Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Suppression
2.2. Relaxation Filters
2.3. Lipid Suppression
2.4. Multiple Quantum Filters
2.5. Suppression of J-Coupling
2.6. 2D Homonuclear 1H-1H Experiments
2.7. Selective Experiments
2.8. IP-iSQC
3. Materials and Methods
3.1. Sample Preparation
3.2. NMR Experiments and Processing
3.2.1. Water Suppression
3.2.2. Relaxation Filters
3.2.3. Lipid Suppression
3.2.4. Multiple Quantum Filters
3.2.5. Suppression of J-Coupling
3.2.6. 2D Homonuclear 1H-1H Experiments
3.2.7. Selective Experiments
3.2.8. IP-iSQC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Awasthi, M.K.; Dussap, C.-G.; Pandey, A. Assessing the Impact of Industrial Waste on Environment and Mitigation Strategies: A Comprehensive Review. J. Hazard. Mater. 2020, 398, 123019. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, Z.; Hashemi, M.; Bameri, S.; Mohamad Taghvaee, V. Environmental Pollution, Economic Growth, Population, Industrialization, and Technology in Weak and Strong Sustainability: Using STIRPAT Model. Environ. Dev. Sustain. 2020, 22, 1105–1122. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb, T.T.Y.; Furqan, M. Industrialization, Urbanization and CO2 Emissions in Saudi Arabia: Asymmetry Analysis. Energy Rep. 2020, 6, 1553–1560. [Google Scholar] [CrossRef]
- Bastawrous, M.; Jenne, A.; Tabatabaei Anaraki, M.; Simpson, A. In Vivo NMR Spectroscopy: A Powerful and Complimentary Tool for Understanding Environmental Toxicity. Metabolites 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Lee, Y.; Yoon, S.J.; Lee, J.; Kang, S.; Won, E.-J.; Hur, J.; Khim, J.S.; Shin, K.-H. Carbon and Nitrogen Stable Isotope Signatures Linked to Anthropogenic Toxic Substances Pollution in a Highly Industrialized Area of South Korea. Mar. Pollut. Bull. 2019, 144, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Tara, N.; Siddiqui, S.I.; Bach, Q.-V.; Chaudhry, S.A. Reduce Graphene Oxide-Manganese Oxide-Black Cumin Based Hybrid Composite (RGO-MnO2/BC): A Novel Material for Water Remediation. Mater. Today Commun. 2020, 25, 101560. [Google Scholar] [CrossRef]
- Alinnor, I.J. Assessment of Elemental Contaminants in Water and Fish Samples from Aba River. Environ. Monit. Assess 2005, 102, 15–25. [Google Scholar] [CrossRef]
- Krewski, D.; Acosta, D.; Andersen, M.; Anderson, H.; Bailar, J.C.; Boekelheide, K.; Brent, R.; Charnley, G.; Cheung, V.G.; Green, S.; et al. Toxicity Testing in the 21st Century: A Vision and a Strategy. J. Toxicol. Environ. Health B 2010, 13, 51–138. [Google Scholar] [CrossRef]
- Khim, J.S.; Villeneuve, D.L.; Kannan, K.; Lee, K.T.; Snyder, S.A.; Koh, C.-H.; Giesy, J.P. Alkylphenols, Polycyclic Aromatic Hydrocarbons, and Organochlorines in Sediment from Lake Shihwa, Korea: Instrumental and Bioanalytical Characterization. Environ. Toxicol. Chem 1999, 18, 2424–2432. [Google Scholar] [CrossRef]
- Simpson, A.J.; Liaghati, Y.; Fortier-McGill, B.; Soong, R.; Akhter, M. Perspective: In Vivo NMR—A Potentially Powerful Tool for Environmental Research: Monitor and Understand the Biochemistry behind Environmental Stress, Toxicity and Exposure. Magn. Reson. Chem. 2015, 53, 686–690. [Google Scholar] [CrossRef]
- Hassan, Q.; Dutta Majumdar, R.; Wu, B.; Lane, D.; Tabatabaei-Anraki, M.; Soong, R.; Simpson, M.J.; Simpson, A.J. Improvements in Lipid Suppression for 1H NMR-Based Metabolomics: Applications to Solution-State and HR-MAS NMR in Natural and in Vivo Samples. Magn. Reson. Chem. 2019, 57, 69–81. [Google Scholar] [CrossRef]
- Fugariu, I.; Bermel, W.; Lane, D.; Soong, R.; Simpson, A.J. In-Phase Ultra High-Resolution In Vivo NMR. Angew. Chem. 2017, 56, 6324–6328. [Google Scholar] [CrossRef]
- Arnold, A.A.; Bourgouin, J.-P.; Genard, B.; Warschawski, D.E.; Tremblay, R.; Marcotte, I. Whole Cell Solid-State NMR Study of Chlamydomonas Reinhardtii Microalgae. J. Biomol. NMR 2018, 70, 123–131. [Google Scholar] [CrossRef]
- Merkley, N.; Syvitski, R.T. Profiling Whole Microalgal Cells by High-Resolution Magic Angle Spinning (HR-MAS) Magnetic Resonance Spectroscopy. J. Appl. Phycol. 2012, 24, 535–540. [Google Scholar] [CrossRef]
- Deborde, C.; Hounoum, B.M.; Moing, A.; Maucourt, M.; Jacob, D.; Corraze, G.; Médale, F.; Fauconneau, B. Putative Imbalanced Amino Acid Metabolism in Rainbow Trout Long Term Fed a Plant-Based Diet as Revealed by 1H-NMR Metabolomics. J. Nutr. Sci. 2021, 10, e13. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Du, Y.; Meng, L.; Li, X.; Liu, Y. Metabolic Profiling in Kidneys of Atlantic Salmon Infected with Aeromonas Salmonicida Based on 1H NMR. Fish. Shellfish Immunol. 2016, 58, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Collette, T.W.; Skelton, D.M.; Davis, J.M.; Cavallin, J.E.; Jensen, K.M.; Kahl, M.D.; Villeneuve, D.L.; Ankley, G.T.; Martinović-Weigelt, D.; Ekman, D.R. Metabolite Profiles of Repeatedly Sampled Urine from Male Fathead Minnows (Pimephales promelas) Contain Unique Lipid Signatures Following Exposure to Anti-Androgens. Comp. Biochem. Phys. D 2016, 19, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, A.; Capitani, D.; Giannino, D.; Nicolodi, C.; Testone, G.; Santoro, F.; Frugis, G.; Iannelli, M.; Mattoo, A.; Brosio, E.; et al. NMR-Metabolic Methodology in the Study of GM Foods. Nutrients 2010, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkaczyk, A.; Bownik, A.; Dudka, J.; Kowal, K.; Ślaska, B. Daphnia magna Model in the Toxicity Assessment of Pharmaceuticals: A Review. Sci. Total Environ. 2021, 763, 143038. [Google Scholar] [CrossRef]
- Yang, M.; Wei, J.; Wang, Y.; Shen, C.; Xie, X. Short-term Starvation Affects Fatty Acid Metabolism of Daphnia magna Neonates and Juveniles. Aquat. Sci. 2021, 83, 15. [Google Scholar] [CrossRef]
- Lee, M.-C.; Park, J.C.; Lee, J.-S. Effects of Environmental Stressors on Lipid Metabolism in Aquatic Invertebrates. Aquat. Toxicol. 2018, 200, 83–92. [Google Scholar] [CrossRef]
- Aguilar, J.A.; Nilsson, M.; Bodenhausen, G.; Morris, G.A. Spin Echo NMR Spectra without J Modulation. Chem. Commun. 2012, 48, 811–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoa-Carballal, R.; Fernandez-Megia, E.; Jimenez, C.; Riguera, R. NMR Methods for Unravelling the Spectra of Complex Mixtures. Nat. Prod. Rep. 2011, 28, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Piersanti, E.; Rezig, L.; Tranchida, F.; El-Houri, W.; Abagana, S.M.; Campredon, M.; Shintu, L.; Yemloul, M. Evaluation of the Rotating-Frame Relaxation (T1ρ) Filter and Its Application in Metabolomics as an Alternative to the Transverse Relaxation (T2) Filter. Anal. Chem. 2021, 93, 8746–8753. [Google Scholar] [CrossRef]
- van Dijk, J.E.; Mehlkopf, A.F.; Bove, W.M.M.J. Comparison of Double and Zero Quantum NMR Editing Techniques for in Vivo Use. NMR Biomed. 1992, 5, 75–86. [Google Scholar] [CrossRef]
- Cai, H.; Chen, Y.; Cui, X.; Cai, S.; Chen, Z. High-Resolution 1H NMR Spectroscopy of Fish Muscle, Eggs and Small Whole Fish via Hadamard-Encoded Intermolecular Multiple-Quantum Coherence. PLoS ONE 2014, 9, e86422. [Google Scholar] [CrossRef] [Green Version]
- Foroozandeh, M.; Morris, G.A.; Nilsson, M. PSYCHE Pure Shift NMR Spectroscopy. Chem. Eur. J. 2018, 24, 13988–14000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, P.; Zab, C.; Porzel, A.; Franke, K.; Rizzo, P.; Wessjohann, L.A. PSYCHE—A Valuable Experiment in Plant NMR-Metabolomics. Molecules 2020, 25, 5125. [Google Scholar] [CrossRef]
- Fonville, J.M.; Maher, A.D.; Coen, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Evaluation of Full-Resolution J -Resolved 1H NMR Projections of Biofluids for Metabonomics Information Retrieval and Biomarker Identification. Anal. Chem. 2010, 82, 1811–1821. [Google Scholar] [CrossRef]
- Xia, Y.; Legge, G.; Jun, K.-Y.; Qi, Y.; Lee, H.; Gao, X. IP-COSY, a Totally in-Phase and Sensitive COSY Experiment. Magn. Reson. Chem. 2005, 43, 372–379. [Google Scholar] [CrossRef]
- Liaghati Mobarhan, Y.; Soong, R.; Lane, D.; Simpson, A.J. In Vivo Comprehensive Multiphase NMR. Magn. Reson. Chem. 2020, 58, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, P.; Kern, N.; Plesniak, M.P.; Nilsson, M.; Procter, D.J.; Morris, G.A.; Adams, R.W. Single-Scan Selective Excitation of Individual NMR Signals in Overlapping Multiplets. Angew. Chem. 2021, 60, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Jenne, A.; Bermel, W.; Michal, C.A.; Gruschke, O.; Soong, R.; Ghosh Biswas, R.; Bastawrous, M.; Simpson, A.J. DREAMTIME NMR Spectroscopy: Targeted Multi-Compound Selection with Improved Detection Limits. Angew. Chem. 2022, 134, e202110044. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, S.; Chen, X.; Chen, Z. Intermolecular Single-Quantum Coherence Sequences for High-Resolution NMR Spectra in Inhomogeneous Fields. J. Magn. Reson. 2010, 203, 100–107. [Google Scholar] [CrossRef]
- Leslie, S.B.; Israeli, E.; Lighthart, B.; Crowe, J.H.; Crowe, L.M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ. Microbiol. 1995, 61, 3592–3597. [Google Scholar] [CrossRef] [Green Version]
- Ghosh Biswas, R.; Soong, R.; Ning, P.; Lane, D.; Bastawrous, M.; Jenne, A.; Schmidig, D.; de Castro, P.; Graf, S.; Kuehn, T.; et al. Exploring the Applications of Carbon-Detected NMR in Living and Dead Organisms Using a 13C-Optimized Comprehensive Multiphase NMR Probe. Anal. Chem. 2022, 94, 8756–8765. [Google Scholar] [CrossRef]
- Tabatabaei Anaraki, M.; Dutta Majumdar, R.; Wagner, N.; Soong, R.; Kovacevic, V.; Reiner, E.J.; Bhavsar, S.P.; Ortiz Almirall, X.; Lane, D.; Simpson, M.J.; et al. Development and Application of a Low-Volume Flow System for Solution-State in Vivo NMR. Anal. Chem. 2018, 90, 7912–7921. [Google Scholar] [CrossRef]
- Mobarhan, Y.L.; Struppe, J.; Fortier-McGill, B.; Simpson, A.J. Effective Combined Water and Sideband Suppression for Low-Speed Tissue and in Vivo MAS NMR. Anal. Bioanal. Chem. 2017, 409, 5043–5055. [Google Scholar] [CrossRef]
- Piotto, M.; Saudek, V.; Sklenar, V. Gradient-Tailored Excitation for Single-Quantum NMR Spectroscopy of Aqueous Solutions. J. Biomol. NMR 1992, 2, 661–665. [Google Scholar] [CrossRef]
- Mo, H.; Harwood, J.S.; Raftery, D. Receiver Gain Function: The Actual NMR Receiver Gain: Receiver Gain Function. Magn. Reson. Chem. 2010, 48, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Lam, B.; Simpson, A.J. Direct 1H NMR Spectroscopy of Dissolved Organic Matter in Natural Waters. Analyst 2008, 133, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Mobarhan, Y.L.; Fortier-McGill, B.; Soong, R.; Maas, W.E.; Fey, M.; Monette, M.; Stronks, H.J.; Schmidt, S.; Heumann, H.; Norwood, W.; et al. Comprehensive Multiphase NMR Applied to a Living Organism. Chem. Sci. 2016, 7, 4856–4866. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Nicholson, J.K.; Lindon, J.C. High-Resolution Diffusion and Relaxation Edited One- and Two-Dimensional 1H NMR Spectroscopy of Biological Fluids. Anal. Chem. 1996, 68, 3370–3376. [Google Scholar] [CrossRef] [PubMed]
- Rooney, O.M.; Troke, J.; Nicholson, J.K.; Griffin, J.L. High-Resolution Diffusion and Relaxation-Edited Magic Angle Spinning 1H NMR Spectroscopy of Intact Liver Tissue. Magn. Reson. Med. 2003, 50, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Takegoshi, K.; Ogura, K.; Hikichi, K. A Perfect Spin Echo in a Weakly Homonuclear J-Coupled Two Spin- System. J. Magn. Reson. 1989, 84, 611–615. [Google Scholar] [CrossRef]
- Le Guennec, A.; Tayyari, F.; Edison, A.S. Alternatives to Nuclear Overhauser Enhancement Spectroscopy Presat and Carr–Purcell–Meiboom–Gill Presat for NMR-Based Metabolomics. Anal. Chem. 2017, 89, 8582–8588. [Google Scholar] [CrossRef] [Green Version]
- Grasso, D.; Pillozzi, S.; Tazza, I.; Bertelli, M.; Campanacci, D.A.; Palchetti, I.; Bernini, A. An Improved NMR Approach for Metabolomics of Intact Serum Samples. Anal. Biochem. 2022, 654, 114826. [Google Scholar] [CrossRef]
- Wallmeier, J.; Samol, C.; Ellmann, L.; Zacharias, H.U.; Vogl, F.C.; Garcia, M.; Dettmer, K.; Oefner, P.J.; Gronwald, W. Quantification of Metabolites by NMR Spectroscopy in the Presence of Protein. J. Proteome Res. 2017, 16, 1784–1796. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
- Diserens, G.; Vermathen, M.; Precht, C.; Broskey, N.T.; Boesch, C.; Amati, F.; Dufour, J.-F.; Vermathen, P. Separation of Small Metabolites and Lipids in Spectra from Biopsies by Diffusion-Weighted HR-MAS NMR: A Feasibility Study. Analyst 2015, 140, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trabesinger, A.H.; Meier, D.; Boesiger, P. In Vivo 1H NMR Spectroscopy of Individual Human Brain Metabolites at Moderate Field Strengths. Magn. Reson. Imaging 2003, 21, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Biswas, R.; Fortier-McGill, B.; Akhter, M.; Soong, R.; Ning, P.; Bastawrous, M.; Jenne, A.; Schmidig, D.; De Castro, P.; Graf, S.; et al. Ex Vivo Comprehensive Multiphase NMR of Whole Organisms: A Complementary Tool to in Vivo NMR. Anal. Chim. Acta 2020, 6, 100051. [Google Scholar] [CrossRef] [PubMed]
- Anaraki, M.T.; Lysak, D.H.; Soong, R.; Simpson, M.J.; Spraul, M.; Bermel, W.; Heumann, H.; Gundy, M.; Boenisch, H.; Simpson, A.J. NMR Assignment of the in Vivo Daphnia Magna Metabolome. Analyst 2020, 145, 5787–5800. [Google Scholar] [CrossRef] [PubMed]
- Santacruz, L.; Hurtado, D.X.; Doohan, R.; Thomas, O.P.; Puyana, M.; Tello, E. Metabolomic Study of Soft Corals from the Colombian Caribbean: PSYCHE and 1H-NMR Comparative Analysis. Sci. Rep. 2020, 10, 5417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollard, M.E.; Garrod, S.; Holmes, E.; Lindon, J.C.; Humpfer, E.; Spraul, M.; Nicholson, J.K. High-Resolution 1H and 1H-13C Magic Angle Spinning NMR Spectroscopy of Rat Liver. Magn. Reson. Med. 2000, 44, 201–207. [Google Scholar] [CrossRef]
- Piñero-Sagredo, E.; Nunes, S.; de los Santos, M.J.; Celda, B.; Esteve, V. NMR Metabolic Profile of Human Follicular Fluid. NMR Biomed. 2010, 23, 485–495. [Google Scholar] [CrossRef]
- May, G.L.; Wright, L.C.; Holmes, K.T.; Williams, P.G.; Smith, I.C.P.; Wright, P.E.; Fox, R.M.; Mountford, C.E. Assignment of Methylene Proton Resonances in NMR Spectra of Embryonic and Transformed Cells to Plasma Membrane Triglyceride. J. Biol. Chem. 1986, 261, 3048–3053. [Google Scholar] [CrossRef]
- Cross, K.J.; Holmes, K.T.; Mountford, C.E.; Wright, P.E. Assignment of Acyl Chain Resonances from Membranes of Mammalian Cells by Two-Dimensional NMR Methods. Biochemistry 1984, 23, 5895–5897. [Google Scholar] [CrossRef]
- Zipser, B.; Bradford, J.J.; Hollingsworth, R.I. Cholesterol and Its Derivatives, Are the Principal Steroids Isolated from the Leech Species Hirudo medicinalis. Comp. Biochem. Physiol. C 1998, 120, 269–282. [Google Scholar] [CrossRef]
- Downey, K.; Michal, C.A.; Bermel, W.; Jenne, A.; Soong, R.; Decker, V.; Busse, F.; Goerling, B.; Heumann, H.; Boenisch, H.; et al. Targeted Compound Selection with Increased Sensitivity in 13C-Enriched Biological and Environmental Samples Using 13C-DREAMTIME in Both High-Field and Low-Field NMR. Anal. Chem. 2023, 95, 6709–6717. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, P.; Nilsson, M.; Morris, G.A.; Adams, R.W. Single-Scan Ultra-Selective 1D Total Correlation Spectroscopy. Chem. Commun. 2021, 57, 2368–2371. [Google Scholar] [CrossRef] [PubMed]
- Peti, W.; Griesinger, C.; Bermel, W. Adiabatic TOCSY for C,C and H,H J-Transfer. J. Biomol. NMR 2000, 18, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.H.; Chen, A.D.; Johnson, C.S. An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. J. Magn. Reson. A 1995, 115, 260–264. [Google Scholar] [CrossRef]
- Sakhaii, P.; Bermel, W. Improving the Sensitivity of Conventional Spin Echo Spectra by Preservation of Initial Signal-to-Noise Ratio. J. Magn. Reson. 2014, 242, 220–223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronda, K.; Downey, K.; Jenne, A.; Bastawrous, M.; Wolff, W.W.; Steiner, K.; Lysak, D.H.; Costa, P.M.; Simpson, M.J.; Jobst, K.J.; et al. Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations. Molecules 2023, 28, 4863. https://doi.org/10.3390/molecules28124863
Ronda K, Downey K, Jenne A, Bastawrous M, Wolff WW, Steiner K, Lysak DH, Costa PM, Simpson MJ, Jobst KJ, et al. Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations. Molecules. 2023; 28(12):4863. https://doi.org/10.3390/molecules28124863
Chicago/Turabian StyleRonda, Kiera, Katelyn Downey, Amy Jenne, Monica Bastawrous, William W. Wolff, Katrina Steiner, Daniel H. Lysak, Peter M. Costa, Myrna J. Simpson, Karl J. Jobst, and et al. 2023. "Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations" Molecules 28, no. 12: 4863. https://doi.org/10.3390/molecules28124863
APA StyleRonda, K., Downey, K., Jenne, A., Bastawrous, M., Wolff, W. W., Steiner, K., Lysak, D. H., Costa, P. M., Simpson, M. J., Jobst, K. J., & Simpson, A. J. (2023). Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations. Molecules, 28(12), 4863. https://doi.org/10.3390/molecules28124863