Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples
Abstract
:1. Introduction
2. Offline Sample Preparation for Liquid Chromatography
2.1. Graphene-Based Materials as Dispersive Sorbents
2.2. Graphene-Based Materials as Coating Sorbents
2.3. Graphene-Based Materials as Packed Sorbent
2.4. Trends in Graphene-Based Offline Sample Preparation
3. Online Sample Preparation for Liquid Chromatography
4. Stationary Phase for Liquid Chromatography
4.1. Packed Columns
4.2. Monolithic Column
4.3. Open Tubular Columns
4.4. Trends Observed in Graphene-Based Stationary Phases in LC Columns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; Khan, A. Ullah Graphene Synthesis, Characterization and Its Applications: A Review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Lanças, F.M.; Medina, D.A.V.; Pereira Dos Santos, N.G.; Sinisterra, M.J. Graphene-Based Sorbents for Modern Magnetic Solid-Phase Extraction Techniques. In Analytical Applications of Functionalized Magnetic Nanoparticles; The Royal Society of Chemistry: London, UK, 2021; pp. 174–199. [Google Scholar]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene Based Sensors and Biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Lu, Q.; Qu, Q. Graphene-Based Materials: Fabrication and Application for Adsorption in Analytical Chemistry. J. Chromatogr. A 2014, 1362, 1–15. [Google Scholar] [CrossRef]
- Grajek, H.; Jonik, J.; Witkiewicz, Z.; Wawer, T.; Purchała, M. Applications of Graphene and Its Derivatives in Chemical Analysis. Crit. Rev. Anal. Chem. 2020, 50, 445–471. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P.; et al. The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Adv. Funct. Mater. 2020, 30, 1909035. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene Research and Their Outputs: Status and Prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ruoff, R.S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef]
- Bohr, J. Adhesive Tape Exfoliation: Why It Works for Graphene. EPL (Europhys. Lett.) 2015, 109, 58004. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Gengler, R.Y.N.; Spyrou, K.; Rudolf, P. A Roadmap to High Quality Chemically Prepared Graphene. J. Phys. D Appl. Phys. 2010, 43, 374015. [Google Scholar] [CrossRef] [Green Version]
- Maciel, E.V.S.; Vargas-Medina, D.A.; Lancas, F.M. Analyzes of β-Lactam Antibiotics by Direct Injection of Environmental Water Samples into a Functionalized Graphene Oxide-Silica Packed Capillary Extraction Column Online Coupled to Liquid Chromatography Tandem Mass Spectrometry. Talanta Open 2023, 7, 100185. [Google Scholar] [CrossRef]
- Golzari Aqda, T.; Behkami, S.; Raoofi, M.; Bagheri, H. Graphene Oxide-Starch-Based Micro-Solid Phase Extraction of Antibiotic Residues from Milk Samples. J. Chromatogr. A 2019, 1591, 7–14. [Google Scholar] [CrossRef]
- Demir, N.; Aydoğan, C. ProFlow Nano-Liquid Chromatography with a Graphene Oxide-Functionalized Monolithic Nano-Column for the Simultaneous Determination of Chloramphenicol and Chloramphenicol Glucuronide in Foods. J. Food Sci. 2022, 87, 1721–1730. [Google Scholar] [CrossRef]
- Gu, S.; Hsieh, C.-T.; Chiang, Y.-M.; Tzou, D.-Y.; Chen, Y.-F.; Gandomi, Y.A. Optimization of Graphene Quantum Dots by Chemical Exfoliation from Graphite Powders and Carbon Nanotubes. Mater. Chem. Phys. 2018, 215, 104–111. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Kumar, N.; Salehiyan, R.; Chauke, V.; Joseph Botlhoko, O.; Setshedi, K.; Scriba, M.; Masukume, M.; Sinha Ray, S. Top-down Synthesis of Graphene: A Comprehensive Review. FlatChem 2021, 27, 100224. [Google Scholar] [CrossRef]
- Deng, B.; Liu, Z.; Peng, H. Toward Mass Production of CVD Graphene Films. Adv. Mater. 2019, 31, 1800996. [Google Scholar] [CrossRef]
- Jia, K.; Zhang, J.; Zhu, Y.; Sun, L.; Lin, L.; Liu, Z. Toward the Commercialization of Chemical Vapor Deposition Graphene Films. Appl. Phys. Rev. 2021, 8, 041306. [Google Scholar] [CrossRef]
- Munuera, J.M.; Paredes, J.I.; Enterría, M.; Pagán, A.; Villar-Rodil, S.; Pereira, M.F.R.; Martins, J.I.; Figueiredo, J.L.; Cenis, J.L.; Martínez-Alonso, A.; et al. Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. ACS Appl. Mater. Interfaces 2017, 9, 24085–24099. [Google Scholar] [CrossRef]
- Coroş, M.; Pogăcean, F.; Roşu, M.-C.; Socaci, C.; Borodi, G.; Mageruşan, L.; Biriş, A.R.; Pruneanu, S. Simple and Cost-Effective Synthesis of Graphene by Electrochemical Exfoliation of Graphite Rods. RSC Adv. 2016, 6, 2651–2661. [Google Scholar] [CrossRef]
- Song, Z.; Mu, X.; Luo, T.; Xu, Z. Unzipping of Carbon Nanotubes Is Geometry-Dependent. Nanotechnology 2016, 27, 015601. [Google Scholar] [CrossRef]
- de Toffoli, A.L.; Maciel, E.V.S.; Fumes, B.H.; Lanças, F.M. The Role of Graphene-Based Sorbents in Modern Sample Preparation Techniques. J. Sep. Sci. 2018, 41, 288–302. [Google Scholar] [CrossRef]
- Madej, K.; Jonda, A.; Borcuch, A.; Piekoszewski, W.; Chmielarz, L.; Gil, B. A Novel Stir Bar Sorptive-Dispersive Microextraction in Combination with Magnetically Modified Graphene for Isolation of Seven Pesticides from Water Samples. Microchem. J. 2019, 147, 962–971. [Google Scholar] [CrossRef]
- Zhang, Q.; You, L.; Chen, B.; He, M.; Hu, B. Reduced Graphene Oxide Coated Nickel Foam for Stir Bar Sorptive Extraction of Benzotriazole Ultraviolet Absorbents from Environmental Water. Talanta 2021, 231, 122332. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-L.; Lv, H.; Wang, D.-D.; Liao, K.-C.; Wu, Y.-Y.; Li, G.-M.; Chen, Y. Graphene Oxide Composite Microspheres as a Novel Dispersive Solid-Phase Extraction Adsorbent of Bisphenols Prior to Their Quantitation by HPLC–Mass Spectrometry. Microchem. J. 2022, 172, 106920. [Google Scholar] [CrossRef]
- Arabkhani, P.; Sadegh, N.; Asfaram, A. Nanostructured Magnetic Graphene Oxide/UIO-66 Sorbent for Ultrasound-Assisted Dispersive Solid-Phase Microextraction of Food Colorants in Soft Drinks, Candies, and Pastilles Prior to HPLC Analysis. Microchem. J. 2023, 184, 108149. [Google Scholar] [CrossRef]
- Pei, M.; Shi, X.; Wu, J.; Huang, X. Graphene Reinforced Multiple Monolithic Fiber Solid-Phase Microextraction of Phenoxyacetic Acid Herbicides in Complex Samples. Talanta 2019, 191, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, R.; Kardani, F.; Ramezani, Z. A Nanocomposite Consisting of Graphene Oxide, Zeolite Imidazolate Framework 8, and a Molecularly Imprinted Polymer for (Multiple) Fiber Solid Phase Microextraction of Sterol and Steroid Hormones Prior to Their Quantitation by HPLC. Microchim. Acta 2019, 186, 129. [Google Scholar] [CrossRef]
- Liang, X.; Wang, X.; Ren, H.; Jiang, S.; Wang, L.; Liu, S. Gold Nanoparticle Decorated Graphene Oxide/Silica Composite Stationary Phase for High-Performance Liquid Chromatography. J. Sep. Sci. 2014, 37, 1371–1379. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Zhu, N.; Gao, Z.; Ma, Y. Cellulose Type Chiral Stationary Phase Based on Reduced Graphene Oxide@silica Gel for the Enantiomer Separation of Chiral Compounds. Chirality 2018, 30, 996–1004. [Google Scholar] [CrossRef]
- Maciel, E.; Borsatto, J.V.B.; Mejia-Carmona, K.; Lanças, F.M. Application of an In-House Packed Octadecylsilica-Functionalized Graphene Oxide Column for Capillary Liquid Chromatography Analysis of Hormones in Urine Samples. Anal. Chim. Acta 2023, 1239, 340718. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wang, S.; Liu, S.; Liu, X.; Jiang, S. A Novel Octadecylsilane Functionalized Graphene Oxide/Silica Composite Stationary Phase for High Performance Liquid Chromatography. J. Sep. Sci. 2012, 35, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Şeker, S.; Alharthi, S.; Aydoğan, C. Open Tubular Nano-Liquid Chromatography with a New Polylysine Grafted on Graphene Oxide Stationary Phase for the Separation and Determination of Casein Protein Variants in Milk. J. Chromatogr. A 2022, 1667, 462885. [Google Scholar] [CrossRef]
- Tong, Y.; Li, S.; Wu, Y.; Guo, J.; Zhou, B.; Zhou, Q.; Jiang, L.; Niu, J.; Zhang, Y.; Liu, H.; et al. Graphene Oxide Modified Magnetic Polyamidoamide Dendrimers Based Magnetic Solid Phase Extraction for Sensitive Measurement of Polycyclic Aromatic Hydrocarbons. Chemosphere 2022, 296, 134009. [Google Scholar] [CrossRef]
- Song, L.; Zhang, H.; Cai, T.; Chen, J.; Li, Z.; Guan, M.; Qiu, H. Porous Graphene Decorated Silica as a New Stationary Phase for Separation of Sulfanilamide Compounds in Hydrophilic Interaction Chromatography. Chin. Chem. Lett. 2019, 30, 863–866. [Google Scholar] [CrossRef]
- Guo, Y.; Si, H.; Li, H.; Zhao, X.; Zhao, Y.; Li, S.; Wang, Q.; Zhu, B. Graphene Oxide-Based a Network Porous Poly (Trially Isocyanurate-Co-Methacrylate) Monolithic Column for HPLC Separation of Aromatic Molecular and Lipopeptide Antibiotics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1203, 123310. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Tang, S.; Wang, J. Recent Advances and Applications of Graphene-Based Extraction Materials in Food Safety. TrAC Trends Anal. Chem. 2019, 119, 115603. [Google Scholar] [CrossRef]
- Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive Solid Phase Microextraction. TrAC Trends Anal. Chem. 2019, 118, 793–809. [Google Scholar] [CrossRef]
- Li, N.; Jiang, H.-L.; Wang, X.; Wang, X.; Xu, G.; Zhang, B.; Wang, L.; Zhao, R.-S.; Lin, J.-M. Recent Advances in Graphene-Based Magnetic Composites for Magnetic Solid-Phase Extraction. TrAC Trends Anal. Chem. 2018, 102, 60–74. [Google Scholar] [CrossRef]
- Luo, Y.-B.; Shi, Z.-G.; Gao, Q.; Feng, Y.-Q. Magnetic Retrieval of Graphene: Extraction of Sulfonamide Antibiotics from Environmental Water Samples. J. Chromatogr. A 2011, 1218, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Shi, J.; Jiang, G. Application of Graphene in Analytical Sample Preparation. TrAC Trends Anal. Chem. 2012, 37, 1–11. [Google Scholar] [CrossRef]
- Zhao, G.; Song, S.; Wang, C.; Wu, Q.; Wang, Z. Determination of Triazine Herbicides in Environmental Water Samples by High-Performance Liquid Chromatography Using Graphene-Coated Magnetic Nanoparticles as Adsorbent. Anal. Chim. Acta 2011, 708, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Feng, C.; Wang, C.; Wang, Z. A Facile One-Pot Solvothermal Method to Produce Superparamagnetic Graphene–Fe3O4 Nanocomposite and Its Application in the Removal of Dye from Aqueous Solution. Colloids Surf. B Biointerfaces 2013, 101, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Raghu, M.S.; Yogesh Kumar, K.; Prashanth, M.K.; Prasanna, B.P.; Vinuth, R.; Pradeep Kumar, C.B. Adsorption and Antimicrobial Studies of Chemically Bonded Magnetic Graphene Oxide-Fe3O4 Nanocomposite for Water Purification. J. Water Process Eng. 2017, 17, 22–31. [Google Scholar] [CrossRef]
- Zhang, R.; Su, P.; Yang, Y. Microwave-Assisted Preparation of Magnetic Nanoparticles Modified with Graphene Oxide for the Extraction and Analysis of Phenolic Compounds. J. Sep. Sci. 2014, 37, 3339–3346. [Google Scholar] [CrossRef]
- Mohammadnia, M.; Heydari, R.; Sohrabi, M.R. Determination of 2,4-Dichlorophenoxyacetic Acid in Food and Water Samples Using a Modified Graphene Oxide Sorbent and High-Performance Liquid Chromatography. J. Environ. Sci. Health Part B 2020, 55, 293–300. [Google Scholar] [CrossRef]
- Majd, M.; Nojavan, S. Magnetic Dispersive Solid-Phase Extraction of Triazole and Triazine Pesticides from Vegetable Samples Using a Hydrophilic-Lipophilic Sorbent Based on Maltodextrin- and β-Cyclodextrin-Functionalized Graphene Oxide. Mikrochim. Acta 2021, 188, 380. [Google Scholar] [CrossRef]
- Shirani, M.; Parandi, E.; Nodeh, H.R.; Akbari-adergani, B.; Shahdadi, F. Development of a Rapid Efficient Solid-Phase Microextraction: An Overhead Rotating Flat Surface Sorbent Based 3-D Graphene Oxide/Lanthanum Nanoparticles @ Ni Foam for Separation and Determination of Sulfonamides in Animal-Based Food Products. Food Chem. 2022, 373, 131421. [Google Scholar] [CrossRef]
- Hasan, C.K.; Ghiasvand, A.; Lewis, T.W.; Nesterenko, P.N.; Paull, B. Recent Advances in Stir-Bar Sorptive Extraction: Coatings, Technical Improvements, and Applications. Anal. Chim. Acta 2020, 1139, 222–240. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, R.; Chen, Z. Stir Bar Sorptive Extraction with a Graphene Oxide Framework-Functionalized Stainless-Steel Wire for the Determination of Sudan Dyes in Water Samples. Anal. Methods 2019, 11, 2050–2056. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, J.; Yang, Q.; Ni, C.; Xie, X.; Shi, Y.; Sun, J.; Zhu, F.; Ouyang, G. Fabrications of Novel Solid Phase Microextraction Fiber Coatings Based on New Materials for High Enrichment Capability. TrAC Trends Anal. Chem. 2018, 108, 135–153. [Google Scholar] [CrossRef]
- Darvishnejad, F.; Raoof, J.B.; Ghani, M. MIL-101 (Cr) @ Graphene Oxide-Reinforced Hollow Fiber Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography to Determine Diazinon and Chlorpyrifos in Tomato, Cucumber and Agricultural Water. Anal. Chim. Acta 2020, 1140, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Lu, Y.; Cui, B. Preparation and Application of β-Cyclodextrin Functionalised Graphene Oxide-Grafted Silica Sorbents for Solid-Phase Extraction (SPE) of Polycyclic Aromatic Hydrocarbons from Fried Food Using a Box-Behnken Design. Food Anal. Methods 2021, 14, 1577–1589. [Google Scholar] [CrossRef]
- Moral, A.; Borrull, F.; Fourton, K.G.; Kabir, A.; Marcé, R.M.; Fontanals, N. Extraction of Selected Benzothiazoles, Benzotriazoles and Benzenesulfonamides from Environmental Water Samples Using a Home-Made Sol-Gel Silica-Based Mixed-Mode Zwitterionic Sorbent Modified with Graphene. Talanta 2023, 256, 124315. [Google Scholar] [CrossRef] [PubMed]
- Feizy, J.; Jahani, M.; Beigbabaei, A. Graphene Adsorbent-Based Solid-Phase Extraction for Aflatoxins Clean-Up in Food Samples. Chromatographia 2019, 82, 917–926. [Google Scholar] [CrossRef]
- de Gomes, R.S.; Thesing, A.; Santos, J.F.L.; Fernandes, A.N. Self-Supported 3D Reduced Graphene Oxide for Solid-Phase Extraction: An Efficient and Low-Cost Sorbent for Environmental Contaminants in Aqueous Solution. Talanta 2021, 235, 122750. [Google Scholar] [CrossRef]
- Oliveira, T.C.; Lanças, F.M. Determination of Selected Herbicides in Sugarcane-Derived Foods by Graphene-Oxide Based Disposable Pipette Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2023, 1687, 463690. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, C.; Chen, Z.; Luo, X.; Zhao, H.; Wu, F. Zeolitic Imidazolate Framework-8/Fluorinated Graphene Coated SiO2 Composites for Pipette Tip Solid-Phase Extraction of Chlorophenols in Environmental and Food Samples. Talanta 2021, 228, 122229. [Google Scholar] [CrossRef]
- Analytical Methods Committee. Technical Analytical Methods Committee Briefs What Causes Most Errors in Chemical Analysis? Anal. Methods 2013, 5, 2914–2915. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, C.; Zhang, Z.; Li, G. Review of Online Coupling of Sample Preparation Techniques with Liquid Chromatography. Anal. Chim. Acta 2014, 815, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ramos, C.; Šatínský, D.; Šmídová, B.; Solich, P. Analysis of Trace Organic Compounds in Environmental, Food and Biological Matrices Using Large-Volume Sample Injection in Column-Switching Liquid Chromatography. TrAC Trends Anal. Chem. 2014, 62, 69–85. [Google Scholar] [CrossRef]
- Mejía-Carmona, K.; Lanças, F.M. Modified Graphene-Silica as a Sorbent for in-Tube Solid-Phase Microextraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry. Determination of Xanthines in Coffee Beverages. J. Chromatogr. A 2020, 1621, 461089. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Ai, L.-F.; Cao, Y.-Q.; Nian, Q.-X.; Jia, Y.-Q.; Hao, Y.-L.; Wang, M.-M.; Wang, X.-S. Rapid Determination of Sulfonamides in Chicken Muscle and Milk Using Efficient Graphene Oxide-Based Monolith On-Line Solid-Phase Extraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. Food Anal. Methods 2019, 12, 271–281. [Google Scholar] [CrossRef]
- Sun, M.; Han, S.; Maloko Loussala, H.; Feng, J.; Li, C.; Ji, X.; Feng, J.; Sun, H. Graphene Oxide-Functionalized Mesoporous Silica for Online in-Tube Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons from Honey and Detection by High Performance Liquid Chromatography-Diode Array Detector. Microchem. J. 2021, 166, 106263. [Google Scholar] [CrossRef]
- Seidi, S.; Abolhasani, H.; Razeghi, Y.; Shanehsaz, M.; Manouchehri, M. Electrochemically Deposition of Ionic Liquid Modified Graphene Oxide for Circulated Headspace In-Tube Solid Phase Microextraction of Naphthalene from Honey Samples Followed by on-Line Liquid Chromatography Analysis. J. Chromatogr. A 2020, 1628, 461486. [Google Scholar] [CrossRef]
- da Silva, L.F.; Vargas Medina, D.A.; Lanças, F.M. Automated Needle-Sleeve Based Online Hyphenation of Solid-Phase Microextraction and Liquid Chromatography. Talanta 2021, 221, 121608. [Google Scholar] [CrossRef]
- Wei, Z.H.; Mu, L.N.; Pang, Q.Q.; Huang, Y.P.; Liu, Z.S. Preparation and Characterization of Grafted Imprinted Monolith for Capillary Electrochromatography. Electrophoresis 2012, 33, 3021–3027. [Google Scholar] [CrossRef]
- Qu, Q.; Gu, C.; Hu, X. Capillary Coated with Graphene and Graphene Oxide Sheets as Stationary Phase for Capillary Electrochromatography and Capillary Liquid Chromatography. Anal. Chem. 2012, 84, 8880–8890. [Google Scholar] [CrossRef]
- Borsatto, J.V.B.; Maciel, E.V.S.; Lanças, F.M. Investigation of the Applicability of Silica-Graphene Hybrid Materials as Stationary Phases for Capillary Liquid Chromatography. J. Chromatogr. A 2022, 1685, 463618. [Google Scholar] [CrossRef] [PubMed]
- Wahab, M.F.; Patel, D.C.; Wimalasinghe, R.M.; Armstrong, D.W. Fundamental and Practical Insights on the Packing of Modern High-Efficiency Analytical and Capillary Columns. Anal. Chem. 2017, 89, 8177–8191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Han, Q.; Ding, M. Preparation and Retention Mechanism Study of Graphene and Graphene Oxide Bonded Silica Microspheres as Stationary Phases for High Performance Liquid Chromatography. J. Chromatogr. A 2013, 1307, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, S.; Song, X.; Zhu, Y.; Jiang, S. Layer-by-Layer Self-Assembled Graphene Oxide/Silica Microsphere Composites as Stationary Phase for High Performance Liquid Chromatography. Analyst 2012, 137, 5237. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, Z.B.; Zeng, Y.; Zhou, T.; Shi, G. A Novel Composite of Graphene Quantum Dots and Molecularly Imprinted Polymer for Fluorescent Detection of Paranitrophenol. Biosens. Bioelectron. 2014, 52, 317–323. [Google Scholar] [CrossRef]
- Luo, Q.; Zhong, Z.; Zheng, Y.; Gao, D.; Xia, Z.; Wang, L. Preparation and Evaluation of a Poly(N-Isopropylacrylamide) Derived Graphene Quantum Dots Based Hydrophilic Interaction and Reversed-Phase Mixed-Mode Stationary Phase for Complex Sample Analysis. Talanta 2021, 224, 121869. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chen, L.; Gao, J.; Dong, S.; Li, H.; Di, D.; Zhao, L. Graphene Quantum Dots-Functionalized C18 Hydrophobic/Hydrophilic Stationary Phase for High Performance Liquid Chromatography. Talanta 2019, 194, 105–113. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, J.; Chen, L.; Dong, S.; Li, H.; Qiu, H.; Zhao, L. Graphene Quantum Dots Functionalized β-Cyclodextrin and Cellulose Chiral Stationary Phases with Enhanced Enantioseparation Performance. J. Chromatogr. A 2019, 1600, 209–218. [Google Scholar] [CrossRef]
- Luo, Q.; Wan, M.; Zhou, J.; Dai, X.; Yang, H.; Zu, F.; Zheng, Y.; Wang, L. Preparation and Evaluation of a Double-Hydrophilic Interaction Stationary Phase Based on Bovine Serum Albumin and Graphene Quantum Dots Modified Silica. J. Chromatogr. A 2022, 1669, 462933. [Google Scholar] [CrossRef]
- Li, Y.; Wei, M.; Chen, T.; Zhu, N.; Ma, Y. Self-Assembled Cyclodextrin-Modified Gold Nanoparticles on Silica Beads as Stationary Phase for Chiral Liquid Chromatography and Hydrophilic Interaction Chromatography. Talanta 2016, 160, 72–78. [Google Scholar] [CrossRef]
- Liu, H.; Guo, Y.; Wang, X.; Liang, X.; Liu, X. Amino-Terminated Ionic Liquid Modified Graphene Oxide Coated Silica Composite Stationary Phase for Hydrophilic Interaction Chromatography. RSC Adv. 2014, 4, 37381–37388. [Google Scholar] [CrossRef]
- Borsatto, J.V.B.; Maciel, E.V.S.; Cifuentes, A.; Lanças, F.M. Online Extraction Followed by LC–MS/MS Analysis of Lipids in Natural Samples: A Proof-of-Concept Profiling Lecithin in Seeds. Foods 2023, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Huang, S.; Zheng, J.; Ouyang, G. Trends in Sensitive Detection and Rapid Removal of Sulfonamides: A Review. J. Sep. Sci. 2020, 43, 1634–1652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yan, S.; Liu, J.; Xiong, Z.; Zhao, L. Octadecylamine and Serine-Derived Carbon Dots-Modified Silica Gel for Reversed Phase/Hydrophilic Interaction Liquid Chromatography. Microchem. J. 2022, 183, 107987. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Cheng, H.; Shen, Y. Graphene Oxide Decorated Monolithic Column as Stationary Phase for Capillary Electrochromatography. J. Chromatogr. A 2016, 1452, 27–35. [Google Scholar] [CrossRef]
- Xu, S.; Mo, R.; Jin, C.; Cui, X.; Bai, R.; Ji, Y. Mesoporous Silica Nanoparticles Incorporated Hybrid Monolithic Stationary Phase Immobilized with Pepsin for Enantioseparation by Capillary Electrochromatography. J. Pharm. Biomed. Anal. 2017, 140, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, L.; Ma, H. Preparation of Porous Polymer Monolithic Column Using Functionalized Graphene Oxide as a Functional Crosslinker for High Performance Liquid Chromatography Separation of Small Molecules. Analyst 2013, 138, 5470. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, J.; Yu, R.; Yin, X.; He, Y. Incorporation of Graphene Oxide Nanosheets into Boronate-Functionalized Polymeric Monolith to Enhance the Electrochromatographic Separation of Small Molecules. Electrophoresis 2015, 36, 596–606. [Google Scholar] [CrossRef]
- Günyel, Z.; Aslan, H.; Demir, N.; Aydoğan, C. Nano-liquid Chromatography with a New Nano-structured Monolithic Nanocolumn for Proteomics Analysis. J. Sep. Sci. 2021, 44, 3996–4004. [Google Scholar] [CrossRef]
- Tang, Y.; Cui, X.; Zhang, Y.; Ji, Y. Preparation and Evaluation of a Polydopamine-Modified Capillary Silica Monolith for Capillary Electrochromatography. New J. Chem. 2019, 43, 1009–1016. [Google Scholar] [CrossRef]
- Rice, J.; Proctor, K.; Lopardo, L.; Evans, S.; Kasprzyk-Hordern, B. Stereochemistry of Ephedrine and Its Environmental Significance: Exposure and Effects Directed Approach. J. Hazard. Mater. 2018, 348, 39–46. [Google Scholar] [CrossRef]
- Ishii, D.; Tsuda, T.; Hibi, K.; Takeuchi, T.; Nakanishi, T. Study of Open-Tubular Micro-Capillary Liquid Chromatography. J. High Resolut. Chromatogr. 1979, 2, 371–377. [Google Scholar] [CrossRef]
- Knox, J.H.; Gilbert, M.T. Kinetic Optimization of Straight Open-Tubular Liquid Chromatography. J. Chromatogr. A 1979, 186, 405–418. [Google Scholar] [CrossRef]
- Desmet, G.; Eeltink, S. Fundamentals for LC Miniaturization. Anal. Chem. 2013, 85, 543–556. [Google Scholar] [CrossRef]
- Sagandykova, G.; Szumski, M.; Buszewski, B. How Much Separation Sciences Fit in the Green Chemistry Canoe? Curr. Opin. Green Sustain. Chem. 2021, 30, 100495. [Google Scholar] [CrossRef]
- Vargas Medina, D.A.; dos Santos, N.G.P.; da Silva Burato, J.S.; Borsatto, J.V.B.; Lanças, F.M. An Overview of Open Tubular Liquid Chromatography with a Focus on the Coupling with Mass Spectrometry for the Analysis of Small Molecules. J. Chromatogr. A 2021, 1641, 461989. [Google Scholar] [CrossRef]
- Vargas Medina, D.A.; da Burato, J.S.S.; Borsatto, J.V.B.; Lanças, F.M. Porous Layer Open Tubular Nano Liquid Chromatography Directly Coupled to Electron Ionization Mass Spectrometry. J. Chromatogr. A 2022, 1674, 463143. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, S.; Veerappan, V.; Byun, C.K.; Nguyen, H.; Gendhar, B.; Allen, R.D.; Liu, S. Bare Nanocapillary for DNA Separation and Genotyping Analysis in Gel-Free Solutions without Application of External Electric Field. Anal. Chem. 2008, 80, 5583–5589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhu, Z.; Lu, J.J.; Liu, S. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis. Anal. Chem. 2015, 87, 1518–1522. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.; Luo, Q.; Zhang, J.; Wu, S.L.; Karger, B.L. Ultratrace LC/MS Proteomic Analysis Using 10-Μm-i.d. Porous Layer Open Tubular Poly(Styrene-Divinylbenzene) Capillary Columns. Anal. Chem. 2007, 79, 938–946. [Google Scholar] [CrossRef]
- Luo, Q.; Yue, G.; Valaskovic, G.A.; Gu, Y.; Wu, S.; Karger, B.L. On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-μm-id poly (styrene-divinylbenzene) columns for ultrasensitive proteomic analysis. Anal. Chem. 2007, 79, 6549–6556. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Rejtar, T.; Wu, S.L.; Karger, B.L. Hydrophilic Interaction 10 Μm I.D. Porous Layer Open Tubular Columns for Ultratrace Glycan Analysis by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2009, 1216, 1223–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hustoft, H.K.; Vehus, T.; Brandtzaeg, O.K.; Krauss, S.; Greibrokk, T.; Wilson, S.R.; Lundanes, E. Open Tubular Lab-on-Column/Mass Spectrometry for Targeted Proteomics of Nanogram Sample Amounts. PLoS ONE 2014, 9, e106881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, X.; Ding, S.; Wang, W.; Xu, Y.; Xu, Y.; Chen, H.; Chen, X. Separation of Small Organic Molecules Using Covalent Organic Frameworks-LZU1 as Stationary Phase by Open-Tubular Capillary Electrochromatography. J. Chromatogr. A 2016, 1436, 109–117. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.R.; Brandtzaeg, O.K.; Vehus, T.; Lanças, F.M.; Wilson, S.R.; Lundanes, E. An Automated and Self-Cleaning Nano Liquid Chromatography Mass Spectrometry Platform Featuring an Open Tubular Multi-Hole Crystal Fiber Solid Phase Extraction Column and an Open Tubular Separation Column. J. Chromatogr. A 2017, 1518, 104–110. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Yu, R.B.; Quirino, J.P. Recent Developments in Open Tubular Liquid Chromatography and Electrochromatography from 2019–2021. TrAC Trends Anal. Chem. 2023, 164, 117045. [Google Scholar] [CrossRef]
- Ma, M.; Xi, Y.; Du, Y.; Yang, J.; Ma, X.; Chen, C. Maltodextrin-Modified Graphene Oxide for Improved Enantiomeric Separation of Six Basic Chiral Drugs by Open-Tubular Capillary Electrochromatography. Microchim. Acta 2020, 187, 55. [Google Scholar] [CrossRef]
- Ye, N.; Li, J. Determination of Dopamine, Epinephrine, and Norepinephrine by Open-Tubular Capillary Electrochromatography Using Graphene Oxide Molecularly Imprinted Polymers as the Stationary Phase. J. Sep. Sci. 2014, 37, 2239–2247. [Google Scholar] [CrossRef]
- Cai, Z.; Hu, X.; Zong, R.; Wu, H.; Jin, X.; Yin, H.; Huang, C.; Xiang, Y.; Ye, N. A Graphene Oxide-Molybdenum Disulfide Composite Used as Stationary Phase for Determination of Sulfonamides in Open-Tubular Capillary Electrochromatography. J. Chromatogr. A 2020, 1629, 461487. [Google Scholar] [CrossRef]
- Sun, X.; Ding, Y.; Niu, B.; Chen, Q. Evaluation of a Composite Nanomaterial Consist of Gold Nanoparticles and Graphene-Carbon Nitride as Capillary Electrochromatography Stationary Phase for Enantioseparation. Microchem. J. 2021, 169, 106613. [Google Scholar] [CrossRef]
Graphene-Based Material | Support | Modification | Techniques | Analytes | Matrix | Year | Ref. |
---|---|---|---|---|---|---|---|
GO | Fe3O4 particles | TBA | d-SPME | 2,4-Dichlorophenoxyacetic acid | Environmental water, lettuce, celery, tomato, and cucumber | 2020 | [48] |
GO | Fe3O4 particle | MD and β-CD | d-SPE | Triazole, and triazine | Corn, tomato, and potato | 2021 | [49] |
GO | Fe3O4 particle | MOF/UIO-66 | d-SPE | Sunset yellow, tartrazine, allura red | Soft drinks, candies, and pastilles | 2023 | [28] |
GO | PS particle | Not modified | d-SPE | Bisphenol A, bisphenol B, bisphenol AF, tetrabromobisphenol A | Drinking water, tap water, and river water | 2022 | [27] |
GO | Ni foam | La nanoparticles | RFS-SPME | Sulfadiazine, sulfamethoxazole, sulfamethazine | Fresh egg, cow meat, chicken meat, and fish | 2022 | [50] |
GO | SS wire | GOF | SBSE | Sudan G, sudan I, sudan II, and sudan III (dyes) | Water and fruit juice | 2019 | [52] |
GO | Ni bar | Not modified | SBSE | Benzotriazole | Environmental water | 2021 | [26] |
G | Nd bar | Fe3O4-G | SBSDμE | Boscalid, chlorpyrifos, deltamethrin, dimethenamid-P, dimoxystrobin, metazachlor and tebuconazol | Water | 2019 | [25] |
GO | MIP monolith | MOF/ZIF-8 | Fiber-SPME | Sterols: progesterone, testosterone, β-sitosterol, cholesterol, and campesterol | White meat, egg yolks, and vegetables | 2019 | [30] |
GO | VP-co-EGDMA monolith | Not modified | Fiber-SPME | Phenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2-nitrophenoxyacetic acid, and 4-chlorophenoxyacetic acid | Water and rice | 2019 | [29] |
GO | PP monolith | MOF/MIL-101 | HF-SPME | Diazinon and chlorpyrifos | Tomato, cucumber, and agricultural water | 2020 | [54] |
GO | Si particles | β-CD | SPE | Benzanthracene, benzofluoranthene, benzo(a)pyrene (bap), anthracene | Fried chicken | 2021 | [55] |
G | Si particles | ZIF-8 | SPE | Benzothiazoles, benzotriazoles, benzenesulfonamides. | River water, effluent wastewater, and influent wastewater | 2023 | [56] |
rGO | Not supported | Not modified | SPE | Aflatoxin B1, B2, G1, and G2 | Rice and wheat | 2019 | [57] |
rGO | Self-supported | rGO 3D structured | SPE | Diclofenac | Environmental waters | 2021 | [58] |
GO | Starch | Starch | PT-SPME | Amoxicillin, ampicillin, cloxacillin | Milk | 2019 | [14] |
GO | Si particles | Not modified | PT-SPME | Simazine, metribuzin, atrazine, ametryn, tebuthiuron, clomazone, hexazinone, acetochlor, Alachlor, metolachlor, oxyfluorfen | Candy, juice, and syrup | 2023 | [59] |
FG | Si particles | MOF/ZIF-8 | PT-SPME | 2-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,5-dichlorophenol, 2,6-dichlorophenol, and 2,4,6-trichlorophenol | Tap water, honey, and black tea | 2021 | [60] |
Graphene-Based Material | Support | Modification | Techniques | Analytes | Matrix | Year | Ref. |
---|---|---|---|---|---|---|---|
GO | Si particles | Not modified | IT-SPME | Benzylpenicillin, cefalexin, cefoperazone, and ceftiofur | Water | 2023 | [13] |
GO | Si particles | C18 and end-capping | IT-SPME | Xanthines: theophylline, theobromine, and caffeine | Coffee | 2020 | [64] |
GO | EDMA monolith | Not modified | IT-SPME | Sulfamethoxazole, sulfamoxole, sulfadoxine, sulfamethizole, sulfadimidine, sulfameter, sulfamethoxypyridazine, sulfisoxazole, sulfapyridine, sulfabenzamide, sulfamerazine, sulfamonomethoxine, sulfachloropyridazine, sulfaquinoxaline, sulfadimethoxine, and sulfaphenazole | Milk and muscle | 2019 | [65] |
GO | SS wire | Mesopore Si | IT-SPME | Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene | Honey | 2021 | [66] |
GO | SS tubing | IL/1-methyl imidazole | HS-SPME | Naphthalene | Honey | 2020 | [67] |
Graphene-Based Material | Support/Column Type | Surface Modification | Techniques/Separation Mode | Analytes | Matrix | Year | Ref. |
---|---|---|---|---|---|---|---|
GO | Si particles/Packed column | C18 and end-capping | OLE-LC/RP | Lecithin | Seeds | 2023 | [82] |
GP | Si particles/Packed column | Not modified | LC/HILIC | Sulfonamides | - | 2019 | [37] |
GQD | Si particle/Packed column | Octadecylamine and serine | LC/HILIC and LC/RP | Sulfonamides and nucleosides and alkylbenzenes and PAHs | - | 2022 | [84] |
GQD | Si particle/Packed column | PNIPAAm | LC/HILIC and LC/RP | Alkylbenzenes, PAHs, biphenyls, nucleosides/nucleobases, phenols, anilines, water-soluble vitamins, and amino acids | - | 2021 | [76] |
GO | Si particles/Packed column | C18 and end-capping | LC/RP | Carbofuran, clomazone, hexazinone, carbamazepine, citalopram, clomipramine, desipramine, and ochratoxin A | - | 2022 | [71] |
GO | HPMA-Cl and EDMA/Monolith | Not modified | LC/RP | CAP and CAPG | Honey and milk | 2022 | [15] |
GO | TAIC and MMA/Monolith | Not modified | LC/RP | Schizandrol A, schizandrol B, schisandra A, schisandra B, and schisandra C | Schisandra | 2022 | [38] |
GO | PDA/Monolith | Not modified | CEC | Ephedrine and pseudoephedrine | - | 2019 | [90] |
GO | MGONPs/OT | PLL | LC/RP | Casein | Milk | 2022 | [35] |
GO | MoS2/OT | Not modified | CEC | Sulfisomidine, sulfathiazole, sulfamerazine, phthalylsulfathiazole and sulfacetamide, ulfamonomethoxine and sulfachloropyridazine | Environmental water | 2020 | [109] |
G | Gold nanoparticles/OT | C3N4 | CEC | Metoprolol, bisoprolol, propranolol chlorpheniramine, and amlodipine | - | 2021 | [110] |
GO | Directly coated over fused-silica capillary wall/OT | Not modified | CEC | Nefopam, amlodipine, citalopram hydrobromide, econazole, ketoconazole, and cetirizine hydrochloride | - | 2020 | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borsatto, J.V.B.; Lanças, F.M. Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples. Molecules 2023, 28, 5134. https://doi.org/10.3390/molecules28135134
Borsatto JVB, Lanças FM. Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples. Molecules. 2023; 28(13):5134. https://doi.org/10.3390/molecules28135134
Chicago/Turabian StyleBorsatto, João V. B., and Fernando M. Lanças. 2023. "Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples" Molecules 28, no. 13: 5134. https://doi.org/10.3390/molecules28135134
APA StyleBorsatto, J. V. B., & Lanças, F. M. (2023). Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples. Molecules, 28(13), 5134. https://doi.org/10.3390/molecules28135134