Design, Synthesis, Molecular Docking Study and Biological Evaluation of Novel γ-Carboline Derivatives of Latrepirdine (Dimebon) as Potent Anticancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. In Vitro Cytotoxic Activity
2.3. Molecular Docking Studies
2.4. Biological Perspective
3. Materials and Methods
3.1. General Methods
3.2. Chemistry: Synthesis Procedures
- Synthesis of 2-Bromo-6-(2-(1-methylpiperidin-4-ylidene)hydrazinyl)pyridine Imine (6)
- Synthesis of 2-bromo-6-methyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c′]dipyridine (7)
- Synthesis of 2-bromo-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (9)
- General procedure for the synthesis of 6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine derivatives (LP-1- LP-16)
- 6-Methyl-9-phenethyl-2-phenyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-1)
- 2-(3-Fluorophenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-2)
- 2-(4-Fluorophenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-3)
- 4-(6-Methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridin-2-yl)benzonitrile (LP-4)
- 6-Methyl-2-(naphthalen-1-yl)-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-5)
- 2-(2,6-Difluorophenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-6)
- 2-(2-Fluoro-6-methoxyphenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-7)
- 3-(6-Methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridin-2-yl)benzonitrile (LP-8)
- 2-(3-Chloro-2-methylphenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-9)
- 6-Methyl-9-phenethyl-2-(2-(trifluoromethyl)phenyl)-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-10)
- 2-(2-Fluorophenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine: (LP-11)
- 2-(3-Fluoro-4-methoxyphenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-12)
- 6-Methyl-9-phenethyl-2-(thiophen-3-yl)-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-13)
- 6-Methyl-9-phenethyl-2-(pyridin-3-yl)-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-14)
- 2-(4-Chlorophenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-15)
- 2-(3-Chlorophenyl)-6-methyl-9-phenethyl-6,7,8,9-tetrahydro-5H-pyrrolo [2,3-b:4,5-c’]dipyridine (LP-16)
3.3. MTT Assay
3.4. Molecular Docking Studies with Human Topoisomerase-II beta in Complex with DNA and Etoposide (PDB ID: 3QX3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Harbert, C.A.; Plattner, J.J.; Welch, W.M.; Weissman, A.; Koe, B.K. Neuroleptic Activity in 5-Aryltetrahydro-Gamma-Carbolines. J. Med. Chem. 1980, 23, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Bridoux, A.; Goossens, L.; Houssin, R.; Héanichart, J.-P. Synthesis of 8-Substituted Tetrahydro-γ-Carbolines. J. Heterocycl. Chem. 2006, 43, 571–578. [Google Scholar] [CrossRef]
- Otto, R.; Penzis, R.; Gaube, F.; Winckler, T.; Appenroth, D.; Fleck, C.; Tränkle, C.; Lehmann, J.; Enzensperger, C. Beta and Gamma Carboline Derivatives as Potential Anti-Alzheimer Agents: A Comparison. Eur. J. Med. Chem. 2014, 87, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bachurin, S.O.; Makhaeva, G.F.; Shevtsova, E.F.; Boltneva, N.P.; Kovaleva, N.V.; Lushchekina, S.V.; Rudakova, E.V.; Dubova, L.G.; Vinogradova, D.V.; Sokolov, V.B.; et al. Conjugates of Methylene Blue with γ-Carboline Derivatives as New Multifunctional Agents for the Treatment of Neurodegenerative Diseases. Sci. Rep. 2019, 9, 4873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachurin, S.; Bukatina, E.; Lermontova, N.; Tkachenko, S.; Afanasiev, A.; Grigoriev, V.; Grigorieva, I.; Ivanov, Y.; Sablin, S.; Zefirov, N. Antihistamine Agent Dimebon as a Novel Neuroprotector and a Cognition Enhancer. Ann. N. Y. Acad. Sci. 2006, 939, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Doody, R.S.; Gavrilova, S.I.; Sano, M.; Thomas, R.G.; Aisen, P.S.; Bachurin, S.O.; Seely, L.; Hung, D. Effect of Dimebon on Cognition, Activities of Daily Living, Behaviour, and Global Function in Patients with Mild-to-Moderate Alzheimer’s Disease: A Randomised, Double-Blind, Placebo-Controlled Study. Lancet 2008, 372, 207–215. [Google Scholar] [CrossRef]
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer Activities of Histone Deacetylase Inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769–784. [Google Scholar] [CrossRef]
- Otto, R.; Penzis, R.; Gaube, F.; Adolph, O.; Föhr, K.J.; Warncke, P.; Robaa, D.; Appenroth, D.; Fleck, C.; Enzensperger, C.; et al. Evaluation of Homobivalent Carbolines as Designed Multiple Ligands for the Treatment of Neurodegenerative Disorders. J. Med. Chem. 2015, 58, 6710–6715. [Google Scholar] [CrossRef]
- Pfizer and Medivation Announce Results from Two Phase 3 Studies in Dimebon (latrepirdine*) Alzheimer’s Disease Clinical Development Program|Pfizer. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer_and_medivation_announce_results_from_two_phase_3_studies_in_dimebon_latrepirdine_alzheimer_s_disease_clinical_development_program (accessed on 13 June 2023).
- Porter, T.; Bharadwaj, P.; Groth, D.; Paxman, A.; Laws, S.M.; Martins, R.N.; Verdile, G. The Effects of Latrepirdine on Amyloid-β Aggregation and Toxicity. J. Alzheimer’s Dis. 2016, 50, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, P.R.; Bates, K.A.; Porter, T.; Teimouri, E.; Perry, G.; Steele, J.W.; Gandy, S.; Groth, D.; Martins, R.N.; Verdile, G. Latrepirdine: Molecular Mechanisms Underlying Potential Therapeutic Roles in Alzheimer’s and Other Neurodegenerative Diseases. Transl. Psychiatry 2013, 3, e332. [Google Scholar] [CrossRef] [Green Version]
- Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A.P. Rational Design and Simple Chemistry Yield a Superior, Neuroprotective HDAC6 Inhibitor, Tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842–10846. [Google Scholar] [CrossRef] [Green Version]
- Falkenberg, K.J.; Johnstone, R.W. Histone Deacetylases and Their Inhibitors in Cancer, Neurological Diseases and Immune Disorders. Nat. Rev. Drug Discov. 2014, 13, 673–691. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Saini, R.V.; Mahindroo, N. Recent Advances in Cancer Immunology and Immunology-Based Anticancer Therapies. Biomed. Pharmacother. 2017, 96, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Yahya, E.B.; Alqadhi, A.M. Recent Trends in Cancer Therapy: A Review on the Current State of Gene Delivery. Life Sci. 2021, 269, 119087. [Google Scholar] [CrossRef]
- Pognan, F.; Saucier, J.-M.; Paoletti, C.; Kaczmarek, L.; Nantka-Namirski, P.; Mordarski, M.; Peczynska-Czoch, W. A Carboline Derivative as a Novel Mammalian DNA Topoisomerase II Targeting Agent. Biochem. Pharmacol. 1992, 44, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Bonjean, K.; De Pauw-Gillet, M.C.; Defresne, M.P.; Colson, P.; Houssier, C.; Dassonneville, L.; Bailly, C.; Greimers, R.; Wright, C.; Quetin-Leclercq, J.; et al. The DNA Intercalating Alkaloid Cryptolepine Interferes with Topoisomerase II and Inhibits Primarily DNA Synthesis in B16 Melanoma Cells. Biochemistry 1998, 37, 5136–5146. [Google Scholar] [CrossRef]
- Alekseyev, R.; Amirova, S.; Terenin, V. Preparation of 2,3-Disubstituted 5-Bromo-1H-Pyrrolo[2,3-b]Pyridine Framework by Fischer Cyclization. Synthesis 2015, 47, 3169–3178. [Google Scholar] [CrossRef]
- Alekseyev, R.S.; Amirova, S.R.; Terenin, V.I. Synthesis of 5-Chloro-7-Azaindoles by Fischer Reaction. Chem. Heterocycl. Compd. 2017, 53, 196–206. [Google Scholar] [CrossRef]
- Dhara, S.; Singha, R.; Ahmed, A.; Mandal, H.; Ghosh, M.; Nuree, Y.; Ray, J.K. Synthesis of α, β and γ-Carbolines via Pd-Mediated Csp2-H/N–H Activation. RSC Adv. 2014, 4, 45163–45167. [Google Scholar] [CrossRef]
- Burgess, D.J.; Doles, J.; Zender, L.; Xue, W.; Ma, B.; McCombie, W.R.; Hannon, G.J.; Lowe, S.W.; Hemann, M.T. Topoisomerase Levels Determine Chemotherapy Response In Vitro and In Vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 9053–9058. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.F.; Idrees, D.; Hassan, M.I.; Ahmad, K.; Avecilla, F.; Azam, A. Design, Synthesis and Biological Evaluation of Novel Pyridine-Thiazolidinone Derivatives as Anticancer Agents: Targeting Human Carbonic Anhydrase IX. Eur. J. Med. Chem. 2018, 144, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Graham, C.H. Hypoxia Prevents Etoposide-Induced DNA Damage in Cancer Cells through a Mechanism Involving Hypoxia-Inducible Factor 1. Mol. Cancer Ther. 2009, 8, 1702–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Jiang, Y.; Yan, R.; Li, Z.; Wan, S.; Zhang, T.; Wu, X.; Hou, J.; Zhu, Z.; Tian, Y.; et al. Design, Synthesis and Biological Evaluations of 2-Amino-4-(1-Piperidine) Pyridine Derivatives as Novel Anti Crizotinib-Resistant ALK/ROS1 Dual Inhibitors. Eur. J. Med. Chem. 2019, 179, 358–375. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Zhuang, R.; He, R.; Xi, J.; Pan, X.; Shao, Y.; Pan, J.; Sun, J.; Cai, Z.; et al. Synthesis and Evaluation of a Series of Pyridine and Pyrimidine Derivatives as Type II C-Met Inhibitors. Bioorg. Med. Chem. 2017, 25, 3195–3205. [Google Scholar] [CrossRef]
- Günther, M.; Laux, J.; Laufer, S. Synthesis and Structure-activity-relationship of 3,4-Diaryl-1H-pyrrolo[2,3-b]Pyridines as Irreversible Inhibitors of Mutant EGFR-L858R/T790M. Eur. J. Pharm. Sci. 2019, 128, 91–96. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.; Almahli, H.; Ibrahim, H.; Eldehna, W.; Abdel-Aziz, H. Pyridine-Ureas as Potential Anticancer Agents: Synthesis and In Vitro Biological Evaluation. Molecules 2018, 23, 1459. [Google Scholar] [CrossRef] [Green Version]
- Ghanem, N.M.; Farouk, F.; George, R.F.; Abbas, S.E.S.; El-Badry, O.M. Design and Synthesis of Novel Imidazo[4,5-b]Pyridine Based Compounds as Potent Anticancer Agents with CDK9 Inhibitory Activity. Bioorg. Chem. 2018, 80, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Tu, Z.-C.; Long, Z.-J.; Liu, Q.; Lu, G. Discovery of 2-(2-Aminopyrimidin-5-Yl)-4-Morpholino-N-(Pyridin-3-Yl)Quinazolin-7-Amines as Novel PI3K/MTOR Inhibitors and Anticancer Agents. Eur. J. Med. Chem. 2016, 108, 644–654. [Google Scholar] [CrossRef]
- Fang, W.-Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.-L. Synthetic Approaches and Pharmaceutical Applications of Chloro-Containing Molecules for Drug Discovery: A Critical Review. Eur. J. Med. Chem. 2019, 173, 117–153. [Google Scholar] [CrossRef]
- Zou, Y.; Yan, C.; Zhang, H.; Xu, J.; Zhang, D.; Huang, Z.; Zhang, Y. Synthesis and Evaluation of N-Heteroaromatic Ring-Based Analogs of Piperlongumine as Potent Anticancer Agents. Eur. J. Med. Chem. 2017, 138, 313–319. [Google Scholar] [CrossRef]
S NO | Sample Code | STRUCTURE | bc SiHa | d A549 | e MCF-7 | f Colo-205 |
---|---|---|---|---|---|---|
1 | LP-1 | 3.47 ± 2.17 | 5.16 ± 1.17 | 3.91 ± 1.49 | 8.13 ± 1.70 | |
2 | LP-2 | ND | 4.28 ± 1.71 | 7.33 ± 4.52 | 3.62 ± 2.04 | |
3 | LP-3 | 4.82 ± 0.94 | 6.33 ± 1.65 | ND | ND | |
4 | LP-4 | ND | 10.6 ± 2.27 | 11.3 ± 2.93 | 3.98 ± 0.43 | |
5 | LP-5 | 4.13 ± 3.21 | 5.71 ± 2.33 | 6.14 ± 1.75 | ND | |
6 | LP-6 | 2.86 ± 1.67 | 2.52 ± 1.98 | 2.09 ± 1.83 | 2.49 ± 1.93 | |
7 | LP-7 | 1.34 ± 0.095 | 2.11 ± 0.96 | 1.98 ± 0. 81 | 1.62 ± 0.85 | |
8 | LP-8 | ND | ND | 12.7 ± 2.38 | ND | |
9 | LP-9 | ND | 10.8 ± 2.39 | 5.93 ± 1.61 | ND | |
10 | LP-10 | 2.01 ± 1.58 | 1.77 ± 0.43 | 1.81 ± 0.56 | 2.13 ± 0.97 | |
11 | LP-11 | 10.3 ± 1.37 | 6.19 ± 1.61 | 7.10 ± 2.43 | ND | |
12 | LP-12 | 9.37 ± 2.26 | 17.4 ± 352 | 13.6 ± 4.14 | 8.11 ± 3.38 | |
13 | LP-13 | 1.10 ± 0.36 | 2.03 ± 0.89 | 2.17 ± 0. 59 | 3.44 ± 0.96 | |
14 | LP-14 | 1.85 ± 0.92 | 1.68 ± 0.87 | 1.72 ± 0.88 | 1.95 ± 0.67 | |
15 | LP-15 | 1.24 ± 0.58 | 1.38 ± 0.81 | 1.27 ± 0.64 | 1.53 ± 0.92 | |
16 | LP-16 | 9.56 ± 2.19 | 4.64 ± 1.11 | 6.82 ± 2.05 | ND | |
17 | Etoposide | 3.11 ± 0.11 | 3.08 ± 0.135 | 2.11 ± 0.024 | 0.14 ± 0.017 |
SNO | Compounds | Dock Score (Kcal/mol) | H-Bond Interactions | Hydrophobic Interactions |
---|---|---|---|---|
1 | LP-1 | −9.42 | DC8, DT9 | DG7, DT9DC11, DG13, |
2 | LP-2 | −9.11 | DC8, DT9 | DC8, DT9, DG10, DC11 |
3 | LP-3 | −8.47 | DC8, DA12 | DG10, DC11, DG13, Ala521, |
4 | LP-4 | −8.56 | Arg503, DT9 | DC8, DT9, DG10, DC11 |
5 | LP-5 | −8.78 | DC8 | DT9, DA12, |
6 | LP-6 | −9.25 | DC8, DG10, DC11, | DC8, DG10, DC11, Arg503 |
7 | LP-7 | −8.21 | DA12, DC8, DT9, Arg503 | DC8, DT9, DG13, Ala779, Arg503 |
8 | LP-8 | −8.69 | DC8, DA12, DG13, | DC8, DA12, DG13, Ala521 |
9 | LP-9 | −8.99 | DC8, DT9, | DC8, DT9, DA12, DG13 |
10 | LP-10 | −9.18 | DG10, Asp479, Arg503, | DC8, DT9, DA12, DG13, Arg503, |
11 | LP-11 | −9.04 | DA12, DG13, Gly478, DT9, DG10 | DG13, DA12, Arg503, Met782 |
12 | LP-12 | −7.69 | DA12 | DT9, DA12, DG13 |
13 | LP-13 | −8.92 | DT9 | DT9, DA12 |
14 | LP-14 | −8.89 | DC8 | DT9, DA12, DG13, DT9, DA12, DC8, Arg503 |
15 | LP-15 | −9.65 | Glu477, DC8 | DT9, DA12, DG13, DA6, DG7, DC14, DC8 and DT15 |
16 | LP-16 | −9.09 | -- | DG7, DT9, DA12, DG13, DA6 |
17 | Etoposide | −10.68 | Asp479, Gln778, DC8, Gly478, DG10, DT9, | DG13, Met782, DA12, DG13, Arg503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voggu, R.; Karmakar, A.; Puli, V.S.; Damerla, V.S.B.; Mogili, P.; Amaladass, P.; Chidara, S.; Pasunooti, K.K.; Gupta, S. Design, Synthesis, Molecular Docking Study and Biological Evaluation of Novel γ-Carboline Derivatives of Latrepirdine (Dimebon) as Potent Anticancer Agents. Molecules 2023, 28, 4965. https://doi.org/10.3390/molecules28134965
Voggu R, Karmakar A, Puli VS, Damerla VSB, Mogili P, Amaladass P, Chidara S, Pasunooti KK, Gupta S. Design, Synthesis, Molecular Docking Study and Biological Evaluation of Novel γ-Carboline Derivatives of Latrepirdine (Dimebon) as Potent Anticancer Agents. Molecules. 2023; 28(13):4965. https://doi.org/10.3390/molecules28134965
Chicago/Turabian StyleVoggu, Ramakrishna, Arundhati Karmakar, Venkat Swamy Puli, V. Surendra Babu Damerla, Padma Mogili, P. Amaladass, Sridhar Chidara, Kalyan Kumar Pasunooti, and Sarika Gupta. 2023. "Design, Synthesis, Molecular Docking Study and Biological Evaluation of Novel γ-Carboline Derivatives of Latrepirdine (Dimebon) as Potent Anticancer Agents" Molecules 28, no. 13: 4965. https://doi.org/10.3390/molecules28134965
APA StyleVoggu, R., Karmakar, A., Puli, V. S., Damerla, V. S. B., Mogili, P., Amaladass, P., Chidara, S., Pasunooti, K. K., & Gupta, S. (2023). Design, Synthesis, Molecular Docking Study and Biological Evaluation of Novel γ-Carboline Derivatives of Latrepirdine (Dimebon) as Potent Anticancer Agents. Molecules, 28(13), 4965. https://doi.org/10.3390/molecules28134965