Pharmacological Modulation of Host Immunity with Hen Egg White Lysozyme (HEWL)—A Review
Abstract
:1. Introduction
2. Evidence of HEWL Effects on Immunity
In Vivo HEWL Effects on Models of Tumor Growth
3. HEWL Interactions with the Immune System
3.1. Effects on Effector Cells
3.2. Effects on Immune Structures
4. Study with HEWL in Patients
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, A. On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B 1922, 93, 306–317. [Google Scholar]
- Ganz, T. Antimicrobial polypeptides. J. Leukoc. Biol. 2004, 75, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2012, 132, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Callewaert, L.; Michiels, C.W. Lysozymes in the animal kingdom. J. Biosci. 2010, 35, 127–160. [Google Scholar] [CrossRef] [PubMed]
- RCSB. Available online: https://www.rcsb.org/structure/1KLR (accessed on 4 May 2023).
- Shahmohammadi, A. Lysozyme separation from chicken egg white: A review. Eur. Food Res. Technol. 2018, 244, 577–593. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lee, J.S.; Choi, S.H.; Shin, H.S.; Park, J.C.; Shin, S.I.; Chung, J.H. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients. BMC Oral Health 2019, 19, 40. [Google Scholar] [CrossRef] [Green Version]
- Shteyngart, B. Intratracheal Administration of Lysozyme with Other Therapeutic Agents in the Prevention and Treatment of Respiratory Disorders. U.S. Patent US20050271645, 8 December 2005. [Google Scholar]
- Kiaerulff, S.; Cohn, M.T.; Kristensen, N.N. Microbial Lysozyme for Use in the Treatment of Irritable Bowel Syndrome or Inflammatory Bowel. Disease. Patent No. WO2018127532, 7 December 2018. [Google Scholar]
- Artesani, M.C.; Donnanno, S.; Cavagni, G.; Calzone, L.; D’Urbano, L. Egg sensitization caused by immediate hypersensitivity reaction to drug-containing lysozyme. Ann. Allergy Asthma Immunol. 2008, 101, 105. [Google Scholar] [CrossRef]
- Charreire, J.; Faure, A.; Bach, J.F. Studies on B- and T-cell receptors for lysozyme. Immunology 1975, 29, 423–432. [Google Scholar]
- Cecka, J.M.; Stratton, J.; Miller, A.; Sercarz, E. Structural aspects of immune recognition of lysozymes. III. T cell specificity restriction and its consequences for antibody specificity. Eur. J. Immunol. 1976, 6, 639–646. [Google Scholar] [CrossRef]
- Sette, A.; Colizzi, V.; Appella, E.; Doria, G.; Adorini, L. Analysis of lysozyme-specific immune response by synthetic peptides. I. Characterization of antibody and T cell-mediated responses to the N-terminal peptide of hen egg-white lysozyme. Eur. J. Immunol. 1986, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Maizels, R.M.; Clarke, J.A.; Harvey, M.A.; Miller, A.; Sercarz, E.E. Epitope specificity of the T cell proliferative response to lysozyme: Proliferative T cells react predominantly to different determinants from those recognized by B cells. Eur. J. Immunol. 1980, 10, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, Y.; Wang, L.; Guo, J.; Liu, W.; Meng, G.; Zhang, L.; Li, M.; Cong, L.; Sun, M. Recent insights into the prognostic and therapeutic applications of lysozymes. Front. Pharmacol. 2021, 12, 767642. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kovacs-Nolan, J.; Yang, C.; Archbold, T.; Fan, M.Z.; Mine, Y. Hen egg lysozyme attenuates inflammation and modulates local gene expression in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J. Agric. Food Chem. 2009, 57, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.J.; Arruda, A.; Reyes, C.N.; Kaplan, A.T.; Shimada, T.; Shimada, K.; Arditi, M.; Liu, G.; Underhill, D.M. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria. J. Immunol. 2011, 187, 6002–6010. [Google Scholar] [CrossRef] [Green Version]
- Tagashira, A.; Nishi, K.; Matsumoto, S.; Sugahara, T. Anti-inflammatory effect of lysozyme from hen egg white on mouse peritoneal macrophages. Cytotechnology 2018, 70, 929–938. [Google Scholar] [CrossRef]
- Bergamo, A.; Gerdol, M.; Pallavicini, A.; Greco, S.; Schepens, I.; Hamelin, R.; Armand, F.; Dyson, P.J.; Sava, G. Lysozyme-induced transcriptional regulation of TNF-alpha pathway genes in cells of the monocyte lineage. Int. J. Mol. Sci. 2019, 20, 5502. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Jiang, Q.; Wu, D.; Hu, Y.; Chen, S.; Ding, T.; Ye, X.; Liu, D.; Chen, J. What is new in lysozyme research and its application in food industry? A review. Food Chem. 2019, 274, 698–709. [Google Scholar] [CrossRef]
- Melinte, G.; Selvolini, G.; Cristea, C.; Marrazza, G. Aptasensors for lysozyme detection: Recent advances. Talanta 2021, 226, 122169. [Google Scholar] [CrossRef]
- Kazimierska, K.; Kalinowska-Lis, U. Milk proteins—Their activities and use in cosmetics and dermatology. Molecules 2021, 26, 3253. [Google Scholar] [CrossRef]
- Sarkar, S.; Gulati, K.; Mishra, A.; Poluri, K.M. Protein nanocomposites: Special inferences to lysozyme based nanomaterials. Int. J. Biol. Macromol. 2020, 151, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Khorshidian, N.; Khanniri, E.; Koushki, M.R.; Sohrabvandi, S.; Yousefi, M. An overview of antimicrobial activity of lysozyme and its functionality in cheese. Front. Nutr. 2022, 9, 833618. [Google Scholar] [CrossRef]
- Nawaz, N.; Wen, S.; Wang, F.; Nawaz, S.; Raza, J.; Iftikhar, M.; Usman, M. Lysozyme and its application as antibacterial agent in food industry. Molecules 2022, 27, 6305. [Google Scholar] [CrossRef]
- Sava, G.; Benetti, A.; Ceschia, V.; Pacor, S. Lysozyme and cancer: Role of exogenous lysozyme as anticancer agent (review). Anticancer Res. 1989, 9, 583–592. [Google Scholar] [PubMed]
- Sava, G.; Lunazzi, G.; Callerio, C.; Giraldi, T. Growth of Ehrlich ascites carcinoma and lysozymuria in mice after administration of heparin, lysozyme and their complex. Riv. Farmacol. Ter. 1978, IX, 159–165. [Google Scholar]
- Vacca, A.; Campobasso, N.; Iodice, G.; Ronco, M.; Dammacco, F. Cyclic lysozyme administration as a tool for immunopotentiation in patients with multiple myeloma. Chemioterapia 1985, 4, 147–155. [Google Scholar] [PubMed]
- Zorzet, S.; Perissin, L.; Piccini, P.; Callerio, C.; Sava, G. Antimetastatic action of egg-white lysozyme in mice bearing Lewis lung carcinoma. Folia Oncol. 1987, 10, 219–224. [Google Scholar]
- Sava, G.; Ceschia, V.; Zabucchi, G. Evidence for host-mediated antitumor effects of lysozyme in mice bearing MCa mammary carcinoma. Eur. J. Cancer Clin. Oncol. 1988, 24, 1737–1743. [Google Scholar] [CrossRef]
- Sava, G.; Ceschia, V.; Pacor, S. Mechanism of the antineoplatic action of lysozyme: Evidence for host mediated effects. Anticancer Res. 1989, 9, 1175–1180. [Google Scholar]
- Namba, Y.; Hidaka, Y.; Taki, K.; Morimoto, T. Effect of oral administration of lysozyme or digested bacterial cell walls on immunostimulation in guinea pigs. Infect. Immun. 1981, 31, 580–583. [Google Scholar] [CrossRef] [Green Version]
- Bu, H.F.; Wang, X.; Zhu, Y.Q.; Williams, R.Y.; Hsueh, W.; Zheng, X.; Rozenfeld, R.A.; Zuo, X.L.; Tan, X.D. Lysozyme-modified probiotic components protect rats against polymicrobial sepsis: Role of macrophages and cathelicidin-related innate immunity. J. Immunol. 2006, 177, 8767–8776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, S.; Kochanowski, B.; Wolinsky, I. Lysozyme and other measures of immunity in young, mature, and aged rats. Gerontology 1984, 30, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Banerjee, S.; Gupta, J.D. Experimental evaluation of preventive and therapeutic potentials of lysozyme. Chemotherapy 1992, 38, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.S.; Rinehart, J.J.; Zwilling, B.S.; Neidhart, J.A. Lysozyme enhancement of tumor cell immunoprotection in a murine fibrosarcoma. Cancer Res. 1981, 41, 1642–1645. [Google Scholar] [PubMed]
- Osserman, E.F.; Klockars, M.; Halper, J.; Fischel, R.E. Effects of lysozyme on normal and transformed mammalian cells. Nature 1973, 243, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Ceschia, V.; Sava, G.; Gagliardi, R.; Zabucchi, G. Effects of lysozyme on spleen and lungs in mice with Lewis lung carcinoma. Pharmacol. Res. Commun. 1988, 20, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Sava, G.; Ceschia, V.; Pacor, S.; Zabucchi, G. Observations on the antimetastatic action of lysozyme in mice bearing Lewis lung carcinoma. Anticancer Res. 1991, 11, 1109–1114. [Google Scholar]
- Sava, G.; Pacor, S.; Nardon, E.; Dobrina, A. Effects of endotoxin in mice bearing solid metastasizing tumors and treated with lysozyme hydrochloride. J. Chemother. 1992, 4, 228–234. [Google Scholar] [CrossRef]
- Pacor, S.; Giacomello, E.; Bergamo, A.; Gagliardi, R.; Cocchietto, M.; Sava, G. Cytofluorimetric analysis of gut-intraepithelial and mesenteric lymphnode lymphocytes of tumour bearing mice fed with egg-white lysozyme. Anticancer Res. 1996, 16, 145–150. [Google Scholar]
- Pacor, S.; Giacomello, E.; Bergamo, A.; Clerici, K.; Zacchigna, M.; Boccù, E.; Sava, G. Antimetastatic action and lymphocyte activation by the modified lysozyme mPEG-Lyso in mice with MCa mammary carcinoma. Anticancer Res. 1996, 16, 2559–2564. [Google Scholar]
- Sava, G.; Bergamo, A.; Capozzi, I.; Clerici, K.; Pacor, S.; Gagliardi, R.; Giacomello, E.; Zacchigna, M.; Di Luca, G.; Boccù, E. Stimulation of GALT and activation of mesenteric lymph node lymphocytes by a modified lysozyme in CBA mice with MCa mammary carcinoma. J. Expl. Ther. Oncol. 1996, 1, 342–349. [Google Scholar]
- Pacor, S.; Gagliardi, R.; Di Daniel, E.; Vadori, M.; Sava, G. In vitro down-regulation of ICAM-1 and E-cadherin and in vivo reduction of lung metastases of TS/A adenocarcinoma by a lysozyme derivative. Int. J. Mol. Med. 1999, 4, 369–375. [Google Scholar] [CrossRef]
- Cartei, F.; Cartei, G.; Ceschia, V.; Pacor, S.; Sava, G. Recovery of lymphocyte CD4+:CD8+ ratio in patients treated with lysozyme. Drug Investig. 1992, 4, 51–57. [Google Scholar] [CrossRef]
- Pacor, S.; Franz, C.; Gagliardi, R.; Sava, G. Lysozyme induced recovery of the response to ConA on mononuclear cells harvested from mice bearing MCa mammary carcinoma. Int. J. Oncol. 1994, 4, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Sava, G.; Pacor, S.; Dasic, G.; Bergamo, A. Lysozyme stimulates lymphocyte response to ConA and IL-2 and potentiates 5-fluorouracil action on advanced carcinomas. Anticancer Res. 1995, 15, 1883–1888. [Google Scholar] [PubMed]
- Yabe, N.; Komiya, K.; Takezono, T.; Matsui, H. Lysozyme as a regulator of interleukin-2-activated lymphocyte proliferation. Vitr. Cell. Dev. Biol. Anim. 1993, 29A, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Valisena, S.; Varaldo, P.E.; Ingianni, A.; Fontana, R. Modulatory effects of hen egg-white lysozyme on immune response in mice. New Microbiol. 1996, 19, 15–24. [Google Scholar] [PubMed]
- Guryanova, S.V. Regulation of immune homeostasis via muramyl peptides-low molecular weight bioregulators of bacterial origin. Microorganisms 2022, 10, 1526. [Google Scholar] [CrossRef]
- Masumoto, J.; Yang, K.; Varambally, S.; Hasegawa, M.; Tomlins, S.A.; Qiu, S.; Fujimoto, Y.; Kawasaki, A.; Foster, S.J.; Horie, Y.; et al. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J. Exp. Med. 2006, 203, 203–213. [Google Scholar] [CrossRef]
- Caruso, R.; Warner, N.; Inohara, N.; Nunez, G. NOD1 and NOD2: Signaling, host defense, and inflammatory disease. Immunity 2014, 41, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Ragland, S.A.; Criss, A.K. From bacterial killing to immune modulation: Recent insignts into the functions of lysozyme. PLoS Pathog. 2017, 13, e1006512. [Google Scholar] [CrossRef] [Green Version]
- Lovitch, S.B.; Esparza, T.J.; Schweitzer, G.; Herzog, J.; Unanue, E.R. Activation of type B T cells after protein immunization reveals novel pathways of in vivo presentation of paptides. J. Immunol. 2007, 178, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Strong, B.S.I.; Unanue, E.R. Presentation of type B peptide-MHC complexes from hen egg white lysozyme by TLR ligands and type I IFNs independent of H2-DM regulation. J. Immunol. 2011, 187, 2193–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacor, S.; Bacac, M.; Vadori, M.; Vismara, D.; Manfrin, A.; Sava, G. Immunostimulating effects of oral lysozyme on a vaccination treatment with Vibrio anguillarum. Farm. Ter. 2001, XVIII, 51–55. [Google Scholar]
- Sava, G.; Giraldi, T.; Tomasic, J.; Hrsak, I. Immunotherapy of Lewis lung carcinoma with hydrosoluble peptidoglycan monomer (PGM). Cancer Immunol. Immunother. 1983, 15, 84–86. [Google Scholar] [CrossRef]
- Sava, G.; Tomasic, J.; Hrsak, I. Antitumor activity of the immunoadjuvant peptidoglycan monomer PGM in mice bearing MCa mammary carcinoma. Cancer Immunol. Immunother. 1984, 18, 49–53. [Google Scholar] [CrossRef]
- Cocchietto, M.; Zorzin, L.; Veronesi, P.A.; Sava, G. Oral poly(ethylene glicol)-conjugated human recombinant lysozyme control of lung metastases in mice. Mol. Med. Rep. 2008, 1, 847–850. [Google Scholar]
- Sava, G.; (University of Trieste, Trieste, Italy); Bergamo, A.; (University of Trieste, Trieste, Italy). Data on Personal Files of Experiments Conducted at the Callerio Foundation of Trieste, via A. Fleming 32, 34127 Trieste, Italy. 2008; Unpublished Work. [Google Scholar]
- Cartei, F.; Cartei, G.; Ceschia, V.; Pacor, S.; Sava, G. Hematologic effects of oral treatment with lysozyme chloride: A phase II study. Curr. Ther. Res. 1991, 50, 530–538. [Google Scholar]
- Ohbayashi, H.; Setoguchi, Y.; Fukuchi, Y.; Shibata, K.; Sakata, Y.; Arai, T. Pharmacological effects of lysozyme on COPD and bronchial asthma with sputum: A randomized, placebo-controlled, small cohort, cross-over study. Pulm. Pharmacol. Ther. 2016, 37, 73–80. [Google Scholar] [CrossRef]
- Fukuchi, Y.; Tatsumi, K.; Inoue, H.; Sakata, Y.; Shibata, K.; Miyagishi, H.; Marukawa, Y.; Ichinose, M. Prevention of COPD exacerbation by lysozyme: A double-blind, randomized, placebo-controlled study. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Mitsuhashi, T.; Li, Y.M.; Fishbane, S.; Vlassara, H. Depletion of reactive advanced glycation endproducts from diabetic uremic sera using a lysozyme-linked matrix. J. Clin. Investig. 1997, 100, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee-Huang, S.; Huang, P.L.; Sun, Y.; Huang, P.L.; Kung, H.F.; Blithe, D.L.; Chen, H.C. Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc. Natl. Acad. Sci. USA 1999, 96, 2678–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oevermann, A.; Engels, M.; Thomas, U.; Pellegrini, A. The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antivir. Res. 2003, 59, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Lee-Huang, S.; Maiorov, V.; Huang, P.L.; Ng, A.; Lee, H.C.; Chang, Y.T.; Kallenbach, N.; Huang, P.L.; Chen, H.C. Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with HIV activity. Biochemistry 2005, 44, 4648–4655. [Google Scholar] [CrossRef] [PubMed]
- Hardestam, J.; Petterson, L.; Ahlm, C.; Evander, M.; Lundkvist, A.; Klingstrom, J. Antiviral effect of human saliva against hantavirus. J. Med. Virol. 2008, 80, 2122–2126. [Google Scholar] [CrossRef]
- Takahashi, M.; Yasuda, Y.; Takahashi, H.; Takeuchi, A.; Kuda, T.; Kimura, B. Inactivating effect of heat-denaturated lysozyme on murine norovirus in bread fillings. Food Hyg. Saf. Sci. 2018, 59, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Malaczewska, J.; Kaczorek-Lukowska, E.; Wojcik, R.; Siwicki, A.K. Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus. BMC Vet. Res. 2019, 15, 318. [Google Scholar] [CrossRef] [Green Version]
- Murakami, F.; Sasaki, T.; Sugahara, T. Lysozyme stimulates immunoglobulin production by human-human hybridoma and human peripheral blood lymphocytes. Cytotechnology 1997, 24, 177–182. [Google Scholar] [CrossRef]
Experimental Conditions | Lysozyme Treatment | Murine Model | Immunomodulatory Responses | |
---|---|---|---|---|
In vivo | 25 mg/kg/q1–7 | Lewis lung carcinoma | Increase in peroxidase + cells in spleen (3.4× vs. healthy mice and 1.7× vs. tumor-bearing mice) | [39] |
25–100 mg/kg/q1–7 | Healthy mice | 43–47% increase in peritoneal resident cells 32–43% increase in circulating leukocytes | [31] | |
100 mg/kg/q1–15 | Lewis lung carcinoma | Increase in multinucleated giant cells of macrophage origin in the spleen | [40] | |
100 mg/kg/q5–12 | Lewis lung carcinoma MCa mammary carcinoma | Increased mitogenic response to ConA of ex vivo isolated splenocytes cultured in the presence of IL-2 | [41] | |
100 mg/kg/day/q1–9 | MCa mammary carcinoma | Increase in lymphocytes from intra-epithelial gut and mesenteric lymph nodes expressing CD3, CD4, CD8, and CD25 antigens Reduction in CD4:CD8 ratio in favor of CD8+ cells in mesenteric lymph nodes | [42] | |
350 mg/kg/q1–9 mPEG–Lyso ^ | MCa mammary carcinoma | Increased response of lymphocytes to ConA and LPS vs. untreated controls | [43] | |
350 mg/kg/q1–9 mPEG–Lyso ^ | MCa mammary carcinoma | Recovery of decline in CD4+ lymphocytes caused by tumor growth Increase in number of lymphatic nodules in gut epithelium | [44] | |
350 mg/kg/q1–9 mPEG–Lyso ^ | TS/A adenocarcinoma | Decrease in infiltrating leukocytes in primary tumor | [45] | |
2 g/day for 180 days | Patients affected by malignant or inflammatory diseases | Restoration of white blood cell count Reduction in CD8+ and Leu11+ cells Normalization of CD4+/CD8+ cell ratio in 11 out of 16 patients | [46] | |
Ex vivo | 100 mg/kg/q5–12 | Lewis lung carcinoma | Increased mitogenic response to ConA of ex vivo isolated splenocytes cultured in the presence of IL-2 | [41] |
100 mg/kg/q1–10 | MCa mammary carcinoma | Recovery of the tumor depressed response to ConA of splenocytes and lymphocytes harvested from GALT Increasing of 3H-thymidine incorporation into DNA and protein synthesis increase in mononuclear cells from spleen and GALT | [47] | |
100 mg/kg/q1–8 | MCa mammary carcinoma | Correction of the response to Con A of splenocytes isolated ex vivo | [48] | |
350 mg/kg/q1–9 mPEG–Lyso | TS/A adenocarcinoma | Decrease in tumor cells expressing ICAM-1 and E-cadherin Reduction in tumor cells in synthesis and premeiotic phases | [45] | |
In vitro | 25–250 μg/mL | Ex vivo-harvested splenocytes | Stimulation of proliferative activity of lymphocytes to IL-2 Induction of proliferation of blast cells | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamo, A.; Sava, G. Pharmacological Modulation of Host Immunity with Hen Egg White Lysozyme (HEWL)—A Review. Molecules 2023, 28, 5027. https://doi.org/10.3390/molecules28135027
Bergamo A, Sava G. Pharmacological Modulation of Host Immunity with Hen Egg White Lysozyme (HEWL)—A Review. Molecules. 2023; 28(13):5027. https://doi.org/10.3390/molecules28135027
Chicago/Turabian StyleBergamo, Alberta, and Gianni Sava. 2023. "Pharmacological Modulation of Host Immunity with Hen Egg White Lysozyme (HEWL)—A Review" Molecules 28, no. 13: 5027. https://doi.org/10.3390/molecules28135027
APA StyleBergamo, A., & Sava, G. (2023). Pharmacological Modulation of Host Immunity with Hen Egg White Lysozyme (HEWL)—A Review. Molecules, 28(13), 5027. https://doi.org/10.3390/molecules28135027