Investigation of Hexylamine Adsorption on Gold in Perchloric Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cyclic Voltammetry
2.2. Chronoamperometry
2.3. EIS Method
2.4. Adsorption Isotherm
- (a)
- water molecules (= (−20…−30) kJ mol−1 [68]);
- (b)
- hexylamine molecules ().
2.5. Temperature Dependence of Adsorption
3. Experimental Section
3.1. Preparation of Solutions
3.2. Equipment
3.3. Electrochemical Measurements
3.4. Estimation of Measurement and Calculated Values Errors
4. Conclusions
- (1)
- A methodology for the investigation of the surfactant adsorption at equilibrium potential on inert electrodes by introducing a redox pair into the solution was proposed. The presence of this pair makes it possible to fix the electrode equilibrium potential and evaluate adsorption by changing the exchange current of the inhibited pair during adsorption.
- (2)
- A method for calculating the surface coverage in electrochemical measurements at low surfactant solubility using the results of measurements of adsorption at the air–solution interface was proposed.
- (3)
- The redox reaction of iron ions on gold was studied by potentiodynamic, chronoamperometric and EIS methods. It was found that the reaction occurs under diffusion control. The main kinetic characteristics of the reaction—the standard electron transfer rate constant and the diffusion coefficients of iron ions in solution—were obtained. The values of these characteristics did not contradict the results of other works.
- (4)
- Hexylamine adsorption on gold was studied. It was shown that this process can be well described by the Dhar–Flory–Huggins isotherm equation for the number of displaced water molecules by the adsorbate molecule x ≈ 3. The slope of the straight lines is close to unity in the coordinates of this isotherm. This confirms the correctness of the choice of this equation for the experimental data analysis. The main characteristics of the adsorption process: adsorption constant, adsorption free energy and adsorption activation energy are obtained.
- (5)
- The main adsorption characteristics on gold are compared with similar adsorption characteristics on platinum and the solution–air interfaces. The values of these characteristics for hexylamine adsorption at all interfaces are close, and are typical for physical adsorption. A comparison of the experimental Gibbs adsorption energy for these interfaces with the known energies of direct and lateral interactions showed that the cause of surfactant adsorption at these interfaces is predominantly the hydrophobic effect of the interaction of surfactant molecules with water molecules.
- (6)
- The temperature dependence of the adsorption of hexylamine on gold has been studied. The high value of the activation energy confirms the physical nature of adsorption.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vittal, R.; Gomathi, H.; Kim, K.-J. Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv. Coll. Interface Sci. 2006, 119, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Amar, H.; Tounsi, A.; Makayssi, A.; Derja, A.; Benzakour, J.; Outzourhit, A. Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media. Corros. Sci. 2007, 49, 2936–2945. [Google Scholar] [CrossRef]
- Blajiev, O.L.; Breugelmans, T.; Pintelon, R.; Terryn, H.; Hubin, A. Potentiodynamic EIS investigation of the 2-methyl-5-mercapto-1,3,4-thiadiazole adsorption on copper. Electrochim. Acta 2008, 53, 7451–7459. [Google Scholar] [CrossRef]
- Awada, M.K.; Mahgou, F.M.; El-iskandarani, M.M. Theoretical studies of the effect of structural parameters on the inhibition efficiencies of mercapto-1,2,4-triazoline derivatives. J. Mol. Struct. Theochem. 2000, 531, 105–117. [Google Scholar] [CrossRef]
- Finsgara, M.; Lesar, A.; Kokalj, A.; Milosev, I. A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution. Electrochim. Acta 2008, 53, 8287–8297. [Google Scholar] [CrossRef]
- Olivares-Xometl, O.; Likhanova, N.V.; Domınguez-Aguilar, M.A.; Hallen, J.M.; Zamudio, L.S.; Arce, E. Surface analysis of inhibitor films formed byimidazolines and amides on mild steel in an acidic environment. Appl. Surf. Sci. 2006, 252, 2139–2152. [Google Scholar] [CrossRef]
- Bentiss, F.; Lebrini, M.; Lagrene, M. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corros. Sci. 2005, 47, 2915–2931. [Google Scholar] [CrossRef]
- Lebrini, M.; Traisnel, M.; Lagrenee, M.; Mernari, B.; Bentiss, F. Inhibitive properties, adsorption and a theoretical study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid. Corros. Sci. 2008, 50, 473–479. [Google Scholar] [CrossRef]
- Ozkır, D.; Kayakırılmaz, K.; Bayol, E.; Gurten, A.A.; Kandemirli, F. The inhibition effect of Azure A on mild steel in 1 M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corros. Sci. 2012, 56, 143–152. [Google Scholar] [CrossRef]
- Li, W.; He, Q.; Zhang, S.; Pei, C.; Hou, B. Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium. J. Appl. Electrochem. 2008, 38, 289–295. [Google Scholar] [CrossRef]
- Popova, A. Temperature effect on mild steel corrosion in acid media in presence of azoles. Corros. Sci. 2007, 49, 2144–2158. [Google Scholar] [CrossRef]
- Behpour, M.; Ghoreishi, S.M.; Soltani, N.; Salavati-Niasari, M.; Hamadanian, M.; Gandomi, A. Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros. Sci. 2008, 50, 2172–2181. [Google Scholar] [CrossRef]
- Achary, G.; Sachin, H.P.; Naik, Y.A.; Venkatesha, T.V. The corrosion inhibition of mild steel by 3-formyl-8-hydroxy quinoline in hydrochloric acid medium. Mater. Chem. Phys. 2008, 107, 44–50. [Google Scholar] [CrossRef]
- Avci, G. Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5M HCl. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 730–736. [Google Scholar] [CrossRef]
- Kokalj, A. Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance. Electrochim. Acta 2010, 56, 745–755. [Google Scholar] [CrossRef]
- Moretti, G.; Guidi, F.; Fabris, F. Corrosion inhibition of the mild steel in 0.5 M HCl by 2-butyl-hexahydropyrrolo [1,2-b][1,2]oxazole. Corros. Sci. 2013, 76, 206–218. [Google Scholar] [CrossRef]
- Donahue, F.M.; Nobe, K. Theory of Organic Corrosion Inhibitors. J. Electrochem. Soc. 1965, 112, 886–891. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Corrosion inhibition of mild steel by some schiff basecompounds in hydrochloric acid. Appl. Surf. Sci. 2005, 239, 154–164. [Google Scholar] [CrossRef]
- El Basiony, N.M.; Badr Entsar, E.; Baker, S.A.; El-Tabei, A.S. Experimental and theoretical (DFT&MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X-65 steel acid corrosion inhibitor. Appl. Surf. Sci. 2021, 539, 148246. [Google Scholar] [CrossRef]
- Yadava, D.K.; Quraishia, M.A.; Maiti, B. Inhibition effect of some benzylidenes on mild steel in 1 M HCl: An experimental and theoretical correlation. Corros. Sci. 2012, 55, 254–266. [Google Scholar] [CrossRef]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; IUPAC: Research Triangle Park, NC, USA, 1997. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647. [Google Scholar] [CrossRef]
- Ostapenko, G.I.; Gloukhov, P.A.; Bunev, A.S. Investigation of 2-cyclohexenylcyclohexanone as steel corrosion inhibitor and surfactant in hydrochloric acid. Corros. Sci. 2014, 82, 265–270. [Google Scholar] [CrossRef]
- Guidelli, R.; Foresti, M.L. Statistical-mechanical treatment of an adsorbed monolayer with local order. J. Electroanal. Chem. 1986, 197, 103–121. [Google Scholar] [CrossRef]
- Cosnier, S.; Dupin, P.; Lavabre, D.; de Savignac, A.; Comtat, M.; Lattes, A. Etude electrocapillaire de l’adsorption de chlorures d’alkyl-4 pyridine. Electrochim. Acta 1986, 31, 1213–1218. [Google Scholar] [CrossRef]
- Khamis, E.; Bellucci, F.; Latanision, R.M.; El-Ashry, E.S.H. Acid Corrosion Inhibition of Nickel by 2-(Triphenosphoranylidene) Succinic Anhydride. Corrosion 1991, 47, 677–686. [Google Scholar] [CrossRef]
- Kokalj, A. Corrosion inhibitors: Physisorbed or chemisorbed? Corros. Sci. 2021, 196, 109939. [Google Scholar] [CrossRef]
- Ostapenko, G.I.; Kalashnikova, N.A. On the nature of surfactant adsorption onto metallic surfaces: Interaction with metal or hydrophobic effect? Adsorption of hexylamine on platinum. J. Electrochem. Soc. 2022, 169, 116502. [Google Scholar] [CrossRef]
- Bastidas, J.; Polo, J.; Cano, E. Substitutional inhibition mechanism of mild steel hydrochloric acid corrosion by hexylamine and dodecylamine. J. Appl. Electrochem. 2000, 30, 1173–1177. [Google Scholar] [CrossRef]
- Bockris, J.O.M.; Reddy, A.K.N. Modern Electrochemistry, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2000; Volume 2. [Google Scholar]
- Coll, H.; Nauman, R.V.; West, P.W. The Stability of FeCl++ in Perchlorate Solutions. Am. Chem. Soc. 1959, 81, 1284–1288. [Google Scholar] [CrossRef]
- Johansson, L. The Role of the perchlorate ion as ligand in solution. Coord. Chem. Rev. 1974, 12, 241–261. [Google Scholar] [CrossRef]
- Samec, Z.; Weber, J. The effect of the double layer on the rate of the Fe3+/Fe2+ reaction on a platinum electrode and the contemporary electron transfer theory. J. Electroanal. Chem. 1977, 77, 163–180. [Google Scholar] [CrossRef]
- Clavilier, J.; Van Huong, C.N. Etude de l’interface de l’or polycristallin Au contact de solutions aqueuses de perchlorate de potassium et d’acide perchlorique. J. Electroanal. Chem. 1977, 80, 101–114. [Google Scholar] [CrossRef]
- Hung, N.C.; Nagy, Z. Kinetics of the Ferrous/Ferric Electrode Reaction in the Absence of Chloride Catalysis. J. Electrochem. Soc. 1987, 134, 2215–2220. [Google Scholar] [CrossRef]
- Weber, J.; Samec, Z.; Mareček, V. The effect of anion adsorption on the kinetics of the Fe3+/Fe2+ reaction on Pt and Au electrodes in HClO4. J. Electroanal. Chem. 1978, 89, 271–288. [Google Scholar] [CrossRef]
- Samec, Z. Ultraslow Kinetics of the Ferric/Ferrous Electron Transfer Reaction on Au(110) Electrode in Perchloric Acid Solutions. J. Electrochem. Soc. 1999, 146, 3349–3356. [Google Scholar] [CrossRef]
- Randles, J.E.B. A cathode ray polarograph. Part II. The current-voltage curves. Trans. Faraday Soc. 1948, 44, 327–338. [Google Scholar] [CrossRef]
- Sevcik, A. Oscillographic polarography with periodical triangular voltage. Collect. Czech. Chem. Commun. 1948, 13, 349–377. [Google Scholar] [CrossRef]
- Marken, F.; Neudeck, A.; Bond, A.M. Cyclic Voltammetry. In Electroanalytical Methods—Guide to Experiments and Applications; Scholz, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 57–106. [Google Scholar] [CrossRef]
- Benari, M.D.; Hefter, G.T. Electrochemical characteristics of the iron(III)/iron(II) system in dimethylsulphoxide solutions. Electrochim. Acta 1991, 36, 471–477. [Google Scholar] [CrossRef]
- Jahn, D.; Vielstich, W. Rates of Electrode Processes by the Rotating Disk Method. J. Electrochem. Soc. 1962, 109, 849–852. [Google Scholar] [CrossRef]
- Cottrell, F.G. Der Reststrom bei galvanischer Polarisation, betrachtet als ein iffusionsproblem. Z. Phys. Chem. 1903, 42, 386–431. [Google Scholar] [CrossRef]
- Bard, A.; Folkner, L. Electrochemical Methods: Principles and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Allen, P.L.; Hickling, A. Electrochemistry of sulphur. Part 1. Overpotential in the discharge of the sulphide ion. Trans. Faraday Soc. 1957, 53, 1626–1635. [Google Scholar] [CrossRef]
- Delahay, P. Double Layer and Electrode Kinetics; Interscience: New York, NY, USA, 1965. [Google Scholar]
- Nagy, Z.; Curtis, L.A.; Hung, N.C.; Zurawski, D.J.; Yonco, R.M. Catalytic effect of under-potential deposited layers on the ferrous/ferric outer-sphere electrode reaction. J. Electroanal. Chem. 1992, 325, 313–324. [Google Scholar] [CrossRef]
- Angell, D.H.; Dickinson, T. The Kinetics of the ferrous/ferric and ferro/ferricyanide reactions at platinum and gold electrodes: Part I. Kinetics at bare-metal surfaces. J. Electroanal. Chem. 1972, 35, 55–72. [Google Scholar] [CrossRef]
- Stoynov, Z.; Grafov, B.; Savova-Stoynova, B.; Elkin, V. Electrochemical Impedance; Nauka: Moscow, Russia, 1991. [Google Scholar]
- McDonald, J.R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. 1987, 223, 25–50. [Google Scholar] [CrossRef]
- López, D.A.; Simison, S.N.; de Sánchez, S.R. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim. Acta 2003, 48, 845–854. [Google Scholar] [CrossRef]
- Barsoukov, E.; MacDonald, J.R. Impedance Spectroscopy Theory, Experiment, and Applications, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Walczak, M.S.; Morales-Gil, P.; Lindsay, R. Determining Gibbs energies of adsorption from corrosion inhibition efficiencies: Is it a reliable approach? Corros. Sci. 2019, 155, 182–185. [Google Scholar] [CrossRef]
- Kokal, A. On the estimation of standard adsorption free energy from corrosion inhibition efficiencies. Corros. Sci. 2023, 217, 111139. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lia, X.; Deng, S.; Fu, H.; Muc, G. Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution. Corros. Sci. 2009, 51, 620–634. [Google Scholar] [CrossRef]
- Sahina, M.; Bilgic, S.; Yılmaz, H. The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums. Appl. Surf. Sci. 2002, 195, 1–7. [Google Scholar] [CrossRef]
- Kokalj, A. A general-purpose adsorption isotherm for improved estimation of standard adsorption free energy. Corros. Sci. 2023, 217, 111124. [Google Scholar] [CrossRef]
- Kokalj, A. On the use of the Langmuir and other adsorption isotherms in corrosion inhibition. Corros. Sci. 2023, 217, 111112. [Google Scholar] [CrossRef]
- Hebbar, N.; Praveen, B.M.; Venkatesha, V.T.; Abd Hamid, S.B. Adsorption, thermodynamic, and electrochemical studies of ketosulfide for mild steel in acidic medium. J. Adhes. Sci. Technol. 2015, 29, 2692–2708. [Google Scholar] [CrossRef]
- Dhar, H.P.; Conway, B.E.; Joshi, K.M. On the form of adsorption isotherms for substitutional adsorption of molecules of different sizes. Electrochim. Acta 1973, 18, 789–798. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, R.A.; Venkatesha, T.V.; Shanbhag, A.V.; Kulkarni, G.M.; Kalkhambkar, R.G. Inhibition effects of some Schiff’s bases on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 2008, 50, 3356–3362. [Google Scholar] [CrossRef]
- Atkins, P.; Paula, J. Physical Chemistry, 9th ed.; University Press: Oxford, UK, 2009. [Google Scholar]
- Zhu, H.; Li, X.; Lu, X.; Chen, X.; Li, J.; Han, X.; Ma, X.; Hu, Z. Intra-inter-molecular synergistic inhibition effect of sulfonate surfactant and 2-benzothiazolethiol on carbon steel corrosion in 3.5% NaCl solution. Corros. Sci. 2021, 182, 109291. [Google Scholar] [CrossRef]
- Ignaczak, A.; Gomes, J.A.N.F. A theoretical study of the interaction of water molecules with the Cu(100), Ag(100) and Au(100) surfaces. J. Electroanal. Chem. 1997, 420, 209–221. [Google Scholar] [CrossRef]
- Stillinger, F.H. Water Revisited. Science 1980, 209, 451–457. [Google Scholar] [CrossRef]
- Carlá, M.; Aloisi, G.; Foresti, M.L.; Guidelli, R. Adsorption behaviour of n-hexylamine at the Hg/water interphase and its comparison with a molecular model accounting for local order. J. Electroanal. Chem. 1986, 197, 123–141. [Google Scholar] [CrossRef]
- Davies, M.; Johnson, P.; Wells, A.F.; Powell, H.M. General and physical chemistry. Annu. Rep. Prog. Chem. 1946, 43, 5–103. [Google Scholar] [CrossRef]
- Herbert, J.M.; Paul, S.K. Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface. Molecules 2021, 26, 6719. [Google Scholar] [CrossRef] [PubMed]
- Shafrin, E.G.; Zisman, W.A. The spreading of liquids on low-energy surfaces. IV. Monolayer coatings on platinum. J. Colloid Sci. 1952, 7, 166–177. [Google Scholar] [CrossRef]
- Bentiss, F.; Traisnel, M.; Gengembre, L.; Lagrenee, M. A new triazole derivative as inhibitor of the acid corrosion of mild steel: Electrochemical studies, weight loss determination, SEM and XPS. Appl. Surf. Sci. 1999, 152, 237–249. [Google Scholar] [CrossRef]
- de Damborene, J.; Bastidas, J.M.; Vazquez, A.J. Adsorption and inhibitive properties of four primary aliphatic amines on mild steel in 2 M hydrochloric acid. Electrochim. Acta 1997, 42, 455–459. [Google Scholar] [CrossRef]
- Johnson, D.C.; Resnick, E.W. Electrocatalysis of the Reduction of Iron (III) by Halides Adsorbed at Platinum Electrodes in Perchloric Acid Solutions. Anal. Chem. 1977, 49, 1918–1924. [Google Scholar] [CrossRef]
- Snell, F.D.; Snell, C.T. Colorimetric Methods of Analysis; D. Van Nostrand Company, Inc.: New York, NY, USA, 1954. [Google Scholar]
Ion | Ion Concentration, M | Acid Concentration, M | D × 106, cm2 s−1 | Reference | Research Method |
---|---|---|---|---|---|
Fe2+ | 1.0 | 6.5 | [42] | Rotating disc electrode (RDE) | |
10−2 | 1.4 | 4.2 | [42] | RDE | |
5.7 | [42] | RDE | |||
10−1 | 1.0 | 2.9 | This work | Potential step relaxation (PSR) | |
10−1 | 1.0 | 3.9 | This work | Cyclic voltammetry (CV) | |
Fe3+ | 1.0 | 5.5 | [42] | RDE | |
10−2 | 1.4 | 6.2 | [42] | RDE | |
6.5 | [43] | RDE | |||
10−1 | 1.0 | 6.2 | This work | PSR | |
10−1 | 1.0 | 5.6 | This work | CV |
Acid Concentration, M | α | k0, cm s–1 | Reference | Research Method |
---|---|---|---|---|
0.5 | 0.41 | 3.3 × 10−5 | [48] | PSR |
0.5 | 0.59 | 3.2 × 10−5 | [48] | PSR |
0.5 | 0.5 | 5.0 × 10−5 | [37] | RDE |
0.5 | 4.0 × 10−5 | [36] | PSR | |
0.5 | 0.59 | 8.0 × 10−5 | [49] | RDE |
1.0 | 0.57 | 9.3 × 10−4 | This work | PSR |
CS, M | i0, mA cm−2 | Rct, Ω cm2 |
---|---|---|
blank | 9.0 | 2.9 |
1 × 10−4 | 6.8 | 3.8 |
1 × 10−3 | 2.6 | 10 |
1 × 10−2 | 0.83 | 29 |
1 × 10−1 | 0.57 | 45 |
2 × 10−1 | 0.54 | 48 |
3 × 10−1 | 0.48 | 53 |
cS, M | Rct, Ω cm2 | A × 105, sn Ω−1 cm−2 | n | Cdl, μF cm−2 | W, Ω s−0.5 |
---|---|---|---|---|---|
blank | 2.9 ± 0.3 | 2.20 | 0.93 | 10.6 | 1.99 |
1 × 10−4 | 4.5 ± 0.4 | 3.67 | 0.88 | 11.2 | 2.87 |
1 × 10−3 | 12.0 ± 1.0 | 4.05 | 0.85 | 10.5 | 3.26 |
1 × 10−2 | 31.7 ± 2.0 | 4.24 | 0.82 | 9.9 | 3.90 |
1 × 10−1 | 47.9 ± 2.5 | 4.66 | 0.77 | 7.5 | 4.50 |
2 × 10−1 | 51.9 ± 3.0 | 4.80 | 0.76 | 7.2 | 4.82 |
3 × 10−1 | 56.4 ± 3.0 | 4.84 | 0.74 | 6.1 | 5.4 |
Hexylamine Concentrations, M | Research Method | |
---|---|---|
Chronoamperometry | EIS | |
1 × 10−4 | 0.013 | 0.023 ± 0.011 |
1 × 10−3 | 0.10 | 0.128 ± 0.033 |
1 × 10−2 | 0.37 | 0.41 ± 0.06 |
1 × 10−1 | 0.59 | 0.63 ± 0.07 |
2 × 10−1 | 0.63 | 0.69 ± 0.09 |
3 × 10−1 | 0.71 | 0.75 ± 0.09 |
Interface | Slopes of the Straight Line | Adsorption Constant Kad, L mol−1 | Adsorption Free Energy ∆G0ad, kJ mol−1 |
---|---|---|---|
Solution–gold: | |||
Chronoamperometry | 0.96 ± 0.05 | 14.1 ± 4.0 | −16.4 ± 1.1 |
EIS | 0.92 ± 0.07 | 15.8 ± 5.0 | −16.7 ± 1.2 |
Solution–platinum, EIS | 0.94 ± 0.09 | 10.0 ± 4.0 | −14.8 ± 5.0 |
Solution–air | 0.98 ± 0.18 | 15.8 ± 0.3 | −16.7± 0.3 |
Interface | Slopes of the Straight Line | Adsorption Constant Kad, L mol−1 | Adsorption Free Energy ∆G0ad, kJ mol−1 |
---|---|---|---|
Solution–gold: | |||
Chronoamperometry | 0.96 ± 0.05 | 14.1 ± 4.0 | −16.4 ± 1.1 |
EIS | 0.92 ± 0.07 | 15.8 ± 5.0 | −16.7 ± 1.2 |
Solution–platinum, EIS | 0.94 ± 0.09 | 10.0 ± 4.0 | −14.8 ± 5.0 |
Solution–air | 0.98 ± 0.18 | 15.8 ± 0.3 | −16.7± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostapenko, G.I.; Kalashnikova, N.A. Investigation of Hexylamine Adsorption on Gold in Perchloric Acid. Molecules 2023, 28, 5070. https://doi.org/10.3390/molecules28135070
Ostapenko GI, Kalashnikova NA. Investigation of Hexylamine Adsorption on Gold in Perchloric Acid. Molecules. 2023; 28(13):5070. https://doi.org/10.3390/molecules28135070
Chicago/Turabian StyleOstapenko, Gennady I., and Nina A. Kalashnikova. 2023. "Investigation of Hexylamine Adsorption on Gold in Perchloric Acid" Molecules 28, no. 13: 5070. https://doi.org/10.3390/molecules28135070
APA StyleOstapenko, G. I., & Kalashnikova, N. A. (2023). Investigation of Hexylamine Adsorption on Gold in Perchloric Acid. Molecules, 28(13), 5070. https://doi.org/10.3390/molecules28135070