Sulfoximine Assisted C–H Activation and Annulation via Vinylene Transfer: Access to Unsubstituted Benzothiazines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Substrates 1a–1w
3.3. General Procedure for the Synthesis of Compounds 3a–3w
3.4. General Procedure for the Synthesis of Ligands L1, L2, and L4
3.5. Characterization of the Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sirvent, J.A.; Lücking, U. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates. ChemMedChem 2017, 12, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Lücking, U. Neglected Sulfur(vi) Pharmacophores in Drug Discovery: Exploration of Novel Chemical Space by the Interplay of Drug Design and Method Development. Org. Chem. Front. 2019, 6, 1319–1324. [Google Scholar] [CrossRef] [Green Version]
- Lücking, U. Sulfoximines: A Neglected Opportunity in Medicinal Chemistry. Angew. Chem. Int. Ed. 2013, 52, 9399–9408. [Google Scholar] [CrossRef] [PubMed]
- Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Sulfoximines from a Medicinal Chemist’s Perspective: Physicochemical and In Vitro Parameters Relevant for Drug Discovery. Eur. J. Med. Chem. 2017, 126, 225–245. [Google Scholar] [CrossRef]
- Bartoszyk, G.D.; Dooley, D.J.; Barth, H.; Hartenstein, J.; Satzinger, G. Stereoselective Pharmacological Effects and Benzodiazepine Receptor Affinity of the Enantiomers of Gö 4962. J. Pharm. Pharmacol. 1987, 39, 407–408. [Google Scholar] [CrossRef]
- De Clercq, E. The Role of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) in the Therapy of HIV-1 Infection. Antivir. Res. 1998, 38, 153–179. [Google Scholar] [CrossRef]
- Buckheit, R.W.J.; Fliakas-Boltz, V.; Decker, W.D.; Roberson, J.L.; Pyle, C.A.; White, E.L.; Bowdon, B.J.; McMahon, J.B.; Boyd, M.R.; Bader, J.P. Biological and Biochemical Anti-HIV Activity of the Benzothiadiazine Class of Nonnucleoside Reverse Transcriptase Inhibitors. Antivir. Res. 1994, 25, 43–56. [Google Scholar] [CrossRef]
- Yongpruksa, N.; Pandey, S.; Baker, G.A.; Harmata, M. Benzothiazines in Organic Synthesis. Synthesis of Fluorescent 7-Amino-2,1-Benzothiazines. Org. Biomol. Chem. 2011, 9, 7979–7982. [Google Scholar] [CrossRef]
- Dillard, R.D.; Yen, T.T.; Stark, P.; Pavey, D.E. Synthesis and Blood Pressure Lowering Activity of 3-(Substituted-Amino)-1,2,4-Benzothiadiazine 1-Oxide Derivatives. J. Med. Chem. 1980, 23, 717–722. [Google Scholar] [CrossRef]
- Harmata, M.; Rayanil, K.; Gomes, M.G.; Zheng, P.; Calkins, N.L.; Kim, S.Y.; Fan, Y.; Bumbu, V.; Lee, D.R.; Wacharasindhu, S.; et al. 1, 2-Benzothiazines from sulfoximines and allyl methyl carbonate by rhodium-catalyzed cross-coupling and oxidative cyclization. Org. Lett. 2005, 7, 143–145. [Google Scholar] [CrossRef]
- Dong, W.; Wang, L.; Parthasarathy, K.; Pan, F.; Bolm, C. Rhodium-Catalyzed Oxidative Annulation of Sulfoximines and Alkynes as an Approach to 1,2-Benzothiazines. Angew. Chem. Int. Ed. 2013, 52, 11573–11576. [Google Scholar] [CrossRef]
- Cheng, Y.; Bolm, C. Regioselective Syntheses of 1,2-Benzothiazines by Rhodium-Catalyzed Annulation Reactions. Angew. Chem. Int. Ed. 2015, 54, 12349–12352. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.-G.; de Azambuja, F.; Glorius, F. α-MsO/TsO/Cl Ketones as Oxidized Alkyne Equivalents: Redox-Neutral Rhodium(III)-Catalyzed C−H Activation for the Synthesis of N-Heterocycles. Angew. Chem. Int. Ed. 2014, 53, 2754–2758. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.H.; Son, J.-Y.; Kim, J.E.; Lee, P.H. ChemInform Abstract: Synthesis of 1,2-Benzothiazines by a Rhodium-Catalyzed Domino C—H Activation/Cyclization/Elimination Process from S-Aryl Sulfoximines and Pyridotriazoles. ChemInform 2016, 47, 3498–3501. [Google Scholar] [CrossRef]
- Wen, J.; Cheng, H.; Raabe, G.; Bolm, C. Rhodium-Catalyzed [4 + 3] Annulations of Sulfoximines with α,β-Unsaturated Ketones Leading to 1,2-Benzothiazepine 1-Oxides. Org. Lett. 2017, 19, 6020–6023. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dong, L. Rhodium-Catalyzed Benzoisothiazole Synthesis by Tandem Annulation Reactions of Sulfoximines and Activated Olefins. Org. Biomol. Chem. 2017, 15, 9983–9986. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Wang, T.; Huang, Q.; Wang, Z.; Chen, Z. Microwave-Assisted Cp*CoIII-Catalyzed C–H Activation/Double C–N Bond Formation Reactions to Thiadiazine 1-Oxides. Org. Lett. 2017, 19, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wan, B.; Li, X. Enantiodivergent Desymmetrization in the Rhodium(III)-Catalyzed Annulation of Sulfoximines with Diazo Compounds. Angew. Chem. Int. Ed. 2018, 57, 15534–15538. [Google Scholar] [CrossRef]
- Aher, Y.N.; Lade, D.M.; Pawar, A.B. Cp*Ir(Iii)-Catalyzed C–H/N–H Functionalization of Sulfoximines for the Synthesis of 1,2-Benzothiazines at Room Temperature. Chem. Commun. 2018, 54, 6288–6291. [Google Scholar] [CrossRef]
- Sun, Y.; Cramer, N. Enantioselective Synthesis of Chiral-at-Sulfur 1,2-Benzothiazines by CpxRhIII-Catalyzed C−H Functionalization of Sulfoximines. Angew. Chem. Int. Ed. 2018, 57, 15539–15543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauns, M.; Cramer, N. Efficient Kinetic Resolution of Sulfur-Stereogenic Sulfoximines by Exploiting CpXRhIII-Catalyzed C−H Functionalization. Angew. Chem. Int. Ed. 2019, 58, 8902–8906. [Google Scholar] [CrossRef]
- Huang, J.-R.; Bolm, C. Microwave-Assisted Synthesis of Heterocycles by Rhodium(III)-Catalyzed Annulation of N-Methoxyamides with α-Chloroaldehydes. Angew. Chem. Int. Ed. 2017, 56, 15921–15925. [Google Scholar] [CrossRef]
- Mukherjee, K.; Grimblat, N.; Sau, S.; Ghosh, K.; Shankar, M.; Gandon, V.; Sahoo, A.K. Kinetic Resolution of Sulfur-Stereogenic Sulfoximines by Pd(Ii)–MPAA Catalyzed C–H Arylation and Olefination. Chem. Sci. 2021, 12, 14863–14870. [Google Scholar] [CrossRef]
- Ghosh, K.; Nishii, Y.; Miura, M. Rhodium-Catalyzed Annulative Coupling Using Vinylene Carbonate as an Oxidizing Acetylene Surrogate. ACS Catal. 2019, 9, 11455–11460. [Google Scholar] [CrossRef]
- Li, J.-Y.; Xie, P.-P.; Zhou, T.; Qian, P.-F.; Zhou, Y.-B.; Li, H.-C.; Hong, X.; Shi, B.-F. Ir(III)-Catalyzed Asymmetric C–H Activation/Annulation of Sulfoximines Assisted by the Hydrogen-Bonding Interaction. ACS Catal. 2022, 12, 9083–9091. [Google Scholar] [CrossRef]
- Zhou, T.; Qian, P.-F.; Li, J.-Y.; Zhou, Y.-B.; Li, H.-C.; Chen, H.-Y.; Shi, B.-F. Efficient Synthesis of Sulfur-Stereogenic Sulfoximines via Ru(II)-Catalyzed Enantioselective C–H Functionalization Enabled by Chiral Carboxylic Acid. J. Am. Chem. Soc. 2021, 143, 6810–6816. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.-F.; Zhou, T.; Li, J.-Y.; Zhou, Y.-B.; Shi, B.-F. Ru(II)/Chiral Carboxylic Acid-Catalyzed Asymmetric [4 + 3] Annulation of Sulfoximines with α,β-Unsaturated Ketones. ACS Catal. 2022, 12, 13876–13883. [Google Scholar] [CrossRef]
- Wang, B.; Han, X.; Li, J.; Li, C.; Liu, H. Molecules Activation and Intramolecular Annulation for the Synthesis of Fused Isochromeno-1, 2-Benzothiazines Activation and Intramolecular Annulation for the Scaffolds Under. Molecules 2020, 25, 2515–2532. [Google Scholar] [CrossRef]
- Alberico, D.; Scott, M.E.; Lautens, M. Aryl−Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev. 2007, 107, 174–238. [Google Scholar] [CrossRef]
- Chen, X.; Engle, K.M.; Wang, D.-H.; Yu, J.-Q. ChemInform Abstract: Palladium(II)-Catalyzed C—H Activation/C—C Cross-Coupling Reactions: Versatility and Practicality. ChemInform 2009, 40, 5094–5115. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.A.; Shen, Q.; Hartwig, J.F. A General and Long-Lived Catalyst for the Palladium-Catalyzed Coupling of Aryl Halides with Thiols. J. Am. Chem. Soc. 2006, 128, 2180–2181. [Google Scholar] [CrossRef] [PubMed]
- Platon, M.; Wijaya, N.; Rampazzi, V.; Cui, L.; Rousselin, Y.; Saeys, M.; Hierso, J.-C. Thioetherification of Chloroheteroarenes: A Binuclear Catalyst Promotes Wide Scope and High Functional-Group Tolerance. Chem.—Eur. J. 2014, 20, 12584–12594. [Google Scholar] [CrossRef] [PubMed]
- Guilbaud, J.; Labonde, M.; Selmi, A.; Kammoun, M.; Cattey, H.; Pirio, N.; Roger, J.; Hierso, J.-C. Palladium-Catalyzed Heteroaryl Thioethers Synthesis Overcoming Palladium Dithiolate Resting States Inertness: Practical Road to Sulfones and NH-Sulfoximines. Catal. Commun. 2018, 111, 52–58. [Google Scholar] [CrossRef]
- Ghosh, P.; Ganguly, B.; Das, S. N−H and C−H Functionalization of Sulfoximine: Recent Advancement and Prospects. Asian J. Org. Chem. 2020, 9, 2035–2082. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, J.Y.; Kwak, J.; Chang, S. ChemInform Abstract: Recent Advances in the Transition Metal-Catalyzed Twofold Oxidative C—H Bond Activation Strategy for C—C and C—N Bond Formation. ChemInform 2012, 43, 5068–5083. [Google Scholar] [CrossRef]
- Colby, D.A.; Tsai, A.S.; Bergman, R.G.; Ellman, J.A. Rhodium Catalyzed Chelation-Assisted C–H Bond Functionalization Reactions. Acc. Chem. Res. 2012, 45, 814–825. [Google Scholar] [CrossRef]
- Song, G.; Wang, F.; Li, X. ChemInform Abstract: C—C, C—O and C—N Bond Formation via Rhodium(III)-Catalyzed Oxidative C—H Activation. ChemInform 2012, 43, 3651–3678. [Google Scholar] [CrossRef]
- Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp2)−H and C(sp3)−H Bonds by Using Bidentate Directing Groups. Angew. Chem. Int. Ed. 2013, 52, 11726–11743. [Google Scholar] [CrossRef]
- Wencel-Delord, J.; Glorius, F. ChemInform Abstract: C—H Bond Activation Enables the Rapid Construction and Late-Stage Diversification of Functional Molecules. ChemInform 2013, 44, 369–375. [Google Scholar] [CrossRef]
- Song, G.; Li, X. Substrate Activation Strategies in Rhodium(III)-Catalyzed Selective Functionalization of Arenes. Acc. Chem. Res. 2015, 48, 1007–1020. [Google Scholar] [CrossRef]
- Hummel, J.R.; Boerth, J.A.; Ellman, J.A. Transition-Metal-Catalyzed C–H Bond Addition to Carbonyls, Imines, and Related Polarized π Bonds. Chem. Rev. 2017, 117, 9163–9227. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Qiu, D.; Wang, J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem. Rev. 2017, 117, 13810–13889. [Google Scholar] [CrossRef] [PubMed]
- Voronin, V.V.; Ledovskaya, M.S.; Bogachenkov, A.S.; Rodygin, K.S.; Ananikov, V.P. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules 2018, 23, 2442. [Google Scholar] [CrossRef] [Green Version]
- Trotuş, I.-T.; Zimmermann, T.; Schüth, F. Catalytic Reactions of Acetylene: A Feedstock for the Chemical Industry Revisited. Chem. Rev. 2014, 114, 1761–1782. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A. Cobalt-Catalyzed Electrooxidative C-H/N-H [4 + 2] Annulation with Ethylene or Ethyne. Nat. Commun. 2018, 9, 798. [Google Scholar] [CrossRef] [Green Version]
- Reus, C.; Liu, N.-W.; Bolte, M.; Lerner, H.-W.; Wagner, M. Synthesis of Bromo-, Boryl-, and Stannyl-Functionalized 1,2-Bis(Trimethylsilyl)Benzenes via Diels–Alder or C–H Activation Reactions. J. Org. Chem. 2012, 77, 3518–3523. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.-J.; Han, T.; Ruan, W.; Wen, T.-B. Rh(III)-Catalyzed Oxidative Coupling of Benzoic Acids with Geminal-Substituted Vinyl Acetates: Synthesis of 3-Substituted Isocoumarins. J. Org. Chem. 2015, 80, 620–627. [Google Scholar] [CrossRef]
- Chu, H.; Sun, S.; Yu, J.-T.; Cheng, J. Rh-Catalyzed Sequential Oxidative C–H Activation/Annulation with Geminal-Substituted Vinyl Acetates to Access Isoquinolines. Chem. Commun. 2015, 51, 13327–13329. [Google Scholar] [CrossRef]
- Webb, N.J.; Marsden, S.P.; Raw, S.A. Rhodium(III)-Catalyzed C–H Activation/Annulation with Vinyl Esters as an Acetylene Equivalent. Org. Lett. 2014, 16, 4718–4721. [Google Scholar] [CrossRef]
- Shankar, M.; Rit, R.K.; Sau, S.; Mukherjee, K.; Gandon, V.; Sahoo, A.K. Double Annulation of Ortho- and Peri-C–H Bonds of Fused (Hetero)Arenes to Unusual Oxepino-Pyridines. Chem. Sci. 2020, 11, 10770–10777. [Google Scholar] [CrossRef]
- Shankar, M.; Guntreddi, T.; Ramesh, E.; Sahoo, A.K. Transformable Sulfoximine Assisted One-Pot Double Annulation of Vinylic C–H Bonds with Unactivated Alkynes. Org. Lett. 2017, 19, 5665–5668. [Google Scholar] [CrossRef] [PubMed]
- Shankar, M.; Saha, A.; Sau, S.; Ghosh, A.; Gandon, V.; Sahoo, A.K. Harnessing Sulfur and Nitrogen in the Cobalt(Iii)-Catalyzed Unsymmetrical Double Annulation of Thioamides: Probing the Origin of Chemo- and Regio-Selectivity. Chem. Sci. 2021, 12, 6393–6405. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Shankar, M.; Sau, S.; Sahoo, A.K. Multiple Annulations of Inert C(Sp2)–H Bonds with Alkynes. Chem. Commun. 2022, 58, 4561–4587. [Google Scholar] [CrossRef]
- Mukherjee, K.; Shankar, M.; Ghosh, K.; Sahoo, A.K. An Orchestrated Unsymmetrical Annulation Episode of C(Sp2)–H Bonds with Alkynes and Quinones: Access to Spiro-Isoquinolones. Org. Lett. 2018, 20, 1914–1918. [Google Scholar] [CrossRef]
- Ghosh, K.; Shankar, M.; Rit, R.K.; Dubey, G.; Bharatam, P.V.; Sahoo, A.K. Sulfoximine-Assisted One-Pot Unsymmetrical Multiple Annulation of Arenes: A Combined Experimental and Computational Study. J. Org. Chem. 2018, 83, 9667–9681. [Google Scholar] [CrossRef] [PubMed]
- Guntreddi, T.; Shankar, M.; Kommu, N.; Sahoo, A.K. Construction of Pyranoisoquinolines via Ru(II)-Catalyzed Unsymmetrical Double Annulation of N-Methoxybenzamides with Unactivated Alkynes. J. Org. Chem. 2019, 84, 13033–13044. [Google Scholar] [CrossRef]
- Shankar, M.; Saha, A.; Ghosh, A.; Sau, S.; Sahoo, A.K. Sulfur and Nitrogen Modulated One-Pot Double Annulation of Arenes. J. Org. Chem. 2021, 86, 14942–14955. [Google Scholar] [CrossRef]
- Mihara, G.; Ghosh, K.; Nishii, Y.; Miura, M. Concise Synthesis of Isocoumarins through Rh-Catalyzed Direct Vinylene Annulation: Scope and Mechanistic Insight. Org. Lett. 2020, 22, 5706–5711. [Google Scholar] [CrossRef]
- Ghosh, K.; Nishii, Y.; Miura, M. Oxidative C–H/C–H Annulation of Imidazopyridines and Indazoles through Rhodium-Catalyzed Vinylene Transfer. Org. Lett. 2020, 22, 3547–3550. [Google Scholar] [CrossRef]
- Kitano, J.; Nishii, Y.; Miura, M. Selective Synthesis of C4-Functionalized Benzofurans by Rhodium-Catalyzed Vinylene Transfer: Computational Study on the Cyclopentadienyl Ligand. Org. Lett. 2022, 24, 5679–5683. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.B.; Kang, J.Y.; An, W.; Lee, S.H.; Oh, H.; Ghosh, P.; Mishra, N.K.; Kim, I.S. Synthesis of Cinnolines via Rh(III)-Catalyzed Annulation of N-Aryl Heterocycles with Vinylene Carbonate. Asian J. Org. Chem. 2021, 10, 3005–3014. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Li, J.; Lai, R.; Guan, M.; Wu, Y.H. Ru(II)-Catalyzed C–H Activation Reaction between 2-Phenyl quinazolinone and Vinylene Carbonate. Synlett 2021, 32, 1963–1968. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Li, B.; Tan, Y.; Zhao, H.; Li, Z.; Zhang, C.; Ma, W. Ruthenium-Catalyzed Vinylene Carbonate Annulation by C−H/N−H Functionalizations: Step-Economical Access to Indoles. Adv. Synth. Catal. 2022, 364, 838–844. [Google Scholar] [CrossRef]
- Liu, M.; Yan, K.; Wen, J.; Liu, W.; Wang, M.; Wang, L.; Wang, X. Synthesis of Substituted 1-Hydroxy-2-Naphthaldehydes by Rhodium-Catalyzed C−H Bond Activation and Vinylene Transfer of Enaminones with Vinylene Carbonate. Adv. Synth. Catal. 2022, 364, 512–517. [Google Scholar] [CrossRef]
- Li, X.; Huang, T.; Song, Y.; Qi, Y.; Li, L.; Li, Y.; Xiao, Q.; Zhang, Y. Co(III)-Catalyzed Annulative Vinylene Transfer via C–H Activation: Three-Step Total Synthesis of 8-Oxopseudopalmatine and Oxopalmatine. Org. Lett. 2020, 22, 5925–5930. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Nan, J.; Yin, J.; Huang, G.; Ren, X.; Ma, Y. Rhodium-Catalyzed Dehydrogenative Annulation of N-Arylmethanimines with Vinylene Carbonate for Synthesizing Quinolines. Org. Lett. 2021, 23, 8527–8532. [Google Scholar] [CrossRef]
- Nan, J.; Yin, J.; Gong, X.; Hu, Y.; Ma, Y. Rhodium-Catalyzed C–H Annulation of Free Anilines with Vinylene Carbonate as a Bifunctional Synthon. Org. Lett. 2021, 23, 8910–8915. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Li, Y.; Li, Y.; Sun, Y.; Xia, C.; Li, Y. Manganese-Catalyzed [4 + 2] Annulation of N–H Amidines with Vinylene Carbonate via C–H Activation. J. Org. Chem. 2021, 86, 18204–18210. [Google Scholar] [CrossRef]
- Huang, J.; Liu, F.; Du, F.; Zeng, L.; Chen, Z. Cp∗Rh/Ag Catalyzed C–H Activation/Cyclization Sequences of NH-Sulfoximines to Fused Aza-Polyheterocycles under Gentle Conditions. Green Synth. Catal. 2023, 4, 160–168. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Qi, Z.; Qi, X.; Li, X.; Lan, Y. The Mechanism of N–O Bond Cleavage in Rhodium-Catalyzed C—H Bond Functionalization of Quinoline N-Oxides with Alkynes: A Computational Study. Chem. Eur. J. 2015, 21, 10131–10137. [Google Scholar] [CrossRef]
- Dateer, R.B.; Chang, S. Selective Cyclization of Arylnitrones to Indolines under External Oxidant-Free Conditions: Dual Role of Rh(III) Catalyst in the C–H Activation and Oxygen Atom Transfer. J. Am. Chem. Soc. 2015, 137, 4908–4911. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst (3 mol%) | Ligand (20 mol%) | Solvent | Temp (°C) | Yield (%) b |
---|---|---|---|---|---|
1 | [Rh(Cp*)Cl2]2 | L1 | TFE | 80 | 30 |
2 | [Rh(Cp*)Cl2]2 | L1 | DCE | 60 | 20 |
3 | [Rh(Cp*)Cl2]2 | L1 | t–amyl–OH | 60 | 50 |
4 | [Rh(Cp*)Cl2]2 | L1 | TFE+DCE | 60 | 15 |
5 | [Rh(Cp*)Cl2]2 | L1 | TFT | 60 | 35 |
6 | [Rh(Cp*)Cl2]2 | L1 | t–BuOH | 60 | 55 |
7 | [Rh(Cp*)Cl2]2 | L2 | t–BuOH | 60 | 50 |
8 | [Rh(Cp*)Cl2]2 | L3 | t–BuOH | 60 | 43 |
9 | [Rh(Cp*)Cl2]2 | L4 | t–BuOH | 60 | 75 |
10 | [Rh(Cp*)Cl2]2 | No ligand | t–BuOH | 60 | Trace |
11 | [Ir(Cp*)Cl2]2 | L4 | t–BuOH | 60 | n.d |
12 | [Co(Cp*)(CO)I2]2 | L4 | t–BuOH | 60 | n.d |
13 | [Ru(p–cymene)Cl2]2 | L4 | t–BuOH | 60 | 55 |
14 | [Rh(Cp*)Cl2]2 | AcOH | t–BuOH | 60 | 23 c |
15 | [Rh(Cp*)Cl2]2 | Piv-OH | t–BuOH | 60 | 39 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondalarao, K.; Sau, S.; Sahoo, A.K. Sulfoximine Assisted C–H Activation and Annulation via Vinylene Transfer: Access to Unsubstituted Benzothiazines. Molecules 2023, 28, 5014. https://doi.org/10.3390/molecules28135014
Kondalarao K, Sau S, Sahoo AK. Sulfoximine Assisted C–H Activation and Annulation via Vinylene Transfer: Access to Unsubstituted Benzothiazines. Molecules. 2023; 28(13):5014. https://doi.org/10.3390/molecules28135014
Chicago/Turabian StyleKondalarao, Koneti, Somratan Sau, and Akhila K. Sahoo. 2023. "Sulfoximine Assisted C–H Activation and Annulation via Vinylene Transfer: Access to Unsubstituted Benzothiazines" Molecules 28, no. 13: 5014. https://doi.org/10.3390/molecules28135014
APA StyleKondalarao, K., Sau, S., & Sahoo, A. K. (2023). Sulfoximine Assisted C–H Activation and Annulation via Vinylene Transfer: Access to Unsubstituted Benzothiazines. Molecules, 28(13), 5014. https://doi.org/10.3390/molecules28135014