Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water
Abstract
:1. Introduction
2. Brief Introduction of Hydrogen Production Technologies
2.1. Alkaline Water Electrolysis Hydrogen Production
2.1.1. Transition Metal and Alloy Catalysts
2.1.2. Transition Metal Oxide Catalyst
2.1.3. Transition Metal Sulfide Catalyst
2.1.4. Transition Metal Phosphide Catalyst
2.2. Proton Exchange Membrane Water Electrolysis Hydrogen Production
2.3. Solid Oxide Water Electrolysis Hydrogen Production
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Muradov, N.Z.; Veziroğlu, T.N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Hou, Z.M.; Xiong, Y.; Luo, J.S.; Fang, Y.L.; Haris, M.; Chen, Q.J.; Yue, Y.; Wu, L.; Wang, Q.C.; Huang, L.C.; et al. International experience of carbon neutrality and prospects of key technologies: Lessons for China. Pet. Sci. 2023, 20, 893–909. [Google Scholar] [CrossRef]
- Taherian, Z.; Khataee, A.; Han, N.; Orooji, Y. Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. J. Ind. Eng. Chem. 2022, 107, 20–30. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Meng, Y.; Yan, F.; Aihemaiti, A. A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers. Manag. 2018, 171, 133–155. [Google Scholar] [CrossRef]
- Kumar, G.; Mathimani, T.; Rene, E.R.; Pugazhendhi, A. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. Int. J. Hydrogen Energy 2019, 44, 13106–13113. [Google Scholar] [CrossRef]
- Jayachandran, V.; Basak, N.; De Philippis, R.; Adessi, A. Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: Present progress and future perspective. Bioprocess. Biosyst. Eng. 2022, 45, 1595–1624. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhong, C.J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 1–23. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Rafa, N.; Musharrat, A.; Lam, S.S.; Boretti, A. Sustainable hydrogen production: Technological advancements and economic analysis. Int. J. Hydrogen Energy 2022, 47, 37227–37255. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.X.; Yao, R.; Wu, Y.H.; Qiu, J.S. Progress and prospects of hydrogen production: Opportunities and challenges. J. Electron. Sci. Technol. 2021, 19, 100080. [Google Scholar] [CrossRef]
- Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.-J.; Wang, Z.L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157. [Google Scholar] [CrossRef]
- Peng, J.; Tao, P.; Song, C.; Shang, W.; Deng, T.; Wu, J. Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. Chin. J. Catal. 2022, 43, 47–58. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, W.; Liu, R.; Lv, F.; Chao, Y.; Wang, Z.; Guo, S. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 2022, 43, 110–115. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.; Chen, H.; Gao, R.; Shi, L.; Yang, L.; Zou, X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 4174–4192. [Google Scholar] [CrossRef]
- Yin, J.; Jin, J.; Lin, H.; Yin, Z.; Li, J.; Lu, M.; Guo, L.; Xi, P.; Tang, Y.; Yan, C.-H. Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 2020, 7, 1903070. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Shoaib, S.; Shah, A.; Wei, Z. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin. J. Catal. 2018, 39, 1575–1593. [Google Scholar] [CrossRef]
- Lv, Z.; Mahmood, N.; Tahir, M.; Pan, L.; Zhang, X.; Zou, J.-J. Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale 2016, 8, 18250–18269. [Google Scholar] [CrossRef]
- Li, Y.; Nakamura, R. Structural change of molybdenum sulfide facilitates the electrocatalytic hydrogen evolution reaction at neutral pH as revealed by in situ Raman spectroscopy. Chin. J. Catal. 2018, 39, 401–406. [Google Scholar] [CrossRef]
- Brauns, J.; Turek, T. Alkaline water electrolysis powered by renewable energy: A review. Processes 2020, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Zhang, D.K. Recent progress in alkaline water electrolysis for hydrogen production and application. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Falcão, D.S.; Pinto, A. A review on PEM electrolyzer modelling: Guidelines for beginners. J. Clean. Prod. 2020, 261, 121184. [Google Scholar] [CrossRef]
- Reza, A.; Brian, P.; Lin, S.; Wang, J.; Zhao, Y.; Xu, H.; Pivovar, B.; Tian, B.; Chen, X. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, 1805876. [Google Scholar]
- Anwar, S.; Khan, F.; Zhang, Y.H.; Djire, A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrogen Energy 2021, 46, 32284–32317. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Li, Z.; Hu, M.; Wang, P.; Liu, J.; Yao, J.; Li, C. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953. [Google Scholar] [CrossRef]
- Yang, E.; Mohamed, H.O.; Park, S.G.; Obaid, M.; Al-Qaradawi, S.Y.; Castaño, P.; Chon, K.; Chae, K.J. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresour. Technol. 2021, 320, 124363. [Google Scholar] [CrossRef]
- Khatib, F.N.; Wilberforce, T.; Ijaodol, O.; Ogungbemi, E.; El-Hassana, Z.; Durranta, A.; Thompsona, J.; Olabi, A. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renew. Sustain. Energy Rev. 2019, 111, 1–14. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Park, J.E.; Kang, S.Y.; Oh, S.H. High-performance anion exchange membrane water electrolysis. Electrochim. Acta 2019, 295, 99–106. [Google Scholar] [CrossRef]
- Vincent, I.; Kruger, A.; Bessarabov, D. Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane(AEM). Int. J. Electrochem. Sci. 2018, 13, 11347–11358. [Google Scholar] [CrossRef]
- Chen, P.J.; Hu, X.L. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 2020, 10, 2002285. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, M.; Bo, X.; Zhou, M. Designing transition metal alloy nanoparticles embedded hierarchically porous carbon nanosheets as high-efficiency electrocatalysts toward full water splitting. J. Colloid Interface Sci. 2019, 537, 280–294. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Zhao, Z.; Hu, X.; Li, R.; Sun, S.; Zhang, X. Reparation of porous Ti-Cu alloy by one-step sintering method and application of hydrogen evolution reaction. J. Electroanal. Chem. 2022, 918, 116448. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, H.; Qin, X.; Guo, X.; Cui, G.; Asiri, A.M.; Sun, X. Cathodic electrochemical activation of Co3O4 nanoarrays: A smart strategy to significantly boost the hydrogen evolution activity. Chem. Commun. 2018, 54, 2150–2153. [Google Scholar] [CrossRef]
- Begum, H.; Ahmed, M.S.; Jeon, S.; Jeon, S. δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction. Electrochim. Acta 2019, 296, 235–242. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.C.; Liao, Y.F. Hetero-structured V-Ni3S2@NiOOH core-shell nanorods from an electrochemical anodization for water splitting. J. Alloys Compd. 2021, 856, 158219. [Google Scholar] [CrossRef]
- Ha, Y.; Shi, L.X.; Yan, X.X.; Chen, Z.L.; Li, Y.P.; Xu, W.; Wu, R.B. Multifunctional Electrocatalysis on a Porous N-doped NiCo2O4@C Nanonetwork. ACS Appl. Mater. Interfaces 2019, 11, 45546–45553. [Google Scholar] [CrossRef]
- Köse, K.Ö.; Aydınol, M.K. Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis. Int. J. Energy Res. 2022, 46, 22078–22088. [Google Scholar] [CrossRef]
- Wang, L.; Gong, N.; Zhou, Z.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Electronic modulation of multi-element transition metal phosphide by V-doping for high-efficiency and pH-universal hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 18305–18313. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Pedersen, F.A.; Jaramillo, T.F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029. [Google Scholar] [CrossRef]
- Bodner, M.; Hofer, A.; Hacker, V. H2 generation from alkaline electrolyzer. Wiley Energy Environ. 2015, 4, 365–381. [Google Scholar] [CrossRef]
- Rosalbino, F.; Macciò, D.; Angelini, E.; Saccone, A.; Delfino, D. Electrocatalytic properties of Fe-R (R = rare earth metal) crystalline alloys as hydrogen electrodes in alkaline water electrolysis. J. Alloys Compd. 2005, 403, 275–282. [Google Scholar] [CrossRef]
- Rosalbino, F.; Macciò, D.; Angelini, E.; Saccone, A.; Delfino, S. Characterization of Fe-Zn-R (R = rare earth metal) crystalline alloys as electrocatalysts for hydrogen evolution. J. Hydrogen Energy 2008, 33, 2660–2667. [Google Scholar] [CrossRef]
- Li, Z.; Lv, L.; Ao, X.; Li, A.; Sun, H.; An, P.; Xue, X.; Li, Y.; Liu, M.; Wang, C.; et al. An effective method for enhancing oxygen evolution kinetics of LaMO3 (M = Ni, Co, Mn) perovskite catalysts and its application to a rechargeable zinc–air battery. Appl. Catal. B Environ. 2020, 262, 118291. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Manade, H.; Sato, E. Oxygen Evolution on La1–xSrxCoO3 Electrodes in Alkaline Solutions. J. Electrochem. Soc. 1980, 4, 811–817. [Google Scholar] [CrossRef]
- Mizusaki, J.; Mima, Y.; Yamauchis, S.; Fueki, K.; Tagawa, H. Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ. J. Solid State Chem. 1989, 80, 102–111. [Google Scholar] [CrossRef]
- Svegl, F.; Orel, B.; Svegl, I.G.; Kaucic, V. Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the Sol-Gel route. J. Electrochim. Acta 2000, 45, 4359–4371. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 2016, 55, 6290–6294. [Google Scholar] [CrossRef] [PubMed]
- Lankhost, M.H.R.; Bouwmeester, H.J.M.; Verweij, H. Importance of electronic band structure to nonstoichiometric behaviour of La0.8Sr0.2CoO3. Solid State Ion. 1997, 96, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Otagawa, T.; Bockris, J.O.M. Lanthanum Nickelate as Electrocatalyst Oxygen Evolution. J. Electrochem. Soc. 1982, 10, 2391–2392. [Google Scholar] [CrossRef]
- Rogachev, A.S.; Fourmont, A.; Kovalev, D.Y.; Vadchenko, S.G.; Kochetov, N.A.; Shkodich, N.F.; Baras, F.; Politano, O. Mechanical alloying in the Co-Fe-Ni powder mixture: Experimental study and molecular dynamics simulation. Powder Technol. 2022, 399, 117187. [Google Scholar] [CrossRef]
- Atanova, A.V.; Seregin, D.S.; Zhigalina, O.M.; Khmelenin, D.N.; Orlov, G.A.; Turkina, D.I.; Sigov, A.S.; Vorotilov, K.A. Control of Columnar Grain Microstructure in CSD LaNiO3 Films. Molecules 2023, 28, 1938. [Google Scholar] [CrossRef]
- Chang, H.; Liang, Z.; Wang, L.; Wang, C. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. Nanoscale 2022, 14, 5639–5656. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; He, Y.; Zhu, H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 5320–5363. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Song, H.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2020, 31, 2008578. [Google Scholar] [CrossRef]
- Fei, B.; Chen, Z.; Liu, J.; Xu, H.; Yan, X.; Qing, H.; Chen, M.; Wu, R. Ultrathinning nickel sulfide with modulated electron density for efficient water splitting. Adv. Energy Mater. 2020, 10, 2001963. [Google Scholar] [CrossRef]
- Joo, J.; Kim, T.; Lee, J.; Choi, A.I.; Lee, K.Y. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Cheng, Y.; Chen, J.; Smith, W.; Dong, P.; Ajayan, P.M.; Ye, M.; Shen, J. Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 2018, 6, 23220–23243. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Wang, D.; Xu, H.; Meng, F.; Dong, D.; Jiang, J.; Zhang, J.; An, M.; Yang, P. A review: Target-oriented transition metal phosphide design and synthesis for water splitting. Int. J. Hydrogen Energy 2021, 46, 5131–5149. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Su, W.; Wang, D.; Zhou, Q.; Zheng, X. Preparation of 3D Fe-Co-Ni-OH/NiCoP electrode as a highly efficient electrocatalyst in the oxygen evolution reactions. J. Alloys Compd. 2023, 941, 168578. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Wang, P.; Chen, D.; Zhang, C.; Xiao, M.; Ma, Q.; Bai, H.; Qin, R.; Ma, J.; et al. Fe–Co–P multi-heterostructure arrays for efficient electrocatalytic water splitting. J. Mater. Chem. A 2021, 9, 24677–24685. [Google Scholar] [CrossRef]
- Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 2005, 78, 661–669. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Merge, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Bühler, M.; Holzapfel, P.; McLaughlin, D.; Thiele, S. From catalyst coated membranes to porous transport electrode based configurations in PEM water electrolyzers. J. Electrochem. Soc. 2019, 166, F1070. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mat. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar]
- Zhang, S.; Ma, X.; He, Y.; Zhu, Y.; Wang, Z. Amorphous mixed Ir-Mn oxide catalysts for the oxygen evolution reaction in PEM water electrolysis for H2 production. Int. J. Hydrogen Energy 2023, 48, 10532–10544. [Google Scholar] [CrossRef]
- Han, S.-B.; Mo, Y.-H.; Lee, Y.-S.; Lee, S.-G.; Park, D.-H.; Park, K.-W. Mesoporous iridium oxide/Sb-doped SnO2 nanostructured electrodes for polymer electrolyte membrane water electrolysis. Int. J. Hydrogen Energy 2020, 45, 1409–1416. [Google Scholar] [CrossRef]
- Morozan, A.; Johnson, H.; Roiron, C.; Genay, G.; Aldakov, D.; Ghedjatti, A.; Nguyen, C.T.; Tran, P.D.; Kinge, S.; Artero, V. Nonprecious Bimetallic Iron−Molybdenum Sulfide Electrocatalysts for the Hydrogen Evolution Reaction in Proton Exchange Membrane Electrolyzers. ACS Catal. 2020, 10, 14336–14348. [Google Scholar] [CrossRef]
- Giovanni, C.D.; Reyes-Carmona, Á.; Coursier, A.; Nowak, S.; Greneche, J.-M.; Lecoq, H.; Mouton, L.; Roziere, J.; Jones, D.; Peron, J.; et al. Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catal. 2016, 6, 2626–2631. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.; Kim, D.-K.; Choi, I.; Kim, S.-K. Pulse-electrodeposited nickel phosphide for high-performance proton exchange membrane water electrolysis. J. Alloys Compd. 2019, 785, 296–304. [Google Scholar] [CrossRef]
- Bang, H.T.; Yeo, K.-R.; Choi, K.J.; Jung, W.S.; Kim, S.-K. Ternary Ni-Mo-P catalysts for enhanced activity and durability in proton exchange membrane water electrolysis. Int. J. Energy Res. 2022, 46, 13023–13034. [Google Scholar] [CrossRef]
- Brito, J.; Restivo, J.; Sousa, J.P.S.; Spera, N.C.M.; Falcão, D.S.; Rocha, A.; Pinto, A.M.F.R.; Pereira, M.F.R.; Soares, O.S.G.P. Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis. Energies 2022, 15, 1821. [Google Scholar] [CrossRef]
- Rashid, M.D.; Al Mesfer, M.K.; Naseem, H.; Danish, M. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 2015, 4, 80–93. [Google Scholar]
- Revankar, S.; Bindra, H. Storage and Hybridization of Nuclear Energy; Academica Press: Cambridge, MA, USA, 2018; pp. 49–117. [Google Scholar]
- Medvedev, D. Trends in research and development of protonic ceramic electrolysis cells. Int. J. Hydrogen Energy 2019, 44, 26711–26740. [Google Scholar] [CrossRef]
- Herring, J.S.; O’Brien, J.E.; Stoots, C.M.; Hawkes, G.L.; Hartvigsen, J.J.; Shahnam, M. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology. Int. J. Hydrogen Energy 2006, 32, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An overview of hydrogen production: Current status, potential, and challenges. Fuel 2022, 316, 123317. [Google Scholar] [CrossRef]
- Kim, J.; Jun, A.; Gwon, O.; Yoo, S.; Liu, M.; Shin, J.; Lim, T.H.; Kim, G. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production. Nano Energy 2018, 44, 121–126. [Google Scholar] [CrossRef]
- Meng, X.; Chen, M.; Gu, A.; Wu, X.; Liu, B.; Zhou, J.; Mao, Z. China’s hydrogen development strategy in the context of double carbon targets. Nat. Gas Ind. B 2022, 9, 521–547. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, C.; Jiang, Y.; Li, P.; Xia, C. A robust fluorine-containing ceramic cathode for direct CO2 electrolysis in solid oxide electrolysis cells. J. Energy Chem. 2023, 77, 300–309. [Google Scholar] [CrossRef]
- Vidales, A.G.; Choi, K.; Omanovic, S. Nickel-cobalt-oxide cathodes for hydrogen production by water electrolysis in acidic and alkaline media. Int. J. Hydrogen Energy 2018, 43, 12917–12928. [Google Scholar] [CrossRef]
- Vidalesa, A.G.; Millanb, N.C.; Bock, C. Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters. Chem. Eng. Res. Des. 2023, 194, 636–648. [Google Scholar] [CrossRef]
- Vidales, A.G.; Omanovic, S. Evaluation of nickel-molybdenum-oxides as cathodes for hydrogen evolution by water electrolysis in acidic, alkaline, and neutral media. Electrochim. Acta 2018, 262, 115–123. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, J.; Li, Y.; Wei, B.; Zhang, N.; Li, Y.; Bondarchuk, O.; Miao, H.; Araujo, A.; Wang, Z.; et al. Ultrafine oxygen-defective iridium oxide nanoclusters for efficient and durable water oxidation at high current densities in acidic media. J. Mater. Chem. A 2020, 8, 24743–24751. [Google Scholar] [CrossRef]
- Vidales, A.G.; Sridhar, D.; Meunier, J.-L.; Omanovic, S. Nickel oxide on directly grown carbon nanofibers for energy storage applications. J. Appl. Electrochem. 2020, 50, 1217–1229. [Google Scholar] [CrossRef]
- Vidales, A.G.; Dam-Quang, L.; Hong, A.; Omanovic, S. The influence of addition of iridium-oxide to nickel-molybdenumoxide cathodes on the electrocatalytic activity towards hydrogen evolution in acidic medium and on the cathode deactivation resistance. Electrochim. Acta 2019, 302, 198–206. [Google Scholar] [CrossRef]
Technologies | Diaphragm | Catalyst | Electrolyte | T/°C | Efficiency/% | Advantage | Disadvantage | |
---|---|---|---|---|---|---|---|---|
Anode | Cathode | |||||||
AWE | Porous materials | Ni, Co, Fe, LaCoO3, LaNiO3, NiCo2O4 | Ni alloy, NiMoO4 | Alkaline water | 20~90 | 59~70 | Low cost, long service life, mature technology | Electrode corrosion, poor dynamic performance |
AEM | Ni-based materials | Ni, NiFe, NiFe2O4, PtRu/C | Pure or alkaline water | 20~200 | 60~78 | Has the advantages of alkaline electrolysis and PEM electrolysis | Low OH− conductivity and poor high-temperature stability | |
PEM | Perfluorosulfonic acid membrane | RuO2, IrO2, Ir1−xRuxO2 | Pt/C, MoS2 | Polymer, acidic electrolyte | 20~200 | 65~82 | Compact design, high responsiveness | High-cost, precious-metal catalyst |
PCC | Perovskite ceramic | Ni ceramic | Ceramic | 500~1000 | Up to 100% | Low cost, low energy demand, and high electrochemical reaction rate | High cost, poor mechanical stability of ceramics, difficult sealing; easy to cause hydrogen leakage | |
SOE | ceramic | LaxSr1−xMnO3, LSM-YSZ | Ni-YSZ, Ni-based ceramic, perovskite | Vapor, ceramic (oxygen ion conductor) | 500~1000 °C | Up to 100% |
Transition Metal-Based Electrocatalysts | Catalyst | Overpotential/mV (10 mA cm−2) | Tafel Slope/mV dec−1 | Rct/Ω |
---|---|---|---|---|
alloys | Fe3Co7@PCNs for HER [35] | 220 | 65.5 | 47 |
Fe3Co7@PCNs for HER [35] | 260 | 53.16 | 16 | |
B-Ti2Cu3 for HER [36] | 155 | 103.89 | 14.2 | |
Mo-Ti2Cu3 for HER [36] | 133 | 97.37 | _ | |
oxides | CoP@Co3O4@CC for HER [37] | 73 | 85 | 70 |
δ-MnO2/SGS for HER [38] | 80 | 42 | 140 | |
sulfides | V-Ni3S2/NiOOH for HER [39] | 154 | 94 | 5.1 |
N-NiMoO4/NiS2 for HER [40] | 99 | 74.2 | _ | |
N-NiMoO4/NiS2 for OER [40] | 283 | 44.3 | _ | |
phosphides | NiFeP for OER [41] | 313 | 44 | 4.3 |
V-CoP/Ni2P/NF for HER [42] | 20 | 54.2 | 2.6 |
Electrocatalysts for PEM Electrolyzer | Catalyst | Overpotential/mV (10 mA cm−2) | Tafel Slope/mV dec−1 | Rct/Ω |
---|---|---|---|---|
oxides | Ir0.6Mn0.4Ox for OER [70] | 212 | 40 | 5.2 |
Ir/ATO 70% for OER [71] | 256 | - | - | |
sulfides | GDL/(CNTs+FeMoS) for HER [72] | 180 | 57 | - |
FeS2 for HER [73] | 870 mV at 1 A cm−2 | - | - | |
phosphides | Ni78P22 for HER [74] | 105 | 38 | 1.16 |
Ni71.5Mo26.5P2 for HER [75] | 28 | 29 | ||
20% FeP/CB for HER [76] | 51 | 101 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Guo, J.; Li, Z.; Wang, J. Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water. Molecules 2023, 28, 5010. https://doi.org/10.3390/molecules28135010
Li H, Guo J, Li Z, Wang J. Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water. Molecules. 2023; 28(13):5010. https://doi.org/10.3390/molecules28135010
Chicago/Turabian StyleLi, Haiyao, Jun Guo, Zhishan Li, and Jinsong Wang. 2023. "Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water" Molecules 28, no. 13: 5010. https://doi.org/10.3390/molecules28135010
APA StyleLi, H., Guo, J., Li, Z., & Wang, J. (2023). Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water. Molecules, 28(13), 5010. https://doi.org/10.3390/molecules28135010