Exhausted Grape Seed Residues as a Valuable Source of Antioxidant Molecules for the Formulation of Biocompatible Cosmetic Scrubs
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition and Antioxidant Activity of the Obeidi Grape Seed Residues
2.2. Physical Characterization of the Obeidi Seed Residues
2.3. Spread Ability
2.4. Stability Tests
2.4.1. Heat Shock Test
2.4.2. pH & Viscosity Assays
2.4.3. Polyphenol Content and Antioxidant Activity
2.5. In Vivo Skin Irritation Test
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals
4.3. Grape Seed Residues Chemical Composition and Physical Aspect
4.3.1. Dry Matter
4.3.2. Microscopic Analysis
4.3.3. Extraction of the Remaining Polyphenols in Grape Seed Residues
4.3.4. Evaluation of the Total Phenolic Content (TPC) of the Residual Grape Seeds Extract
4.3.5. Identification and Quantification of Phenolic Compounds in the Residual Grape Seed Extract by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD)
4.3.6. Evaluation of the Antiradical Activity of the Residual Grape Seeds Extract Using the Diphenyl-2-Picrylhydrazyl (DPPH) Free Radical Scavenging Method
4.3.7. Evaluation of the Antioxidant Activity of the Residual Grape Seed Extract Using Ferric Reducing Antioxidant Power Assay (FRAP)
4.3.8. Evaluation of the Antioxidant Activity of the Residual Grape Seed Extract by Using Cupric ion Reducing Antioxidant Capacity Assay (CUPRAC)
4.4. Physical Evaluation and Characterization of the Grape Seed Residues
4.4.1. Hausner Ratio (HR) and Carr Index (CI)
4.4.2. Angle of Repose and Flow Rate
4.5. Incorporation of Grape Seed Residues in Cosmetic Creams
4.6. Spread Ability Tests
4.7. Stability Tests
4.7.1. Heat-Shock Tests
4.7.2. Viscosity and pH Tests
4.7.3. Polyphenol Release: Total Phenolic Content (TPC) and Antioxidant Activity of the Scrubs Enriched with the Obeidi Residues
4.8. In Vivo Skin Irritation Test
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 26 August 2022).
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Sousa, A.M.; Gando-Ferreira, L.M.; Quina, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. [Google Scholar] [CrossRef] [PubMed]
- Rajha, H.N.; Louka, N.; Darra, N.E.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G. Multiple Response Optimization of High Temperature, Low Time Aqueous Extraction Process of Phenolic Compd. from Grape Byproducts. Food Nutr. Sci. 2014, 5, 42734. [Google Scholar]
- Anku, W.W.; Mamo, M.A.; Govender, P.P.; Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods; IntechOpen: London, UK, 2017. [Google Scholar]
- Dwyer, K.; Hosseinian, F.; Rod, M. The Market Potential of Grape Waste Alternatives. J. Food Res. 2014, 3, 91. [Google Scholar] [CrossRef]
- Rajha, H.N.; Darra, N.E.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food Nutr. Sci. 2014, 5, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Hoss, I.; Rajha, H.N.; El Khoury, R.; Youssef, S.; Manca, M.L.; Manconi, M.; Louka, N.; Maroun, R.G. Valorization of Wine-Making By-Products’ Extracts in Cosmetics. Cosmetics 2021, 8, 109. [Google Scholar] [CrossRef]
- Rajha, H.N.; Ziegler, W.; Louka, N.; Hobaika, Z.; Vorobiev, E.; Boechzelt, H.G.; Maroun, R.G. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction. Int. J. Mol. Sci. 2014, 15, 18640–18658. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; Montserrat-de la Paz, S. Grape (Vitis vinifera L.). Seed Oil A Funct. Food Winemak. Ind. Foods 2020, 9, 1360. [Google Scholar]
- Baca-Bocanegra, B.; Nogales-Bueno, J.; Hernández-Hierro, J.M.; Heredia, F.J. Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology. Foods 2021, 10, 79. [Google Scholar] [CrossRef]
- Dopico-García, M.S.; Fique, A.; Guerra, L.; Afonso, J.; Pereira, O.; Valentão, P.; Andrade, P.B.; Seabra, R.M. Principal Components of Phenolics to Characterize Red Vinho Verde Grapes: Anthocyanins or Non-Coloured Compounds? Talanta 2008, 75, 1190–1202. [Google Scholar] [CrossRef]
- Rajha, H.; Darra, N.; Louka, N.; Maroun, R.; Ziegler, W.; Boechzelt, H. Valorization of Industrial Waste Using Energy Saving Procedures. Phenolic Compounds Purification from Grape By-Products by Accelerated Solvent Extraction (ASE). In Proceedings of the 2012 International Conference on Renewable Energies for Developing Countries (REDEC), Beirut, Lebanon, 28–29 November 2012. [Google Scholar]
- Shrikhande, AWine By-Products with Health Benefits. Food Res. Int. 2000, 33, 469–474. [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perra, M.; Lozano-Sánchez, J.; Leyva-Jiménez, F.-J.; Segura-Carretero, A.; Pedraz, J.L.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Manca, M.L.; Manconi, M. Extraction of the Antioxidant Phytocomplex from Wine-Making by-Products and Sustainable Loading in Phospholipid Vesicles Specifically Tailored for Skin Protection. Biomed. Pharm. 2021, 142, 111959. [Google Scholar] [CrossRef] [PubMed]
- Perra, M.; Manca, M.L.; Tuberoso, C.I.; Caddeo, C.; Marongiu, F.; Peris, J.E.; Orrù, G.; Ibba, A.; Fernàndez-Busquets, X.; Fattouch, S.; et al. A Green and Cost-Effective Approach for the Efficient Conversion of Grape Byproducts into Innovative Delivery Systems Tailored to Ensure Intestinal Protection and Gut Microbiota Fortification. Innov. Food Sci. Emerg. Technol. 2022, 80, 103103. [Google Scholar] [CrossRef]
- Perra, M.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Castangia, I.; Rajha, H.N.; Manca, M.L.; Manconi, M. An Outlook on Modern and Sustainable Approaches to the Management of Grape Pomace by Integrating Green Processes, Biotechnologies and Advanced Biomedical Approaches. J. Funct. Foods 2022, 98, 105276. [Google Scholar] [CrossRef]
- Parekh, P.; Serra, M.; Allaw, M.; Perra, M.; Marongiu, J.; Tolle, G.; Pinna, A.; Casu, M.A.; Manconi, M.; Caboni, P.; et al. Characterization of Nasco Grape Pomace-Loaded Nutriosomes and Their Neuroprotective Effects in the MPTP Mouse Model of Parkinson’s Disease. Front. Pharm. 2022, 13, 935784. [Google Scholar] [CrossRef]
- Cosmetic Ingredient Database. Available online: https://single-market-economy.ec.europa.eu/sectors/cosmetics/cosmetic-ingredient-database_en (accessed on 31 May 2023).
- Sharafan, M.; Malinowska, M.A.; Ekiert, H.; Kwaśniak, B.; Sikora, E.; Szopa, A. Vitis vinifera (Vine Grape) as a Valuable Cosmetic Raw Material. Pharmaceutics 2023, 15, 1372. [Google Scholar] [CrossRef]
- Jaouhari, Y.; Travaglia, F.; Giovannelli, L.; Picco, A.; Oz, E.; Oz, F.; Bordiga, M. From Industrial Food Waste to Bioactive Ingredients: A Review on the Sustainable Management and Transformation of Plant-Derived Food Waste. Foods 2023, 12, 2183. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative Stress in the Skin: Impact and Related Protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef]
- Rendon, M.I.; Berson, D.S.; Cohen, J.L.; Roberts, W.E.; Starker, I.; Wang, B. Evidence and Considerations in the Application of Chemical Peels in Skin Disorders and Aesthetic Resurfacing. J. Clin. Aesthet. Derm. 2010, 3, 32–43. [Google Scholar]
- Menaa, F.; Menaa, A.; Tréton, J. Chapter 63—Polyphenols against Skin Aging. In Polyphenols in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 819–830. [Google Scholar]
- Rodan, K.; Fields, K.; Majewski, G.; Falla, T. Skincare Bootcamp: The Evolving Role of Skincare. Plast. Reconstr. Surg. Glob. Open. 2016, 4 (Suppl. S12), e1152. [Google Scholar] [CrossRef] [PubMed]
- Cernasov, D. Chapter 12—The Design and Development of Anti-Aging Formulations. In Skin Aging Handbook; Dayan, N., Ed.; Personal Care & Cosmetic Technology; William Andrew Publishing: Norwich, NY, USA, 2009; pp. 291–325. [Google Scholar]
- Fatima Grace, X.; Anbarasan, B.; Kanimozhi, T.; Shanmuganathan, S. Preparation and Evaluation of Deep Cleansing Exfoliator. Asian J. Pharm. Clin. Res. 2018, 11, 356–359. [Google Scholar]
- Kakad, V.K.; Dhokale, N.N.; Sanap, R.S.; Sayyed, S.R. A Review on Herbal Face Scrub for Skin Exfoliation. Int. J. Creat. Res. Thoughts 2022, 10, 17. [Google Scholar]
- Chandra, S.; Sodiyal, N.; Patil, S. A Review on Herbal Gel Face Wash with Scrub. Int. J. Res. Eng. Sci. 2022, 10, 19–30. [Google Scholar]
- Sun, J.Z.; Parr, J.W. Formulating Scrubs. Cosmet. Toilet. 2003, 118, 35–40. [Google Scholar]
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in Cosmetics: Environmental Issues and Needs for Global Bans. Environ. Toxicol. Pharm. 2019, 68, 75–79. [Google Scholar] [CrossRef]
- Maluf, D.F.; Gonçalves, M.M.; D’Angelo, R.W.O.; Girassol, A.B.; Tulio, A.P.; Pupo, Y.M.; Farago, P.V. Cytoprotection of Antioxidant Biocompounds from Grape Pomace: Further Exfoliant Phytoactive Ingredients for Cosmetic Products. Cosmetics 2018, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Salem, Y.; Rajha, H.N.; Broek, L.A.M.V.D.; Safi, C.; Togtema, A.; Manconi, M.; Manca, M.L.; Debs, E.; Hobaika, Z.; Maroun, R.G.; et al. Multi-Step Biomass Fractionation of Grape Seeds from Pomace, a Zero-Waste Approach. Plants 2022, 11, 2831. [Google Scholar] [CrossRef]
- Khan, B.A.; Mahmood, T.; Menaa, F.; Shahzad, Y.; Yousaf, A.M.; Hussain, T.; Ray, S.D. New Perspectives on the Efficacy of Gallic Acid in Cosmetics & Nanocosmeceuticals. Curr. Pharm. Des. 2018, 24, 5181–5187. [Google Scholar]
- Shah, R.B.; Tawakkul, M.A.; Khan, M.A. Comparative Evaluation of Flow for Pharmaceutical Powders and Granules. AAPS PharmSciTech 2008, 9, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchienou, G.E.D.; Tsague, R.K.T.; Pega, T.F.M.; Bama, V.; Bamseck, A.; Sokeng, S.D.; Ngassoum, M.B. Multi-Response Optimization in the Formulation of a Topical Cream from Natural Ingredients. Cosmetics 2018, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Moraes, E.; Natal, D.; Queiroz, V.; Schaffert, R.; Cecon, P.; De Paula, S.; Benjamim, L.; Ribeiro, S.; Martino, H. Sorghum Genotype May Reduce Low-Grade Inflammatory Response and Oxidative Stress and Maintains Jejunum Morphology of Rats Fed a Hyperlipidic Diet. Food Res. Int. 2012, 49, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Chengolova, Z.; Ivanov, Y.; Godjevargova, T. Comparison of Identification and Quantification of Polyphenolic Compounds in Skins and Seeds of Four Grape Varieties. Molecules 2023, 28, 4061. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Pacetti, D.; Lucci, P.; Núñez, O.; Menichini, F.; Frega, N.G.; Tundis, R. Prunus persica Var. Platycarpa (Tabacchiera Peach): Bioactive Compounds and Antioxidant Activity of Pulp, Peel and Seed Ethanolic Extracts. Plant Foods Hum. Nutr. 2015, 70, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.-R.; Lin, J.-J.; Tsai, C.-C.; Huang, T.-K.; Yang, Z.-Y.; Wu, M.-O.; Zheng, Y.-Q.; Su, C.-C.; Wu, Y.-J. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells. Int. J. Mol. Sci. 2013, 14, 20443–20458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of Catechins and Their Applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Cho, S.H.; Park, D.; Jung, E. Anti-Skin Aging Properties of Protocatechuic Acid in Vitro and in Vivo. J. Cosmet. Derm. 2020, 19, 977–984. [Google Scholar] [CrossRef]
- Desi, E.; Djamil, R.; Faizatun, F. Body Scrub Containing Virgin Coconut Oil, Coffee Grounds (Coffea arabica Linn) and Carbon Active Coconut Shell (Activated Carbon Cocos Nucifera L) as a Moisturiser and a Skin Brightener. Scr. Med. 2021, 52, 76–81. [Google Scholar] [CrossRef]
- Talpekar, P.; Borikar, M. Formulation, Development and Comparative Study of Facial Scrub Using Synethetic and Natural Exfoliant. Res. J. Top. Cosmet. Sci. 2016, 7, 1. [Google Scholar] [CrossRef]
- Hendrawati, H. Formulation of the Body Scrub Cream Containing Moringa Seed Powder (Moringa Oleifera) and Its Examination Dermal Acute Irritation. Int. J. GEOMATE 2019, 17, 244–249. [Google Scholar] [CrossRef]
- Hilda, D.; Arini, A.; Nancy, C.D. Formulation of Body Scrub Cream From Extract of Arabika Green Coffee (Coffea arabica L.) as Antioxidant. In Proceedings of the 4th International Conference on Sustainable Innovation 2020–Health Science and Nursing (ICoSIHSN 2020), Yogyakarta, Indonesia, 16 January 2021; Atlantis Press: Amsterdam, The Netherlands; pp. 337–342. [Google Scholar]
- Romero-Orejon, F.L.; Huaman, J.; Lozada, P.; Ramos-Escudero, F.; Muñoz, A.M. Development and Functionality of Sinami (Oenocarpus Mapora) Seed Powder as a Biobased Ingredient for the Production of Cosmetic Products. Cosmetics 2023, 10, 90. [Google Scholar] [CrossRef]
- SNI 2016-4399-1996 (Tabir Surya). Available online: https://kupdf.net/download/sni-2016-4399-1996-tabir-surya_5af65742e2b6f52b79ea82cc_pdf (accessed on 27 March 2023).
- Salem, Y.; Rajha, H.N.; Franjieh, D.; Hoss, I.; Manca, M.L.; Manconi, M.; Castangia, I.; Perra, M.; Maroun, R.G.; Louka, N. Stability and Antioxidant Activity of Hydro-Glyceric Extracts Obtained from Different Grape Seed Varieties Incorporated in Cosmetic Creams. Antioxidants 2022, 11, 1348. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef] [PubMed]
- Anti-Ageing Potential of a Cream (W/O Emulsion) Containing Grape Seed Extract (GSE): Formulation and In Vivo Evaluation of Effectiveness Using Non-Invasive Biophysical Technique. Available online: https://www.longdom.org/abstract/antiageing-potential-of-a-cream-wo-emulsion-containing-grape-seed-extract-gse-formulation-and-emin-vivoem-evaluation-of--44169 (accessed on 7 September 2022).
- Kligman, A.M.; Baker, T.J.; Gordon, H.L. Long-Term Histologic Follow-up of Phenol Face Peels. Plast. Reconstr. Surg. 1985, 75, 652–659. [Google Scholar] [CrossRef]
- Karim, A. Stability Study of Cocoa Butter Body Scrub Formulated with Ground Cocoa Pod Husk. 2012. Available online: https://www.researchgate.net/publication/284167251_STABILITY_STUDY_OF_COCOA_BUTTER_BODY_SCRUB_FORMULATED_WITH_GROUND_COCOA_POD_HUSK (accessed on 14 December 2022).
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Hussain Shah, S.N.; Hussain, I.; Javed, I.; Nisar, N.; Riaz, R. Development of Grape Seed Extract Based Formulations by Using Non-Invasive Biophysical Technique and Its Impact on Skin Aging. Pak. J. Pharm. Sci. 2021, 34, 1621–1628. [Google Scholar]
- Bashir, S.; Ong, M.; Maibach, H. In Vivo Irritation. In Handbook of Cosmetic Science and Technology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; p. 367. [Google Scholar]
- Skin Allergy Symptoms, Diagnosis, Treatment & Management|AAAAI. Available online: https://www.aaaai.org/conditions-treatments/allergies/skin-allergy (accessed on 10 September 2022).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Rajha, H.; Jaoude, N.; Vorobiev, E.; Louka, N.; Maroun, R. Industrial Byproducts Valorization through Energy Saving Processes. Alkaline Extraction of Polyphenols from Vine Shoots. In Proceedings of the International Conference on Renewable Energies for Developing Countries. REDEC 2014, Beirut, Lebanon, 26–27 November 2014. [Google Scholar]
- Tuberoso, C.; Rosa, A.; Bifulco, E.; Melis, M.; Atzeri, A.; Pirisi, F.; Dessì, M. Chemical Composition and Antioxidant Activities of Myrtus Communis L. Berries Extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Bader, A.; Santoro, V.; Parisi, V.; Malafronte, N.; Al-Sheikh, I.; Cacciola, A.; Germanò, M.P.; D’Angelo, V. The Anti-Angiogenic Effect of Polyphenols from the Roots of Daphne Mucronata Royle Subsp. Linearifolia Hart Halda Thymelaeaceae. Eur. J. Integr. Med. 2022, 53, 102151. [Google Scholar] [CrossRef]
- Saifullah, M.; Yusof, Y.A.; Chin, N.L.; Aziz, M.G. Physicochemical and Flow Properties of Fruit Powder and Their Effect on the Dissolution of Fast Dissolving Fruit Powder Tablets. Powder Technol. 2016, 301, 396–404. [Google Scholar] [CrossRef]
- Whangsomnuek, N.; Mungmai, L.; Mengamphan, K.; Amornlerdpison, D. Efficiency of Skin Whitening Cream Containing Etlingera Elatior Flower and Leaf Extracts in Volunteers. Cosmetics 2019, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Stojiljković, D.; Tadić, V.; Stanković, M.; Roganović, S.; Arsić, I. Standardized Extract of Wild Apple Fruit in Alkyl-Polyglucoside-Based Cosmetic Cream—Estimation of Stability, Safety, Antioxidant Activity and Efficiency. Int. J. Cosmet. Sci. 2018, 40, 285–294. [Google Scholar] [CrossRef] [PubMed]
Obeidi Grape Seed Residues | Commercial Natural Exfoliant (Raspberry Seed Powder and Argania spinosa) | Commercial Sugar Exfoliant | Sand (Reference) | |
---|---|---|---|---|
Particle size (mm) | 2.004.75 | 2.004.75 | 4.75 | 4.75 |
ρ (apparent) (g/mL) | 0.437 ± 0.02 | 0.411 ± 0.01 | 0.903 ± 0.01 | 1.433 ± 0.01 |
ρ (tapped) (g/mL) | 0.504 ± 0.01 | 0.490 ± 0.03 | 1.00 ± 0.01 | 1.58 ± 0.01 |
Flowability of the powder (g.s−1) | 8.12 ± 0.25 | 7.23 ± 0.12 | 16.89 ± 0.23 | 19.72 ± 0.20 |
Hausner ratio (HR) | 1.154 ± 0.02 | 1.192 ± 0.01 | 1.111 ± 0.01 | 1.105 ± 0.01 |
Diagnostic of powder according to (HR) | Sandy | Sandy | Sandy | Sandy |
Carr’s ndex (CI) | 0.133 ± 0.04 | 0.161 ± 0.02 | 0.100 ± 0.03 | 0.095 ± 0.02 |
Flowability according to (CI) | Excellent | Good | Excellent | Excellent |
Angle of repose degrees (°) | 31.62 ± 1.57 | 46.87 ± 1.00 | 41.03 ± 1.23 | 49.55 ± 1.71 |
Flowability according to angle of repose | Acceptable | Acceptable | Acceptable | Acceptable |
Scrubs | 2% | 1.5% | 1% | 0.5% | 0% |
---|---|---|---|---|---|
Diameter at 4 °C (cm) | 3.6 ± 0.1 a | 3.7 ± 0.1 ab | 3.7 ± 0.1 ab | 4 ± 0.1 de | 4.4 ± 0.1 g |
Diameter at 25 °C (cm) | 3.7 ± 0.1 ab | 3.6 ± 0.1 a | 4 ± 0.1 de | 4.1 ± 0.1 ef | 4.6 ± 0.1 h |
Diameter at 50 °C (cm) | 3.9 ± 0.1 cd | 3.8 ± 0.1 bc | 4.1 ± 0.1 ef | 4.2 ± 0.1 f | 4.7 ± 0.1 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, Y.; Rajha, H.N.; Sunoqrot, S.; Hammad, A.M.; Castangia, I.; Manconi, M.; Manca, M.L.; Al Lababidi, D.; Touma, J.A.; Maroun, R.G.; et al. Exhausted Grape Seed Residues as a Valuable Source of Antioxidant Molecules for the Formulation of Biocompatible Cosmetic Scrubs. Molecules 2023, 28, 5049. https://doi.org/10.3390/molecules28135049
Salem Y, Rajha HN, Sunoqrot S, Hammad AM, Castangia I, Manconi M, Manca ML, Al Lababidi D, Touma JA, Maroun RG, et al. Exhausted Grape Seed Residues as a Valuable Source of Antioxidant Molecules for the Formulation of Biocompatible Cosmetic Scrubs. Molecules. 2023; 28(13):5049. https://doi.org/10.3390/molecules28135049
Chicago/Turabian StyleSalem, Yara, Hiba N. Rajha, Suhair Sunoqrot, Alaa M. Hammad, Ines Castangia, Maria Manconi, Maria Letizia Manca, Dana Al Lababidi, Joe A. Touma, Richard G. Maroun, and et al. 2023. "Exhausted Grape Seed Residues as a Valuable Source of Antioxidant Molecules for the Formulation of Biocompatible Cosmetic Scrubs" Molecules 28, no. 13: 5049. https://doi.org/10.3390/molecules28135049
APA StyleSalem, Y., Rajha, H. N., Sunoqrot, S., Hammad, A. M., Castangia, I., Manconi, M., Manca, M. L., Al Lababidi, D., Touma, J. A., Maroun, R. G., & Louka, N. (2023). Exhausted Grape Seed Residues as a Valuable Source of Antioxidant Molecules for the Formulation of Biocompatible Cosmetic Scrubs. Molecules, 28(13), 5049. https://doi.org/10.3390/molecules28135049