazole fungicide prothioconazole and its chiral metabolite. Environ. Pollut. 2019, 251, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, B.; He, Z.; Li, L.; Zhang, Q.; Kaziem, A.E.; Wang, M. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite. Pestic. Biochem. Physiol. 2019, 160, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Deng, Y.; Zhang, W.; Zhang, L.; Wang, Z.; Li, B.; Zhou, Z. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa. Ecotoxicol. Environ. Saf. 2019, 185, 109691. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, P.; Sun, Y.; Xu, X.; Guo, L.; Rao, Q.; Wu, H. Embryonic exposure to prothioconazole induces oxidative stress and apoptosis in zebrafish (Danio rerio) early life stage. Sci. Total Environ. 2020, 756, 143859. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, H.; Chang, J.; Wang, Y.; Li, J.; Wang, H. Gonadal disruption after single dose exposure of prothioconazole and prothioconazole-desthio in male lizards (Eremias argus). Environ. Pollut. 2019, 255, 113297. [Google Scholar] [CrossRef]
- Stenrød, M. Long-term trends of pesticides in Norwegian agricultural streams and potential future challenges in northern climate. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2015, 65, 199–216. [Google Scholar] [CrossRef]
- Halbach, K.; Möder, M.; Schrader, S.; Liebmann, L.; Schäfer, R.; Schneeweiss, A.; Schreiner, V.; Vormeier, P.; Weisner, O.; Liess, M.; et al. Small streams–large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall. Water Res. 2021, 203, 117535. [Google Scholar] [CrossRef]
- Pap, S.M.; Popovic, B.; Stojic, N.; Danojevic, D.; Pucarevi, M.; Cervenski, J.; Speranda, M. The environmental issue of pesticide residues in agricultural soils in Serbia. Int. J. Environ. Sci. Technol. 2023, 20, 7263–7276. [Google Scholar]
- Kruse-Plass, M.; Hofmann, F.; Wosniok, W.; Schlechtriemen, U.; Kohlschuetter, N. Pesticides and pesticide-related products in ambient air in Germany. Environ. Sci. Eur. 2021, 33, 114. [Google Scholar] [CrossRef]
- Roszko, M.; Karninska, M.; Szymczyk, K.; Jedrzejczak, R. Levels of selected persistent organic pollutants (PCB, PBDE) and pesticides in honey bee pollen sampled in Poland. PLoS ONE 2017, 11, e0167487. [Google Scholar] [CrossRef]
- Zhai, W.; Zhang, L.; Cui, J.; Wei, Y.; Wang, P.; Liu, D.; Zhou, Z. The biological activities of prothioconazole enantiomers and their toxicity assessment on aquatic organisms. Chirality 2019, 31, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Xue, M.; Wang, Z.; Yu, J.; Guo, X. Enantioselective degradation of chiral fungicides triticonazole and prothioconazole in soils and their enantioselective accumulation in earthworms Eisenia fetida. Ecotoxicol. Environ. Saf. 2019, 183, 109491. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Dong, F.; Xu, J.; Liu, X.; Wu, X.; Pan, X.; Zheng, Y. Enantioselective Separation and Dissipation of prothioconazole and its major metabolite prothioconazole-desthio enantiomers in tomato, cucumber, and pepper. J. Agric. Food Chem. 2019, 67, 10256–10264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xie, Y.; Ye, Y.; Yang, Y.; Hua, R.; Wu, X. Toxifcation metabolism and treatment strategy of the chiral triazole fungicide prothioconazole in water. J. Hazard. Mater. 2022, 432, 128650. [Google Scholar] [CrossRef]
- An, X.; Liu, X.; Jiang, J.; Wang, F.; Lv, L.; Li, G.; Wu, S.; Zhao, X. Acute and chronic toxicity of prothioconazole and its metabolite prothioconazole-desthio to Daphnia Magna. Environ. Sci. Pollut. Res. 2022, 29, 54467–54475. [Google Scholar]
- Sun, Y.; Cao, Y.; Tong, L.; Tao, F.; Wang, X.; Wu, H.; Wang, M. Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo. Chemosphere 2020, 25, 126418. [Google Scholar] [CrossRef]
- Baruah, P.; Chaurasia, N. Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp: Growth inhibition and oxidative stress studies. Environ. Toxicol. Pharmacol. 2020, 76, 103347. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, W.; Qin, Y.; Liu, R.; Zhang, L.; Wang, Z.; Diao, J. Stereoselective toxicity of metconazole to the antioxidant defenses and the photosynthesis system of Chlorella pyrenoidosa. Aquat. Toxicol. 2019, 210, 129–138. [Google Scholar] [CrossRef]
- Li, L.; Huang, P.; Li, J. Enantioselective effects of the fungicide metconazole on photosynthetic activity in Microcystis flosaquae. Ecotoxicol. Environ. Saf. 2021, 211, 111894. [Google Scholar] [CrossRef]
- Liu, C.; Liu, S.; Diao, J. Enantioselective growth inhibition of the green algae (Chlorella vulgaris) induced by two paclobutrazol enantiomers. Environ. Pollut. 2019, 250, 610–617. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, C.; Chen, L.; Di, S.; Liu, C.; Diao, J.; Zhou, Z. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa. Chemosphere 2016, 159, 50–57. [Google Scholar] [CrossRef]
- Nong, Q.; Liu, Y.; Qin, L.; Liu, M.; Mo, L.; Liang, Y.; Zeng, H. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. Chemosphere 2021, 262, 127793. [Google Scholar] [CrossRef]
- Huang, L.; Lu, D.; Diao, J.; Zhou, Z. Enantioselective toxic effects and biodegradation of benalaxyl in Scenedesmus obliquus. Chemosphere 2012, 87, 7–11. [Google Scholar] [CrossRef]
- Deng, Y.; Beadham, I.; Ren, H.Y.; Ji, M.M.; Ruan, W.Q. A study into the species sensitivity of green algae towards imidazolium-based ionic liquids using flow cytometry. Ecotoxicol. Environ. Saf. 2020, 194, 110392. [Google Scholar] [CrossRef] [PubMed]
- Pikula, K.; Chaika, V.; Zakharenko, A.; Markina, Z.; Vedyagin, A.; Kuznetsov, V.; Gusev, A.; Park, S.; Golokhvast, K. Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae. Nanomaterials 2020, 10, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Zhou, Q.; Chen, C.; Yang, F.; Cai, Z.; Li, D.; Geng, Q.; Feng, Y.; Wang, H. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci. Total Environ. 2019, 660, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Déniel, M.; Lagarde, F.; Caruso, A.; Errien, N. Infrared spectroscopy as a tool to monitor interactions between nanoplastics and microalgae. Anal. Bioanal. Chem. 2020, 412, 4413–4422. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Huang, G.; Liu, X.; An, C.; Yao, Y.; Weger, H.; Chen, X. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy. Environ. Pollut. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Dao, L.; Beardall, J.; Heraud, P. Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy. Aquat. Toxicol. 2017, 188, 33–42. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Khoironi, A.; Dianratri, I.; Suherman, S.; Muhammad, F.; Vaidyanathan, S. Interactions between polyethylene and polypropylene microplastics and Spirulina sp. microalgae in aquatic systems. Heliyon 2021, 7, e07676. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Shao, J.; Wang, Y.; Wang, X.; Yang, H.; Zhang, X.; Xiong, D. Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris. Pestic. Biochem. Physiol. 2019, 158, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Han, Z.; Chen, Y.; Liang, X.; Li, H.; Qian, Y. Optimization of FDA–PI method using flow cytometry to measure metabolic activity of the cyanobacteria, Microcystis Aeruginosa. Phys. Chem. Earth 2011, 36, 424–429. [Google Scholar] [CrossRef]
- Strotmann, U.; Thouand, G.; Pagga, U.; Gartiser, S.; Heipieper, H. Toward the future of OECD/ISO biodegradability testing-new approaches and developments. Appl. Microbiol. Biotechnol. 2023, 107, 2073–2095. [Google Scholar] [CrossRef] [PubMed]
- Strotmann, U.; Pastor Flores, D.; Konrad, O.; Gendig, C. New developments in bacterial toxicity testing: Improvement of the respiration inhibition test and the luminescent bacteria test. Processes 2020, 8, 1349. [Google Scholar] [CrossRef]
- Hund-Rinke, K.; Schlinkert, R.; Schlich, K. Testing particles using the algal growth inhibition test (OECD 201): The suitability of in vivo chlorophyll fluorescence measurements. Environ. Sci. Eur. 2022, 34, 41. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hazeem, L.J.; Yesilay, G.; Bououdina, M.; Perna, S.; Cetin, D.; Suludere, Z.; Barras, A.; Boukherroub, R. Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. Mar. Pollut. Bull. 2020, 156, 111278. [Google Scholar] [CrossRef]
R-(−)-PTC | S-(+)-PTC | Rac-PTC | ||||
---|---|---|---|---|---|---|
EC50 (mg·L−1) | R2 | EC50 (mg·L−1) | R2 | EC50 (mg·L−1) | R2 | |
24 | 49.54 (25.22–211.97) | 0.76 | 19.29 (14.03–30.75) | 0.95 | 21.83 (15.28–37.35) | 0.92 |
48 | 14.54 (11.54–19.70) | 0.85 | 6.29 (5.58–7.20) | 0.97 | 7.62 (6.62–8.99) | 0.93 |
72 | 16.53 (11.44–32.42) | 0.87 | 7.85 (6.99–8.98) | 0.95 | 8.15 (6.91–10.05) | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Q.; Zhou, Y.; Tan, C. Enantioselective Toxic Effects of Prothioconazole toward Scenedesmus obliquus. Molecules 2023, 28, 4774. https://doi.org/10.3390/molecules28124774
Xiang Q, Zhou Y, Tan C. Enantioselective Toxic Effects of Prothioconazole toward Scenedesmus obliquus. Molecules. 2023; 28(12):4774. https://doi.org/10.3390/molecules28124774
Chicago/Turabian StyleXiang, Qingqing, Ying Zhou, and Chengxia Tan. 2023. "Enantioselective Toxic Effects of Prothioconazole toward Scenedesmus obliquus" Molecules 28, no. 12: 4774. https://doi.org/10.3390/molecules28124774
APA StyleXiang, Q., Zhou, Y., & Tan, C. (2023). Enantioselective Toxic Effects of Prothioconazole toward Scenedesmus obliquus. Molecules, 28(12), 4774. https://doi.org/10.3390/molecules28124774