Enhanced Capacity Retention of Li3V2(PO4)3-Cathode-Based Lithium Metal Battery Using SiO2-Scaffold-Confined Ionic Liquid as Hybrid Solid-State Electrolyte
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristic of SiO2 Scaffold
2.2. Characteristic of Hybrid SSE
2.3. Microstructures of LVP and Bilayer Consisting of Hybrid SSE and Cathode
2.4. Electrochemical Performance of Lithium Metal Battery
3. Experiment
3.1. Preparation of SiO2 Scaffold
3.2. Preparation of SSE Powder
3.3. Preparation of LVP
3.4. Characterization
3.5. Fabrication of Lithium Metal Batteries
3.6. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Zhang, J.G.; Xu, W. Advancing lithium metal batteries. Joule 2018, 2, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.B.; Liu, H.; Yuan, H.; Peng, H.J.; Tang, C.; Huang, J.Q.; Zhang, Q. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50. [Google Scholar] [CrossRef]
- Rodriguez, J.R.; Kim, P.J.; Kim, K.; Qi, Z.; Wang, H.; Pol, V.G. Engineered heat dissipation and current distribution boron nitride-graphene layer coated on polypropylene separator for high performance lithium metal battery. J. Colloid Interf. Sci. 2021, 583, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, K.; Wu, F.; Wang, X.; Guo, R.; Zhang, K.; Yuan, Y.; Bai, Y.; Wu, C. Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries. Chem. Eng. J. 2023, 453, 139348. [Google Scholar] [CrossRef]
- Meng, J.; Chu, F.; Hu, J.; Li, C. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries. Adv. Funct. Mater. 2019, 29, 1902220. [Google Scholar] [CrossRef]
- Park, H.; Jeon, Y.; Chung, W.J.; Bae, Y.; Kim, J.; Baek, H.; Park, J. Early stage Li plating by liquid phase and cryogenic transmission electron microscopy. ACS Energy Lett. 2022, 8, 715–721. [Google Scholar] [CrossRef]
- Guan, X.; Wang, A.; Liu, S.; Li, G.; Liang, F.; Yang, Y.W.; Liu, X.; Luo, J. Controlling nucleation in lithium metal anodes. Small 2018, 14, 1801423. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, S.W.; Li, D.; Wang, X.; Chen, X.; Shi, R.; Shen, N.; Jin, M.; Zhang, X.; Lian, Q.; et al. Sandwiched Li plating between Lithiophilic-Lithiophobic gradient Silver@ Fullerene interphase layer for ultrastable lithium metal anodes. Chem. Eng. J. 2022, 429, 132156. [Google Scholar] [CrossRef]
- Lang, S.Y.; Shen, Z.Z.; Hu, X.C.; Shi, Y.; Guo, Y.G.; Jia, F.F.; Wang, F.Y.; Wen, R.; Wan, L.J. Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. Nano Energy 2020, 75, 104967. [Google Scholar] [CrossRef]
- Ni, S.; Tan, S.; An, Q.; Mai, L. Three dimensional porous frameworks for lithium dendrite suppression. J. Energy Chem. 2020, 44, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huang, L.; Xu, H.; Zhang, X.; Chen, Z.; Gao, C.; Lu, C.; Liu, Z.; Jiang, M.; Cui, G. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2022, 2, 201–208. [Google Scholar] [CrossRef]
- Zhang, W.; Long, J.; Wang, H.; Lan, J.; Yu, Y.; Yang, X. Novel in situ growth of ZIF-8 in porous epoxy matrix for mechanically robust composite electrolyte of high-performance, long-life lithium metal batteries. Molecules 2022, 27, 7488. [Google Scholar] [CrossRef]
- Li, H.; Xu, M.; Zhang, Z.; Lai, Y.; Ma, J. Engineering of polyanion type cathode materials for sodium-ion batteries: Toward higher energy/power density. Adv. Funct. Mater. 2020, 30, 2000473. [Google Scholar] [CrossRef]
- Chang, Z.; Qiao, Y.; Yang, H.; Deng, H.; Zhu, X.; He, P.; Zhou, H. Beyond the concentrated electrolyte: Further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy Environ. Sci. 2020, 13, 4122–4131. [Google Scholar] [CrossRef]
- Rui, X.; Yan, Q.; Skyllas-Kazacos, M.; Lim, T.M. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J. Power Sources 2014, 258, 19–38. [Google Scholar] [CrossRef]
- Liang, M.; Li, L.; Cui, X.; Qi, S.; Wang, L.; Dong, H.; Chen, X.; Wang, Y.; Chen, S.; Wang, G. Ru- and Cl-codoped Li3V2(PO4)3 with enhanced performance for lithium-ion batteries in a wide temperature range. Small 2022, 18, 2202151. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Lu, S.; Lu, J.; Niu, J.; Li, R. Unraveling the intercalation chemistry of multi-electron reaction for polyanionic cathode Li3V2(PO4)3. Energy Storage Mater. 2023, 55, 546–555. [Google Scholar] [CrossRef]
- Su, A.; Guo, P.; Li, J.; Kan, D.; Pang, Q.; Li, T.; Sun, J.; Chen, G.; Wei, Y. An organic-inorganic semi-interpenetrating network ionogel electrolyte for high-voltage lithium metal batteries. J. Mater. Chem. A 2020, 8, 4775–4783. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, P.; Zheng, H.; Lyu, Z. Aluminum-doping effects on three-dimensional Li3V2(PO4)3@C/CNTs microspheres for electrochemical energy storage. Ceram. Int. 2022, 48, 18765–18772. [Google Scholar] [CrossRef]
- Ding, M.; Cheng, C.; Wei, Q.; Hu, Y.; Yan, Y.; Dai, K.; Mao, J.; Guo, J.; Zhang, L.; Mai, L. Carbon decorated Li3V2(PO4)3 for high-rate lithium-ion batteries: Electrochemical performance and charge compensation mechanism. J. Energy Chem. 2021, 53, 124–131. [Google Scholar] [CrossRef]
- Han, H.; Qiu, F.; Liu, Z.; Han, X.E. ZrO2-coated Li3V2(PO4)3/C nanocomposite: A high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance. Ceram. Int. 2015, 41, 8779–8784. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Zhang, L.; Dou, S.X.; Liu, H. Lyophilized 3D lithium vanadium phosphate/reduced graphene oxide electrodes for super stable lithium ion batteries. Adv. Energy Mater. 2016, 6, 1501760. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Zhang, X.Q.; Yuan, H.; Huang, J.Q. Thermally stable and nonflammable electrolytes for lithium metal batteries: Progress and perspectives. Small Sci. 2021, 1, 2100058. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Zhang, X.Q.; Hou, L.P.; Sun, S.Y.; Zhan, Y.X.; Liang, J.L.; Zhang, F.S.; Feng, X.N.; Li, B.Q.; Huang, J.Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv. Energy Mater. 2022, 12, 2200139. [Google Scholar] [CrossRef]
- Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785. [Google Scholar] [CrossRef]
- Chen, X.; Guan, Z.; Chu, F.; Xue, Z.; Wu, F.; Yu, Y. Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InfoMat 2022, 4, e12248. [Google Scholar] [CrossRef]
- Wei, T.; Wang, Z.M.; Zhang, Q.; Zhou, Y.; Sun, C.; Wang, M.; Liu, Y.; Wang, S.; Yu, Z.; Qiu, X.; et al. Metal-organic frameworks-based solid-state electrolytes for all solid-state lithium metal batteries: A review. CrystEngComm 2022, 24, 5014–5030. [Google Scholar] [CrossRef]
- Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid-state electrolytes for lithium-ion batteries: Fundamentals, challenges and perspectives. Electrochem. Energ. Rev. 2019, 2, 574–605. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.H.; Li, X.M.; Yang, X.F.; Zhang, X.X.; Wang, H.H.; Wang, H. The recent progress and perspectives on metal-and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater. Chem. Front. 2021, 5, 3593–3613. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Deng, W.; Shuai, H.; Li, S.; Xu, Z.; Li, J.; Hou, H.; Peng, H.; Ji, X. Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv. Energy Mater. 2021, 11, 2000648. [Google Scholar] [CrossRef]
- Yang, S.Y.; Shadike, Z.; Wang, W.W.; Yue, X.Y.; Xia, H.Y.; Bak, S.M.; Du, Y.H.; Li, H.; Fu, Z.W. An ultrathin solid-state electrolyte film coated on LiNi0.8Co0.1Mn0.1O2 electrode surface for enhanced performance of lithium-ion batteries. Energy Storage Mater. 2022, 45, 1165–1174. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131. [Google Scholar] [CrossRef]
- Su, H.; Jiang, Z.; Liu, Y.; Li, J.; Gu, C.; Wang, X.; Xia, X.; Tu, J. Recent progress of sulfide electrolytes for all-solid-state lithium batteries. Energy Mater. 2022, 2, 200005. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S.H.; Yang, X.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 2019, 37, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Hu, Z.; Wang, Y.; Jiang, J.; Huo, S.; Fan, W.; Chen, W.; Jing, X.; Long, X.; Zhang, Y. Poly (ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries. Chem. Eng. J. 2022, 437, 135420. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, K.; Zhang, P.; Li, H.; Mi, H. PVDF-HFP based polymer electrolytes with high Li+ transference number enhancing the cycling performance and rate capability of lithium metal batteries. Appl. Surf. Sci. 2022, 574, 151593. [Google Scholar] [CrossRef]
- Lv, F.; Wang, Z.; Shi, L.; Zhu, J.; Edström, K.; Mindemark, J.; Yuan, S. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J. Power Sources 2019, 441, 227175. [Google Scholar] [CrossRef]
- Zhang, T.; He, W.; Zhang, W.; Wang, T.; Li, P.; Sun, Z.; Yu, X. Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci. 2020, 11, 8686–8707. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.; He, P.; Fan, L.Z. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. J. Membrane Sci. 2022, 642, 119952. [Google Scholar] [CrossRef]
- Lu, Y.; Das, S.K.; Moganty, S.S.; Archer, L.A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 2012, 24, 4430–4435. [Google Scholar] [CrossRef]
- Yang, G.; Song, Y.; Wang, Q.; Zhang, L.; Deng, L. Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Design 2020, 190, 108563. [Google Scholar] [CrossRef]
- Yu, D.; Ma, Z.; Liu, Z.; Jiang, X.; Younus, H.A.; Wang, X.; Zhang, S. Optimizing interfacial wetting by ionic liquid for high performance solid-state lithium metal batteries operated at ambient temperature. Chem. Eng. J. 2023, 457, 141043. [Google Scholar] [CrossRef]
- Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power Sources 2022, 542, 231792. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Zhang, L.; Zhang, H.; Lassi, U.; Ji, X. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. Green Chem. Eng. 2021, 2, 253–265. [Google Scholar] [CrossRef]
- Han, L.; Wang, Z.; Kong, D.; Yang, L.; Yang, K.; Wang, Z.; Pan, F. An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries. J. Mater. Chem. A 2018, 6, 21280–21286. [Google Scholar] [CrossRef]
- Cañón, J.; Teplyakov, A.V. XPS characterization of cobalt impregnated SiO2 and γ-Al2O3. Surf. Interface Anal. 2021, 53, 475–481. [Google Scholar] [CrossRef]
- Xiang, Z.; He, Q.; Wang, Y.; Yin, X.; Xu, B. Preparation and electromagnetic wave absorption properties of SiC/SiO2 nanocomposites with different special structures. Appl. Surf. Sci. 2022, 599, 153968. [Google Scholar] [CrossRef]
- Katcharava, Z.; Marinow, A.; Bhandary, R.; Binder, W.H. 3D Printable Composite Polymer Electrolytes: Influence of SiO2 Nanoparticles on 3D-Printability. Nanomaterials 2022, 12, 1859. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kuhn, L.; Alabugin, I.V.; Hallinan Jr, D.T. Lithium salt dissociation in diblock copolymer electrolyte using fourier transform infrared spectroscopy. Front. Energy Res. 2020, 8, 569442. [Google Scholar] [CrossRef]
- Choudhury, S.; Mangal, R.; Agrawal, A.; Archer, L.A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 2015, 6, 10101. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yang, F.; Wang, S.; Feng, L.; Zhang, W.; Wei, H. A simple diethylene glycol-assisted synthesis and high rate performance of Li3V2(PO4)3/C composites as cathode material for Li-ion batteries. Electrochim. Acta 2013, 111, 903–908. [Google Scholar] [CrossRef]
- Liao, Y.; Li, C.; Lou, X.; Hu, X.; Ning, Y.; Yuan, F.; Hu, B. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability. Electrochim. Acta 2018, 271, 608–616. [Google Scholar] [CrossRef]
- Mohanty, D.; Lu, Z.L.; Hung, I.M. Effect of carbon coating on electrochemical properties of Li3V2(PO4)3 cathode synthesized by citric-acid gel method for lithium-ion batteries. J. Appl. Electrochem. 2023, 53, 1003–1013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Luo, J.; Liu, W.; He, X.; Xie, F. Enhanced Capacity Retention of Li3V2(PO4)3-Cathode-Based Lithium Metal Battery Using SiO2-Scaffold-Confined Ionic Liquid as Hybrid Solid-State Electrolyte. Molecules 2023, 28, 4896. https://doi.org/10.3390/molecules28134896
Peng S, Luo J, Liu W, He X, Xie F. Enhanced Capacity Retention of Li3V2(PO4)3-Cathode-Based Lithium Metal Battery Using SiO2-Scaffold-Confined Ionic Liquid as Hybrid Solid-State Electrolyte. Molecules. 2023; 28(13):4896. https://doi.org/10.3390/molecules28134896
Chicago/Turabian StylePeng, Shihao, Jiakun Luo, Wenwen Liu, Xiaolong He, and Fang Xie. 2023. "Enhanced Capacity Retention of Li3V2(PO4)3-Cathode-Based Lithium Metal Battery Using SiO2-Scaffold-Confined Ionic Liquid as Hybrid Solid-State Electrolyte" Molecules 28, no. 13: 4896. https://doi.org/10.3390/molecules28134896
APA StylePeng, S., Luo, J., Liu, W., He, X., & Xie, F. (2023). Enhanced Capacity Retention of Li3V2(PO4)3-Cathode-Based Lithium Metal Battery Using SiO2-Scaffold-Confined Ionic Liquid as Hybrid Solid-State Electrolyte. Molecules, 28(13), 4896. https://doi.org/10.3390/molecules28134896