On the Microcrystal Structure of Sputtered Cu Films Deposited on Si(100) Surfaces: Experiment and Integrated Multiscale Simulation
Abstract
:1. Introduction
2. Results
2.1. Experimental Characterization Results
2.2. Simulation Results
3. Materials and Methods
3.1. Experimental Method
3.2. MC–MD Simulation of the Transport of Sputtered Cu Atoms
3.3. MD Simulation of the Growth of Sputtered Cu Film on Si Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Othman, N.A.; Nayan, N.; Mustafa, M.K. Effects of post-annealing on GaN thin films growth using RF magnetron sputtering. Int. J. Nanotechnol. 2022, 19, 316–326. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Kim, K.; Jo, H.; Lee, D. Combined effects of residual stress and microstructure on degradation of Cu thin films on Si. Thin Solid Film. 2023, 764, 139607. [Google Scholar] [CrossRef]
- Malinovskis, P.; Fritze, S.; Palisaitis, J.; Lewin, E.; Jansson, U. Synthesis and Characterisation of Nanocomposite Mo-Fe-B Thin Films Deposited by Magnetron Sputtering. Materials 2021, 14, 1739. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tuofu, Z.; Yue, Z.; Sun, H.; Gong, J.; Gao, J. Research on adhesion strength and optical properties of SiC films obtained via RF magnetron sputtering. Chin. J. Phys. 2020, 64, 79–86. [Google Scholar] [CrossRef]
- Das, A.; Rath, M.; Nair, D.R. Realization of preferential (100) oriented AlN thin films on Mo coated Si substrate using reactive RF magnetron sputtering. Appl. Surf. Sci. 2021, 3, 149308. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, X.; Gu, S. Pt thin-film resistance temperature detector on flexible Hastelloy tapes. Vacuum 2021, 184, 109966. [Google Scholar] [CrossRef]
- Ponpandian, H.; Viswanathan, C. A Electrochemical Dopamine Sensor Based on RF Magnetron Sputtered TiO2/SS Thin Film Electrode. Mater. Lett. 2021, 300, 130175. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Y.; Guo, R. Tailoring the electronic properties of nickel silicide by interfacial modification. AIP Adv. 2022, 12, 075112. [Google Scholar] [CrossRef]
- Boyer, F.; Dabertrand, K.; Bernier, N. Ni (Pt)-based CMOS-compatible contacts on p-InGaAs for III–V photonic devices. Mat. Sci. Semicon. Proc. 2023, 154, 107199. [Google Scholar] [CrossRef]
- Trieschmann, J.; Mussenbrock, T. Transport of sputtered particles in capacitive sputter sources. J. Appl. Phys. 2015, 118, 033302. [Google Scholar] [CrossRef] [Green Version]
- Mes-adi, H.; Saadouni, K.; Mazroui, M. Effect of incident angle on the microstructure proprieties of Cu thin film deposited on Si (001) substrate. Thin Solid Film. 2021, 721, 138553. [Google Scholar] [CrossRef]
- Settaouti, A.; Settaouti, L. Simulation of the transport of sputtered atoms and effects of processing conditions. Appl. Surf. Sci. 2008, 254, 5750–5756. [Google Scholar] [CrossRef]
- Wu, B.; Haehnlein, I.; Shchelkanov, I.; McLain, J.; Patel, D.; Uhlig, J.; Jurczyk, B.; Leng, Y.; Ruzic, D.N. Cu films prepared by bipolar pulsed high power impulse magnetron sputtering. Vacuum 2018, 150, 216–221. [Google Scholar] [CrossRef]
- Chu, C.J.; Chen, T.C. Surface properties of film deposition using molecular dynamics simulation. Surf. Coat. Technol. 2006, 201, 1796–1804. [Google Scholar] [CrossRef]
- Taguchi, M.; Hamaguchi, S. MD simulations of amorphous SiO2 thin film formation in reactive sputtering deposition processes. Thin Solid Film. 2007, 515, 4879–4882. [Google Scholar] [CrossRef]
- Georgieva, V.; Voter, A.F.; Bogaerts, A. Understanding the Surface Diffusion Processes during Magnetron Sputter-Deposition of Complex Oxide Mg–Al–O Thin Films. Cryst. Growth Des. 2011, 11, 2553–2558. [Google Scholar] [CrossRef]
- Ibrahim, S.; Lahboub, F.Z.; Brault, P.; Petit, A.; Caillard, A.; Millon, E.; Sauvage, T.; Fernández, A.; Thomann, A.L. Influence of helium incorporation on growth process and properties of aluminum thin films deposited by DC magnetron sputtering. Surf. Coat. Technol. 2021, 426, 127808. [Google Scholar] [CrossRef]
- Brault, P.; Neyts, E.C. Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering. Catal. Today 2015, 256, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.; Schuller, I.K.; Falco, C.M. Thermalization of sputtered atoms. J. Appl. Phys. 1981, 52, 5803–5805. [Google Scholar] [CrossRef]
- Zhu, G.; Du, Q.; Xiao, B.; Chen, G.; Gan, Z. Influence of Target-Substrate Distance on the Transport Process of Sputtered Atoms: MC-MD Multiscale Coupling Simulation. Materials 2022, 15, 8904. [Google Scholar] [CrossRef]
- Craig, S.; Harding, G.L. Effects of argon pressure and substrate temperature on the structure and properties of sputtered copper films. J. Vac. Sci. Technol. 1981, 19, 205–215. [Google Scholar] [CrossRef]
- Pletea, M.; Brückner, W.; Wendrock, H. Stress evolution during and after sputter deposition of Cu thin films onto Si (100) substrates under various sputtering pressures. J. Appl. Phys. 2005, 97, 054908. [Google Scholar] [CrossRef]
- Thornton, J.A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. A 1974, 11, 666. [Google Scholar] [CrossRef]
- Musil, J. Low-pressure magnetron sputtering. Vacuum 1998, 50, 363–372. [Google Scholar] [CrossRef]
- Anders, A. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Film. 2010, 518, 4087–4090. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.J.; Liu, C.S.; Lai, J.B. Interfacial reactions of ultrahigh-vacuum-deposited Cu thin films on Si, Ge and on epitaxial Si–Ge layers on Si and Ge. Mat. Sci. Semicon. Proc. 2004, 7, 143–156. [Google Scholar] [CrossRef]
- Jiang, H.; Klemmer, T.J.; Barnard, J.A. Epitaxial growth of Cu on Si by magnetron sputtering. J. Vac. Sci. Technol. A 1998, 16, 3376–3383. [Google Scholar] [CrossRef]
- Bennett, E.L.; Wilson, T.; Murphy, P.J.; Refson, K.; Hannon, A.C.; Imberti, S.; Parker, S.F. Structure and spectroscopy of CuH prepared via borohydride reduction. Acta Crystallogr. B 2015, 71, 608–612. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.; Wilson, T.; Murphy, P.J.; Refson, K.; Hannon, A.C.; Imberti, S.; Parker, S.F. How the surface structure determines the properties of CuH. Inorg. Chem. 2015, 54, 2213–2220. [Google Scholar] [CrossRef]
- Lim, J.W.; Isshiki, M. Effect of substrate bias voltage on the texture and microstructure of Cu thin films deposited by ion beam deposition. Met. Mater. Int. 2003, 9, 201–205. [Google Scholar] [CrossRef]
- Ryu, C.; Kwon, K.W.; Loke, A.L.S. Microstructure and reliability of copper interconnects. IEEE T. Electron Dev. 1999, 46, 1113–1120. [Google Scholar] [CrossRef]
- Cullity, B.D. Element of X-ray Diffraction; Addison-Wesley: Boston, MA, USA, 1978. [Google Scholar]
- Zhu, G.; Han, M.; Xiao, B.; Gan, Z. Influence of Sputtering Pressure on the Micro-Topography of Sputtered Cu/Si Films: Integrated Multiscale Simulation. Processes 2023, 11, 1649. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool, Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Mane, A.U.; Shivashankar, S.A. MOCVD of cobalt oxide thin films: Dependence of growth, microstructure, and optical properties on the source of oxidation. J. Cryst. Growth 2003, 254, 368–377. [Google Scholar] [CrossRef]
- King, W.E.; Merkle, K.L.; Meshii, M. Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope. Phys. Rev. B 1981, 23, 6319–6334. [Google Scholar] [CrossRef]
- Zhu, G.; Sun, J.P.; Guo, X.X.; Zou, X.X.; Zhang, L.B.; Gan, Z.Y. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu. Nucl. Instrum. Methods B 2017, 401, 45–50. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Jacobsen, K.W.; Stoltze, P.; Hansen, L.B. Many-atom interactions in metals. Surf. Sci. 1993, 283, 277–282. [Google Scholar] [CrossRef]
- Foley, J.H.; Raynor, G.V. Lattice spacings in the system copper+ germanium+ silicon. Trans. Faraday Soc. 1961, 57, 51–60. [Google Scholar] [CrossRef]
- Meunier, A.; Gilles, B.; Verdier, M. Cu/Si(0 0 1) epitaxial growth: Role of the epitaxial silicide formation in the structure and the morphology. J. Cryst. Growth. 2005, 275, c1059–c1065. [Google Scholar] [CrossRef]
- Solberg, J.K. The crystal structure of η-Cu3Si precipitates in Silicon. Acta Cryst. 1978, 34, 684–698. [Google Scholar] [CrossRef]
- Savchenkov, A.; Shukrinov, P.; Mutombo, P. Initial stages of Cu/Si interface formation. Surf. Sci. 2002, 507, 889–894. [Google Scholar] [CrossRef]
- Golosov, D.A.E.; Melnikov, S.N.; Kundas, S.P.; Dostanko, A. Prediction of targets erosion in magnetron sputtering systems. Prob. Fiz. Mat. Tekh. 2010, 2, 62–67. Available online: http://mi.mathnet.ru/eng/pfmt/y2010/i2/p62 (accessed on 12 May 2021).
- Santos, J.P.E. Measuring the magnetic field distribution of a magnetron sputtering target. J. Vac. Sci. Technol. A 1999, 17, 3118–3120. [Google Scholar] [CrossRef]
- Thompson, M.W., II. The energy spectrum of ejected atoms during the high energy sputtering of gold. Philos. Mag. 1968, 18, 377–414. [Google Scholar] [CrossRef]
- Yamamura, Y.; Takiguchi, T.; Ishida, M. Energy and angular distributions of sputtered atoms at normal incidence. Radiat. Eff. Defect. S 1991, 118, 237–261. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Sun, J.; Zhang, L.; Gan, Z. Molecular dynamics simulation of temperature effects on deposition of Cu film on Si by magnetron sputtering. J. Cryst. Growth 2018, 492, 60–66. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef]
- Yasukawa, A. Static Fatigue Strength Analysis of SiO2 under Atmospheric Influence Using Extended Tersoff Interatomic Potential. T. Jpn. Soc. Mech. Eng. A 1995, 61, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, C.; Shu, Y.; Fan, J. Growth and properties of Cu thin film deposited on Si(001) substrate: A molecular dynamics simulation study. Appl. Surf. Sci. 2012, 261, 690–696. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Han, M.; Xiao, B.; Gan, Z. On the Microcrystal Structure of Sputtered Cu Films Deposited on Si(100) Surfaces: Experiment and Integrated Multiscale Simulation. Molecules 2023, 28, 4786. https://doi.org/10.3390/molecules28124786
Zhu G, Han M, Xiao B, Gan Z. On the Microcrystal Structure of Sputtered Cu Films Deposited on Si(100) Surfaces: Experiment and Integrated Multiscale Simulation. Molecules. 2023; 28(12):4786. https://doi.org/10.3390/molecules28124786
Chicago/Turabian StyleZhu, Guo, Mengxin Han, Baijun Xiao, and Zhiyin Gan. 2023. "On the Microcrystal Structure of Sputtered Cu Films Deposited on Si(100) Surfaces: Experiment and Integrated Multiscale Simulation" Molecules 28, no. 12: 4786. https://doi.org/10.3390/molecules28124786
APA StyleZhu, G., Han, M., Xiao, B., & Gan, Z. (2023). On the Microcrystal Structure of Sputtered Cu Films Deposited on Si(100) Surfaces: Experiment and Integrated Multiscale Simulation. Molecules, 28(12), 4786. https://doi.org/10.3390/molecules28124786