Synthesis and Characterization of Iron Bispyridine Bisdicyanamide, Fe[C5H5N]2[N(CN)2]2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Description and Discussion
2.2. Elemental Analysis
2.3. Attenuated Total Reflection Infrared Spectroscopy (ATR-IR)
2.4. Thermogravimetric Analysis (TGA)
2.5. Chemical Bonding Analysis
2.6. Magnetic Properties
3. Materials and Methods
3.1. Synthesis
3.2. Single-Crystal Diffraction
3.3. Powder X-ray Diffraction
3.4. Magnetic Measurements
3.5. Infrared Spectroscopy (ATR-IR)
3.6. Thermogravimetric Analysis (TGA)
3.7. Atomic Absorption Spectroscopy (AAS)
3.8. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Weiser, H.B.; Milligan, W.O.; Bates, J.B. X-ray diffraction studies on heavy-metal iron cyanides. J. Phys. Chem. 1942, 46, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Bijvoet, J.M.; Lely, J.A. Eine rhombische Modifikation des Kaliumcyanids. Ueber die Lage des Umwandlungspunkts des Natriumcyanids in Abhängigkeit von Beimischungen. Recl. Trav. Chim. Pays-Bas 1940, 59, 908–912. [Google Scholar] [CrossRef]
- Kareis, C.M.; Lapidus, S.H.; Stephens, P.W.; Miller, J.S. Interpenetrating Three-Dimensional Diamondoid Lattices and Antiferromagnetic Ordering (Tc = 73 K) of MnII(CN)2. Inorg. Chem. 2012, 51, 3046–3050. [Google Scholar] [CrossRef] [PubMed]
- Lely, J.A.; Bijvoet, J.M. The crystal structure of lithium cyanide. Recl. Trav. Chim. Pays-Bas 1942, 61, 244–252. [Google Scholar] [CrossRef]
- Williams, D.J.; Partin, D.E.; Lincoln, F.J.; Kouvetakis, J.; O’Keeffe, M. The Disordered Crystal Structures of Zn(CN)2 and Ga(CN)3. J. Solid State Chem. 1997, 134, 164–169. [Google Scholar] [CrossRef]
- Williams, D.J.; Kouvetakis, J.; O’Keeffe, M. Synthesis of Nanoporous Cubic In(CN)3 and In1–xGax(CN)3 and Corresponding Inclusion Compounds. Inorg. Chem. 1998, 37, 4617–4620. [Google Scholar] [CrossRef]
- Rowe, J.M.; Rush, J.J.; Lüty, F. Crystal structure of rubidium cyanide at 4 K determined by neutron powder diffraction. Phys. Rev. B 1984, 29, 2168–2170. [Google Scholar] [CrossRef]
- Williams, D.J.; Pleune, B.; Leinenweber, K.; Kouvetakis, J. Synthesis and Structural Properties of the Binary Framework C–N Compounds of Be, Mg, Al, and Tl. J. Solid State Chem. 2001, 159, 244–250. [Google Scholar] [CrossRef]
- Arayamparambil, J.J.; Mann, M.; Liu, X.; Alfredsson, M.; Dronskowski, R.; Stievano, L.; Sougrati, M.T. Electrochemical Evaluation of Pb, Ag, and Zn Cyanamides/Carbodiimides. ACS Omega 2019, 4, 4339–4347. [Google Scholar] [CrossRef] [Green Version]
- Berger, U.; Schnick, W. Syntheses, crystal structures, and vibrational spectroscopic properties of MgCN2, SrCN2, and BaCN2. J. Alloys Compd. 1994, 206, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Down, M.G.; Haley, M.J.; Hubberstey, P.; Pulham, R.J.; Thunder, A.E. Solutions of lithium salts in liquid lithium: Preparation and X-ray crystal structure of the dilithium salt of carbodiimide (cyanamide). J. Chem. Soc. Dalton Trans. 1978, 1407. [Google Scholar] [CrossRef]
- Dronskowski, R. In2.24(NCN)3 and NaIn(NCN)2: Synthesis and Crystal Structures of New Main Group Metal Cyanamides. Z. Naturforsch. B 1995, 50, 1245–1251. [Google Scholar] [CrossRef]
- Jürgens, B.; Irran, E.; Schneider, J.; Schnick, W. Trimerization of NaC2N3 to Na3C6N9 in the Solid: Ab Initio Crystal Structure Determination of Two Polymorphs of NaC2N3 and of Na3C6N9 from X-ray Powder Diffractometry. Inorg. Chem. 2000, 39, 665–670. [Google Scholar] [CrossRef]
- Liu, X.; Dronskowski, R.; Kremer, R.K.; Ahrens, M.; Lee, C.; Whangbo, M. Characterization of the Magnetic and Structural Properties of Copper Carbodiimide, CuNCN, by Neutron Diffraction and First-Principles Evaluations of Its Spin Exchange Interactions. J. Phys. Chem. C 2008, 112, 11013–11017. [Google Scholar] [CrossRef]
- Krott, M.; Liu, X.; Fokwa, P.T.B.; Speldrich, M.; Lueken, H.; Dronskowski, R. Synthesis, Crystal-Structure Determination and Magnetic Properties of Two New Transition-Metal Carbodiimides: CoNCN and NiNCN. Inorg. Chem. 2007, 46, 2204–2207. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Krott, M.; Müller, P.; Hu, C.; Lueken, H.; Dronskowski, R. Synthesis, Crystal Structure, and Properties of MnNCN, the First Carbodiimide of a Magnetic Transition Metal. Inorg. Chem. 2005, 44, 3001–3003. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Stork, L.; Speldrich, M.; Lueken, H.; Dronskowski, R. FeNCN and Fe(NCNH)2: Synthesis, Structure, and Magnetic Properties of a Nitrogen-Based Pseudo-oxide and -hydroxide of Divalent Iron. Chem. Eur. J. 2009, 15, 1558–1561. [Google Scholar] [CrossRef]
- Tang, X.; Xiang, H.; Liu, X.; Speldrich, M.; Dronskowski, R. A Ferromagnetic Carbodiimide: Cr2(NCN)3. Angew. Chem. Int. Ed. 2010, 49, 4738–4742. [Google Scholar] [CrossRef]
- Reckeweg, O.; Wakabayashi, R.H.; DiSalvo, F.J.; Schulz, A.; Schneck, C.; Schleid, T. About alkali metal dicyanamides: Syntheses, single-crystal structure determination, DSC/TG and vibrational spectra of KCs[N(CN)2]2 and NaRb2[N(CN)2]3. Z. Naturforsch. B 2015, 70, 365–372. [Google Scholar] [CrossRef]
- Reckeweg, O.; DiSalvo, J.F.; Schulz, A.; Blaschowski, B.; Jagiella, S.; Schleid, T. Synthesis, Crystal Structure, and Vibrational Spectra of the Anhydrous Lithium Dicyanamide Li[N(CN)2]. Z. Anorg. Allg. Chem. 2014, 640, 851–855. [Google Scholar] [CrossRef]
- Jürgens, B.; Irran, E.; Schnick, W. Syntheses, Vibrational Spectroscopy, and Crystal Structure Determination from X-ray Powder Diffraction Data of Alkaline Earth Dicyanamides M[N(CN)2]2 with M = Mg, Ca, Sr, and Ba. J. Solid State Chem. 2001, 157, 241–249. [Google Scholar] [CrossRef]
- Kuhn, R.M.; Mecke, R. IR-Spektroskopische Untersuchungen am Dicyan-amid-Anion, [N(C≡N)2]–. Chem. Ber. 1961, 94, 3010–3015. [Google Scholar] [CrossRef]
- Britton, D.; Chow, Y.M. The crystal structure of silver dicyanamide, AgN(CN)2. Acta Crystallogr. B 1977, 33, 697–699. [Google Scholar] [CrossRef]
- Mann, M.; Reckeweg, O.; Nöthling, N.; Goddard, R.; Dronskowski, R. Syntheses and Characterization of Two Dicyanamide Compounds Containing Monovalent Cations: Hg2[N(CN)2]2 and Tl[N(CN)2]. Inorganics 2018, 6, 135. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.; Reckeweg, O.; Dronskowski, R. Synthesis and Characterization of the New Dicyanamide LiCs2[N(CN)2]3. Inorganics 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Kmety, C.R.; Huang, Q.; Lynn, J.W.; Erwin, R.W.; Manson, J.L.; McCall, S.; Crow, J.E.; Stevenson, K.L.; Miller, J.S.; Epstein, A.J. Noncollinear antiferromagnetic structure of the molecule-based magnet Mn[N(CN)2]2. Phys. Rev. B 2000, 62, 5576–5588. [Google Scholar] [CrossRef]
- Manson, J.L.; Kmety, C.R.; Epstein, A.J.; Miller, J.S. Spontaneous Magnetization in the M[N(CN)2]2 (M = Cr, Mn) Weak Ferromagnets. Inorg. Chem. 1999, 38, 2552–2553. [Google Scholar] [CrossRef]
- Manson, J.L.; Kmety, C.R.; Huang, Q.; Lynn, J.W.; Bendele, G.M.; Pagola, S.; Stephens, P.W.; Liable-Sands, L.M.; Rheingold, A.L.; Epstein, A.J. Structure and Magnetic Ordering of MII[N(CN)2]2 (M = Co, Ni). Chem. Mater. 1998, 10, 2552–2560. [Google Scholar] [CrossRef]
- Lappas, A.; Wills, A.S.; Green, M.A.; Prassides, K.; Kurmoo, M. Magnetic ordering in the rutile molecular magnets MII[N(CN)2]2 (M = Ni, Co, Fe, Mn, Ni0.5Co0.5, and Ni0.5Fe0.5). Phys. Rev. B 2003, 67, 144406. [Google Scholar] [CrossRef]
- Reckeweg, O.; Dinnebier, R.E.; Schulz, A.; Blaschkowski, B.; Schneck, C.; Schleid, T. About the air- and water-stable copper(I) dicyanamide: Synthesis, crystal structure, vibrational spectra and DSC/TG analysis of Cu[N(CN)2]. Z. Naturforsch. B 2017, 72, 159–165. [Google Scholar] [CrossRef]
- Jensen, P.; Batten, S.R.; Fallon, G.D.; Moubaraki, B.; Murray, K.S.; Price, D.J. Structural isomers of M(dca)2 molecule-based magnets. Crystal structure of tetrahedrally coordinated sheet-like β-Zn(dca)2 and β-Co/Zn(dca)2, and the octahedrally coordinated rutile-like α-Co(dca)2, where dca– = dicyanamide, N(CN)2−, and magnetism of β-Co(dca)2. Chem. Commun. 1999, 177–178. [Google Scholar]
- Manson, J.L.; Lee, D.W.; Rheingold, A.L.; Miller, J.S. Buckled-layered Structure of Zinc Dicyanamide, ZnII[N(CN)2]2. Inorg. Chem. 1998, 37, 5966–5967. [Google Scholar] [CrossRef]
- Batten, S.R.; Jensen, P.; Kepert, C.J.; Kurmoo, M.; Moubaraki, B.; Murray, K.S.; Price, D.J. Syntheses, structures and magnetism of α-Mn(dca)2, [Mn(dca)2(H2O)2]·H2O, [Mn(dca)2(C2H5OH)2]·(CH3)2CO, [Fe(dca)2(CH3OH)2] and [Mn(dca)2(L)2], where L = pyridine, CH3OH or DMF and dca– = dicyanamide, N(CN)2–. J. Chem. Soc. Dalton Trans. 1999, 2987–2997. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Zhang, C. catena-Poly[[bis-(4-methyl-pyridine-κN)cobalt(II)]-di-μ-dicyanamido-κ(2)N(1):N(5)]. Acta Crystallogr. E 2013, 69, m90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wöhlert, S.; Wriedt, M.; Jess, I.; Näther, C. Tetrakis(pyridazine-κN)bis(selenocyanato-κN)cobalt(II) pyridazine disolvate. Acta Crystallogr. E 2012, 68, m965. [Google Scholar] [CrossRef] [Green Version]
- Wriedt, M.; Näther, C. Directed synthesis of μ-1,3,5 bridged dicyanamides by thermal decomposition of μ-1,5 bridged precursor compounds. Dalton Trans. 2011, 40, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Reckeweg, O.; Schulz, A.; DiSalvo, F.J. Synthesis, Single-crystal Structure and Raman Spectrum of Cu[N(CN)2]2·2NH3. Z. Naturforsch. B 2013, 68, 296–300. [Google Scholar] [CrossRef]
- Mann, M.; Mroz, D.; Henrich, L.; Houben, A.; van Leusen, J.; Dronskowski, R. Syntheses and Characterization of Diammine–Nickel/Cobalt(II)–Bisdicyanamide M(NH3)2[N(CN)2]2 with M = Ni and Co. Inorg. Chem. 2019, 58, 7803–7811. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
- Kertesz, M. Pancake Bonding: An Unusual Pi-Stacking Interaction. Chem. Eur. J. 2019, 25, 400–416. [Google Scholar] [CrossRef]
- Chen, S.; Zhuo, H.; Chen, S.; Ge, Z.; Yuan, H.; Luo, J. Studies on the thermal stability of polyurethanes containing pyridine: Thermogravimetric analysis. Thermochim. Acta 2012, 543, 281–287. [Google Scholar] [CrossRef]
- Sato, Y.; Matsunaga, T.; Takehiro, K.; Koyama, S.; Suzuki, T.; Ozawa, M. Kinetic Analysis and Prediction of Thermal Decomposition Behavior of Tertiary Pyridine Resin in the Nitrate Form. Energy Procedia 2015, 71, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Hore, N.R.; Russell, S.K. Radical pathways in the thermal decomposition of pyridine and diazines: A laser pyrolysis and semi-empirical study. J. Chem. Soc. Perkin Trans. 1998, 2, 269–276. [Google Scholar] [CrossRef]
- Müller, P.C.; Ertural, C.; Hempelmann, J.; Dronskowski, R. Crystal Orbital Bond Index: Covalent Bond Orders in Solids. J. Phys. Chem. C 2021, 125, 7959–7970. [Google Scholar] [CrossRef]
- Ertural, C.; Steinberg, S.; Dronskowski, R. Development of a robust tool to extract Mulliken and Löwdin charges from plane waves and its application to solid-state materials. RSC Adv. 2019, 9, 29821–29830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lueken, H. Magnetochemie; Teubner: Stuttgart, Germany, 1999; p. 40. [Google Scholar]
- SAINT+; Version 7.68; Bruker AXS Inc.: Madison, WI, USA, 2009.
- SADABS; Version 2004/1; Bruker AXS Inc.: Madison, WI, USA, 2009.
- APEX2 v2014.11-0; Bruker Nonius, Bruker AXS Inc.: Madison, WI, USA, 2003.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massa, W. Kristallstrukturbestimmung; Vieweg + Teubner: Wiesbaden, Germany, 2009. [Google Scholar]
- WinXPow, Version 2.23; STOE & Cie GmbH: Darmstadt, Germany, 2005.
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csonka, G.I.; Perdew, J.P.; Ruzsinszky, A.; Philipsen, P.H.T.; Lebègue, S.; Paier, J.; Vydrov, O.A.; Ángyán, J.G. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 2009, 79, 155107. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Analytic Projection from Plane-Wave and PAW Wavefunctions and Application to Chemcial-Bonding Analysis in Solids. J. Comput. Chem. 2013, 34, 2557–2567. [Google Scholar] [CrossRef]
- Nelson, R.; Ertural, C.; George, J.; Deringer, V.L.; Hautier, G.; Dronskowski, R. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scripta Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P. Vibrational and dielectric properties of C60 from density-functional perturbation theory. J. Chem. Phys. 1994, 100, 8537–8539. [Google Scholar] [CrossRef] [Green Version]
- Görne, A.; George, J.; van Leusen, J.; Dronskowski, R. Synthesis, Crystal Structure, Polymorphism, and Magnetism of Eu(CN3H4)2 and First Evidence of EuC(NH)3. Inorganics 2017, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Zenodo. Available online: https://zenodo.org/record/3241592#.Y9pBPq2ZO70 (accessed on 2 January 2023).
- Karhánek, D.; Bučko, T.; Jürgen, J. A density-functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: II. Vibrational spectroscopy. J. Phys. Condens. Matter 2010, 22, 265006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Fe | C | H | N |
---|---|---|---|---|
Theoretical (%) | 16.13 | 48.58 | 2.91 | 32.37 |
Experimental (%) | 17.3(2) | 45.9(1) | 2.60(8) | 31.4(2) |
Deviation (abs.) | +1.17 | −2.73 | −0.30 | −1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henrich, L.; Müller, P.C.; Hempelmann, J.; Mann, M.; van Leusen, J.; Steinberg, S.; Dronskowski, R. Synthesis and Characterization of Iron Bispyridine Bisdicyanamide, Fe[C5H5N]2[N(CN)2]2. Molecules 2023, 28, 4886. https://doi.org/10.3390/molecules28134886
Henrich L, Müller PC, Hempelmann J, Mann M, van Leusen J, Steinberg S, Dronskowski R. Synthesis and Characterization of Iron Bispyridine Bisdicyanamide, Fe[C5H5N]2[N(CN)2]2. Molecules. 2023; 28(13):4886. https://doi.org/10.3390/molecules28134886
Chicago/Turabian StyleHenrich, Laura, Peter C. Müller, Jan Hempelmann, Markus Mann, Jan van Leusen, Simon Steinberg, and Richard Dronskowski. 2023. "Synthesis and Characterization of Iron Bispyridine Bisdicyanamide, Fe[C5H5N]2[N(CN)2]2" Molecules 28, no. 13: 4886. https://doi.org/10.3390/molecules28134886
APA StyleHenrich, L., Müller, P. C., Hempelmann, J., Mann, M., van Leusen, J., Steinberg, S., & Dronskowski, R. (2023). Synthesis and Characterization of Iron Bispyridine Bisdicyanamide, Fe[C5H5N]2[N(CN)2]2. Molecules, 28(13), 4886. https://doi.org/10.3390/molecules28134886