A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel
Abstract
:1. Introduction
2. Homogeneous Catalysts Used in Hydrothermal Gasification
3. Heterogeneous Catalysts Used in Hydrothermal Gasification
3.1. Transition Metals
3.1.1. Nickel-Based Catalysts
3.1.2. Ruthenium-Based Catalysts
3.1.3. Other Heterogeneous Catalysts
3.2. Metal Oxide Catalysts
4. Novel Carbon-Based Catalysts Used in Hydrothermal Gasification
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nanda, S.; Reddy, S.N.; Mitra, S.K.; Kozinski, J.A. The progressive routes for carbon capture and sequestration. Energy Sci. Eng. 2016, 4, 99–122. [Google Scholar] [CrossRef] [Green Version]
- Our World in Data. CO2 Emissions by Fuel or Industry, World. Available online: https://ourworldindata.org/grapher/co2-emissions-by-fuel-line?facet=none (accessed on 11 May 2023).
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A review of thermochemical conversion of waste biomass to biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valor. 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Okolie, J.A.; Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. Int. J. Hydrogen Energy 2021, 46, 8885–8905. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Nanda, S.; Rana, R.; Zheng, Y.; Kozinski, J.A.; Dalai, A.K. Insights on pathways for hydrogen generation from ethanol. Sustain. Energy Fuels 2017, 1, 1232–1245. [Google Scholar] [CrossRef]
- Zang, G.; Sun, P.; Elgowainy, A.; Wang, M. Technoeconomic and life cycle analysis of synthetic methanol production from hydrogen and industrial byproduct CO2. Environ. Sci. Technol. 2021, 55, 5248–5257. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, E.E.; Kim, Y.T.; Jung, S.; Kim, H.J.; Hubere, G.W.; Lee, J. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 2019, 21, 3715–3743. [Google Scholar] [CrossRef]
- Bello, S.S.; Wang, C.; Zhang, M.; Gao, H.; Han, Z.; Shi, L.; Su, F.; Xu, G. A review on the reaction mechanism of hydrodesulfurization and hydrodenitrogenation in heavy oil upgrading. Energy Fuels 2021, 35, 10998–11016. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, Q.A.; Cao, A.N.T.; Ernest, T.; Nguyen, T.B.; Pham, P.H.T.; Nguyen, T.M. Hydrodemetallization of heavy oil: Recent progress, challenge, and future prospects. J. Petrol. Sci. Eng. 2022, 216, 110762. [Google Scholar] [CrossRef]
- National Grid. The Hydrogen Colour Spectrum. Available online: https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum (accessed on 11 May 2023).
- Finke, C.E.; Leandri, H.F.; Karumb, E.T.; Zheng, D.; Hoffmann, M.R.; Fromer, N.A. Economically advantageous pathways for reducing greenhouse gas emissions from industrial hydrogen under common, current economic conditions. Energy Environ. Sci. 2021, 14, 1517–1529. [Google Scholar] [CrossRef]
- Rapier, R. Estimating the Carbon Footprint of Hydrogen Production. Forbes. Available online: https://www.forbes.com/sites/rrapier/2020/06/06/estimating-the-carbon-footprint-of-hydrogen-production/?sh=5cfba0b424bd (accessed on 11 May 2023).
- Sarangi, P.K.; Nanda, S. Biohydrogen production through dark fermentation. Chem. Eng. Technol. 2020, 43, 601–612. [Google Scholar] [CrossRef]
- Reddy, S.N.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 6912–6926. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 2020, 119, 109546. [Google Scholar] [CrossRef]
- Okolie, J.A.; Rana, R.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of biomass: A state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain. Energy Fuels 2019, 3, 578–598. [Google Scholar] [CrossRef]
- Schienbein, P.; Marx, D. Assessing the properties of supercritical water in terms of structural dynamics and electronic polarization effects. Phys. Chem. Chem. Phys. 2020, 22, 10462–10479. [Google Scholar] [CrossRef]
- Correa, C.R.; Kruse, A. Supercritical water gasification of biomass for hydrogen production–Review. J. Supercrit. Fluids 2018, 133, 573–590. [Google Scholar] [CrossRef]
- Masoumi, S.; Borugadda, V.B.; Nanda, S.; Dalai, A.K. Hydrochar: A review on its production technologies and applications. Catalysts 2021, 11, 939. [Google Scholar] [CrossRef]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valor. 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K. Biochar production, activation and adsorptive applications: A review. Environ. Chem. Lett. 2021, 19, 2237–2259. [Google Scholar] [CrossRef]
- Kang, K.; Nanda, S.; Hu, Y. Current trends in biochar application for catalytic conversion of biomass to biofuels. Catal. Today 2022, 404, 3–18. [Google Scholar] [CrossRef]
- Khorasani, R.; Khodaparasti, M.S.; Tavakoli, O. Hydrogen production from dairy wastewater using catalytic supercritical water gasification: Mechanism and reaction pathway. Int. J. Hydrogen Energy 2021, 46, 22368–22384. [Google Scholar] [CrossRef]
- Ghavami, N.; Özdenkçi, K.; Salierno, G.; Björklund-Sänkiaho, M.; De Blasio, C. Analysis of operational issues in hydrothermal liquefaction and supercritical water gasification processes: A review. Biomass Convers. Bioref. 2021. [Google Scholar] [CrossRef]
- Azadi, P.; Afif, E.; Azadi, F.; Farnood, R. Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chem. 2012, 14, 1766–1777. [Google Scholar] [CrossRef]
- Azadi, P.; Afif, E.; Foroughi, H.; Dai, T.; Azadi, F.; Farnood, R. Catalytic reforming of activated sludge model compounds in supercritical water using nickel and ruthenium catalysts. Appl. Catal. B Environ. 2013, 134–135, 265–273. [Google Scholar] [CrossRef]
- Kang, K.; Azargohar, R.; Dalai, A.K.; Wang, H. Hydrogen production from lignin, cellulose and waste biomass via supercritical water gasification: Catalyst activity and process optimization study. Energy Convers. Manag. 2016, 117, 528–537. [Google Scholar] [CrossRef]
- Madenoğlu, T.G.; Sağlam, M.; Yüksel, M.; Ballice, L. Hydrothermal gasification of biomass model compounds (cellulose and lignin alkali) and model mixtures. J. Supercrit. Fluids 2016, 115, 79–85. [Google Scholar] [CrossRef]
- García-Jarana, M.B.; Portela, J.R.; Sánchez-Oneto, J.; de la Ossa, E.J.M.; Al-Duri, B. Analysis of the supercritical water gasification of cellulose in a continuous system using short residence times. Appl. Sci. 2020, 10, 5185. [Google Scholar] [CrossRef]
- Sınaǧ, A.; Kruse, A.; Rathert, J. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind. Eng. Chem. Res. 2004, 43, 502–508. [Google Scholar] [CrossRef]
- Rönnlund, I.; Myréen, L.; Lundqvist, K.; Ahlbeck, J.; Westerlund, T. Waste to energy by industrially integrated supercritical water gasification–Effects of alkali salts in residual by-products from the pulp and paper industry. Energy 2011, 36, 2151–2163. [Google Scholar] [CrossRef]
- Feng, H.; Zhou, Z.; Hantoko, D.; Zhong, L.; Rahim, D.A.; Fang, W.; Yan, M. Effect of alkali additives on desulfurization of syngas during supercritical water gasification of sewage sludge. Waste Manag. 2021, 131, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass Bioenergy 2016, 95, 378–387. [Google Scholar] [CrossRef]
- Kruse, A.; Bernolle, P.; Dahmen, N.; Dinjus, E.; Maniam, P. Hydrothermal gasification of biomass: Consecutive reactions to long-living intermediates. Energy Environ. Sci. 2010, 3, 136–143. [Google Scholar] [CrossRef]
- Su, W.; Zhao, M.; Xing, Y.; Ma, H.; Liu, P.; Li, X.; Zhang, H.; Wu, Y.; Xia, C. Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts. Environ. Res. 2022, 214, 114093. [Google Scholar] [CrossRef]
- Watanabe, M.; Sue, K.; Adschiri, T.; Inomata, H.; Smith, R.L.; Arai, K. Control of methanol oxidation by ionic behavior in supercritical water. Chem. Commun. 2001, 1, 2270–2271. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Jin, H.; Guo, L. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal. Int. J. Hydrogen Energy 2014, 39, 19583–19592. [Google Scholar] [CrossRef]
- Sınaǧ, A.; Kruse, A.; Maniam, P. Hydrothermal conversion of biomass and different model compounds. J. Supercrit. Fluids 2012, 71, 80–85. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Hunter, H.N.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. J. Supercrit. Fluids 2015, 104, 112–121. [Google Scholar] [CrossRef]
- Yanik, J.; Ebale, S.; Kruse, A.; Saglam, M.; Yüksel, M. Biomass gasification in supercritical water: II. Effect of catalyst. Int. J. Hydrogen Energy 2008, 33, 4520–4526. [Google Scholar] [CrossRef]
- Ferreira-Pinto, L.; Feirhrmann, A.C.; Corazza, M.L.; Fernandes-Machado, N.R.C.; dos Reis Coimbra, J.S.; Saldaña, M.D.A.; Cardozo-Filho, L. Hydrogen production and TOC reduction from gasification of lactose by supercritical water. Int. J. Hydrogen Energy 2015, 40, 12162–12168. [Google Scholar] [CrossRef]
- Zhong, J.; Zhu, W.; Wang, C.; Mu, B.; Lin, N.; Chen, S.; Li, Z. Transformation mechanism of polycyclic aromatic hydrocarbons and hydrogen production during the gasification of coking sludge in supercritical water. Chemosphere 2022, 300, 134467. [Google Scholar] [CrossRef]
- Leite, M.J.L.; Marques, I.R.; Proner, M.C.; Araújo, P.H.H.; Ambrosi, A.; Luccio, M.D. Catalytically active membranes for esterification: A review. Chin. J. Chem. Eng. 2023, 53, 142–154. [Google Scholar] [CrossRef]
- Dreimann, J.; Lutze, P.; Zagajewski, M.; Behr, A.; Górak, A.; Vorholt, A.J. Highly integrated reactor–separator systems for the recycling of homogeneous catalysts. Chem. Eng. Process. Process Intens. 2016, 99, 124–131. [Google Scholar] [CrossRef]
- Fadhel, A.J.; Pollet, P.; Liotta, C.L.; Eckert, C.A. Combining the benefits of homogeneous and heterogeneous catalysis with tunable solvents and nearcritical water. Molecules 2010, 15, 8400–8424. [Google Scholar] [CrossRef] [Green Version]
- Zaera, F. Designing sites in heterogeneous catalysis: Are we reaching selectivities competitive with those of homogeneous catalysts? Chem. Rev. 2022, 122, 8594–8757. [Google Scholar] [CrossRef]
- Karakuş, Y.; Aynacı, F.; Kıpçak, E.; Akgün, M. Hydrogen production from 2-propanol over Pt/Al2O3 and Ru/Al2O3 catalysts in supercritical water. Int. J. Hydrogen Energy 2013, 38, 7298–7306. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, Y.; Li, S.; Zhang, X.; Guo, L. Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support. Biomass Bioenergy 2014, 67, 125–136. [Google Scholar] [CrossRef]
- Lu, Y.; Jin, H.; Zhang, R. Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resour. Convers. 2019, 2, 95–101. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Chowdhury, M.B.I.; Jhawar, A.K.; Charpentier, P.A. Supercritical water gasification of glucose using bimetallic aerogel Ru-Ni-Al2O3 catalyst for H2 production. Biomass Bioenergy 2017, 107, 39–51. [Google Scholar] [CrossRef]
- Onwudili, J.A.; Williams, P.T. Catalytic Supercritical Water Gasification of Plastics with Supported RuO2: A Potential Solution to Hydrocarbons–Water Pollution Problem. Process Saf. Environ. Prot. 2016, 102, 140–149. [Google Scholar] [CrossRef]
- Okolie, J.A.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Catalytic supercritical water gasification of soybean straw: Effects of catalyst supports and promoters. Ind. Eng. Chem. Res. 2021, 60, 5770–5782. [Google Scholar] [CrossRef]
- Nanda, S.; Rana, R.; Hunter, H.N.; Fang, Z.; Dalai, A.K.; Kozinski, J.A. Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem. Eng. Sci. 2019, 195, 935–945. [Google Scholar] [CrossRef]
- Shen, L.; Xu, J.; Zhu, M.; Han, Y.F. Essential role of the support for nickel-based CO2 methanation catalysts. ACS Catal. 2020, 10, 14581–14591. [Google Scholar] [CrossRef]
- Furusawa, T.; Sato, T.; Saito, M.; Ishiyama, Y.; Sato, M.; Itoh, N.; Suzuki, N. The evaluation of the stability of Ni/MgO catalysts for the gasification of lignin in supercritical water. Appl. Catal. A Gen. 2007, 327, 300–310. [Google Scholar] [CrossRef]
- Zhang, L.; Champagne, P.; Xu, C.C. Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification. Int. J. Hydrogen Energy 2011, 36, 9591–9601. [Google Scholar] [CrossRef]
- Adamu, S.; Razzak, S.A.; Hossain, M.M. Fluidizable Ni/Ce-Meso-Al2O3 for gasification of glucose: Effect of catalyst reduction on hydrogen selectivity. J. Ind. Eng. Chem. 2018, 64, 467–477. [Google Scholar] [CrossRef]
- Su, H.; Kanchanatip, E.; Wang, D.; Zhang, H.; Antoni; Mubeen, I.; Huang, Z.; Yan, M. Catalytic gasification of food waste in supercritical water over la promoted Ni/Al2O3 catalysts for enhancing H2 production. Int. J. Hydrogen Energy 2020, 45, 553–564. [Google Scholar] [CrossRef]
- Chowdhury, M.B.I.; Hossain, M.Z.; Mazumder, J.; Jhawar, A.K.; Charpentier, P.A. La-based catalysts to enhance hydrogen production during supercritical water gasification of glucose. Fuel 2018, 217, 166–174. [Google Scholar] [CrossRef]
- Mastuli, M.S.; Kamarulzaman, N.; Kasim, M.F.; Zainal, Z.; Matsumura, Y.; Taufiq-Yap, Y.H. Comparative study between supported and doped MgO catalysts in supercritical water gasification for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 3690–3701. [Google Scholar] [CrossRef]
- Mastuli, M.S.; Kasim, M.F.; Mahat, A.M.; Asikin-Mijan, N.; Sivasangar, S.; Taufiq-Yap, Y.H. Structural and catalytic studies of Mg1-xNixO nanomaterials for gasification of biomass in supercritical water for H2-rich syngas production. Int. J. Hydrogen Energy 2020, 45, 33218–33234. [Google Scholar] [CrossRef]
- Li, S.; Guo, L.; Zhu, C.; Lu, Y. Co-precipitated Ni–Mg–Al catalysts for hydrogen production by supercritical water gasification of glucose. Int. J. Hydrogen Energy 2013, 38, 9688–9700. [Google Scholar] [CrossRef]
- Li, S.; Savage, P.E.; Guo, L. Stability and activity maintenance of Al2O3- and carbon nanotube-supported Ni catalysts during continuous gasification of glycerol in supercritical water. J. Supercrit. Fluids 2018, 135, 188–197. [Google Scholar] [CrossRef]
- Li, S.; Guo, L. Stability and activity of a co-precipitated Mg promoted Ni/Al2O3 catalyst for supercritical water gasification of biomass. Int. J. Hydrogen Energy 2019, 44, 15842–15852. [Google Scholar] [CrossRef]
- Kang, K.; Azargohar, R.; Dalai, A.K.; Wang, H. Hydrogen generation via supercritical water gasification of lignin using Ni-Co/Mg-Al catalysts. Int. J. Energy Res. 2017, 41, 1835–1846. [Google Scholar] [CrossRef]
- Norouzi, O.; Safari, F.; Jafarian, S.; Tavasoli, A.; Karimi, A. Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al2O3 nanocatalysts. Energy Convers. Manag. 2017, 141, 63–71. [Google Scholar] [CrossRef]
- Zhu, B.; Li, S.; Wang, W.; Zhang, H. Supercritical water synthesized Ni/ZrO2 catalyst for hydrogen production from supercritical water gasification of glycerol. Int. J. Hydrogen Energy 2019, 44, 30917–30926. [Google Scholar] [CrossRef]
- Li, S.; Zhu, B.; Wang, W.; Zhang, H.; Li, Q. Efficient and stable supercritical-water-synthesized Ni-based catalysts for supercritical water gasification. J. Supercrit. Fluids 2020, 160, 104790. [Google Scholar] [CrossRef]
- Li, Z.; Gong, M.; Wang, M.; Feng, A.; Wang, L.; Ma, P.; Yuan, S. Influence of AlCl3 and oxidant catalysts on hydrogen production from the supercritical water gasification of dewatered sewage sludge and model compounds. Int. J. Hydrogen Energy 2021, 46, 31262–31274. [Google Scholar] [CrossRef]
- Pattnaik, F.; Patra, B.R.; Okolie, J.A.; Nanda, S.; Dalai, A.K.; Naik, S. A review of thermocatalytic conversion of biogenic wastes into crude biofuels and biochemical precursors. Fuel 2022, 320, 123857. [Google Scholar] [CrossRef]
- Al-Doghachi, F.A.J.; Islam, A.; Zainal, Z.; Saiman, M.I.; Embong, Z.; Taufiq-Yap, Y.H. High coke-resistance Pt/Mg1-xNixO catalyst for dry reforming of methane. PLoS ONE 2016, 11, e0146862. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Yoda, E.; Komiyama, M. Catalytic supercritical water gasification of proteinaceous biomass: Catalyst performances in gasification of ethanol fermentation stillage with batch and flow reactors. Chem. Eng. Sci. 2014, 109, 197–203. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, L.; Jin, H.; Huang, J.; Li, S.; Lian, X. Effects of reaction time and catalyst on gasification of glucose in supercritical water: Detailed reaction pathway and mechanisms. Int. J. Hydrogen Energy 2016, 41, 6630–6639. [Google Scholar] [CrossRef]
- Hunston, C.; Baudouin, D.; Tarik, M.; Kröcher, O.; Vogel, F. Investigating active phase loss from supported ruthenium catalysts during supercritical water gasification. Catal. Sci. Technol. 2021, 11, 7431–7444. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Ludwig, C.; Vogel, F. Catalytic supercritical water gasification: Interaction of sulfur with ZnO and the ruthenium catalyst. Appl. Catal. B Environ. 2017, 202, 262–268. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, L.; Jin, H.; Ou, Z.; Wei, W.; Huang, J. Gasification of guaiacol in supercritical water: Detailed reaction pathway and mechanisms. Int. J. Hydrogen Energy 2018, 43, 14078–14086. [Google Scholar] [CrossRef]
- Tushar, M.S.H.K.; Dutta, A.; Xu, C.C. Catalytic supercritical gasification of biocrude from hydrothermal liquefaction of cattle manure. Appl. Catal. B Environ. 2016, 189, 119–132. [Google Scholar] [CrossRef]
- Duan, P.G.; Yang, S.K.; Xu, Y.P.; Wang, F.; Zhao, D.; Weng, Y.J.; Shi, X.L. Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy 2018, 155, 734–745. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, J.; Guo, Y. Supercritical water gasification of phenol over Ni-Ru bimetallic catalyst: Intermediates and kinetics. J. Supercrit. Fluids 2020, 160, 104810. [Google Scholar] [CrossRef]
- Pairojpiriyakul, T.; Croiset, E.; Kiatkittipong, W.; Kiatkittipong, K.; Arpornwichanop, A.; Assabumrungrat, S. Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts. Int. J. Hydrogen Energy 2013, 38, 4368–4379. [Google Scholar] [CrossRef]
- Lee, C.S.; Conradie, A.V.; Lester, E. Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges. Chem. Eng. J. 2021, 415, 128837. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, Y.; Cao, W.; Jin, H.; Guo, L.; Huo, Z. Transition metal oxides as catalysts for hydrogen production from supercritical water gasification of glucose. Catal. Lett. 2017, 147, 828–836. [Google Scholar] [CrossRef]
- Cao, C.; Xie, Y.; Chen, Y.; Lu, J.; Shi, J.; Jin, H.; Wang, S.; Zhang, L. Hydrogen production from supercritical water gasification of lignin and cellulose with coprecipitated CuO–ZnO and Fe2O3–Cr2O3. Ind. Eng. Chem. Res. 2021, 60, 7033–7042. [Google Scholar] [CrossRef]
- Cao, C.; Xie, Y.; Li, L.; Wei, W.; Jin, H.; Wang, S.; Li, W. Supercritical water gasification of lignin and cellulose catalyzed with co-precipitated CeO2-ZrO2. Energy Fuels 2021, 35, 6030–6039. [Google Scholar] [CrossRef]
- Onwudili, J.A. Supercritical water gasification of RDF and its components over RuO2/γ-Al2O3 catalyst: New insights into RuO2 catalytic reaction mechanisms. Fuel 2016, 181, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Samiee-Zafarghandi, R.; Karimi-Sabet, J.; Abdoli, M.A.; Karbassi, A. Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2. Renew. Energy 2018, 126, 189–201. [Google Scholar] [CrossRef]
- Borges, A.C.P.; Onwudili, J.A.; Andrade, H.M.C.; Alves, C.T.; Ingram, A.; Vieira de Melo, S.A.B.; Torres, E.A. Catalytic supercritical water gasification of eucalyptus wood chips in a batch reactor. Fuel 2019, 255, 115804. [Google Scholar] [CrossRef]
- Borges, A.C.P.; Onwudili, J.A.; Andrade, H.; Alves, C.; Ingram, A.; Vieira de Melo, S.; Torres, E. Catalytic properties and recycling of NiFe2O4 catalyst for hydrogen production by supercritical water gasification of eucalyptus wood chips. Energies 2020, 13, 4553. [Google Scholar] [CrossRef]
- Safari, F.; Javani, N.; Yumurtaci, Z. Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. Int. J. Hydrogen Energy 2018, 43, 1071–1080. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, S.N. Subcritical and supercritical water in-situ gasification of metal (Ni/Ru/Fe) impregnated banana pseudo-stem for hydrogen rich fuel gas mixture. Int. J. Hydrogen Energy 2020, 45, 18348–18362. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Dalai, A.K.; Kozinski, J.A. Subcritical and supercritical water gasification of lignocellulosic biomass impregnated with nickel nanocatalyst for hydrogen production. Int. J. Hydrogen Energy 2016, 41, 4907–4921. [Google Scholar] [CrossRef]
- Osada, M.; Yamaguchi, A.; Hiyoshi, N.; Sato, O.; Shirai, M. Gasification of sugarcane bagasse over supported ruthenium catalysts in supercritical water. Energy Fuels 2012, 26, 3179–3186. [Google Scholar] [CrossRef]
- Taylor, A.D.; DiLeo, G.J.; Sun, K. Hydrogen production and performance of nickel based catalysts synthesized using supercritical fluids for the gasification of biomass. Appl. Catal. B Environ. 2009, 93, 126–133. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Hiyoshi, N.; Sato, O.; Bando, K.K.; Osada, M.; Shirai, M. Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catal. Today 2009, 146, 192–195. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Liu, Z.; Wang, L.; Xu, D.; Fang, C.; Wang, S. Catalytic performances of Ni-based catalysts on supercritical water gasification of phenol solution and coal-gasification wastewater. Int. J. Hydrogen Energy 2019, 44, 3470–3480. [Google Scholar] [CrossRef]
- Rashidi, M.; Tavasoli, A. Hydrogen rich gas production via supercritical water gasification of sugarcane bagasse using unpromoted and copper promoted Ni/CNT nanocatalysts. J. Supercrit. Fluids 2015, 98, 111–118. [Google Scholar] [CrossRef]
- de Vlieger, D.J.M.; Thakur, D.B.; Lefferts, L.; Seshan, K. Carbon nanotubes: A promising catalyst support material for supercritical water gasification of biomass waste. ChemCatChem 2012, 4, 2068–2074. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, C.; Lian, X.; Feng, H.; Sun, J.; Wang, L.; Jin, H. Catalytic supercritical water gasification of glucose with in-situ generated nickel nanoparticles for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 21020–21029. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, S.N. In situ sub- and supercritical water gasification of nano-nickel (Ni2+) impregnated biomass for H2 production. Ind. Eng. Chem. Res. 2019, 58, 4780–4793. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Shao, Q.; Takahashi, F.; Yoshikawa, K. In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Appl. Energy 2015, 160, 808–819. [Google Scholar] [CrossRef]
- Fougere, D.; Nanda, S.; Clarke, K.; Kozinski, J.A.; Li, K. Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates. Biomass Bioenergy 2016, 91, 56–68. [Google Scholar] [CrossRef]
- Sun, J.; Xu, L.; Dong, G.H.; Nanda, S.; Li, H.; Fang, Z.; Kozinski, J.A.; Dalai, A.K. Subcritical water gasification of lignocellulosic wastes for hydrogen production with Co modified Ni/Al2O3 catalyst. J. Supercrit. Fluids 2020, 162, 104863. [Google Scholar] [CrossRef]
Feedstock | Catalyst | Operating Conditions | Main Findings | Reference |
---|---|---|---|---|
Cellulose and lignin | K2CO3 |
|
| Kang et al. [29] |
Cellulose and lignin | K2CO3 |
|
| Madenoğlu et al. [30] |
Glucose | KOH |
|
| Garcia-Jarana et al. [31] |
Glucose | Raney nickel and K2CO3 |
|
| Sınaǧ et al. [32] |
Paper sludge and black liquor | KOH, K2CO3, and NaOH |
|
| Rönnlund et al. [33] |
Sewage sludge | KOH, K2CO3, NaOH, Na2CO3, and AC |
|
| Feng et al. [34] |
Timothy grass | KOH, K2CO3, NaOH, and Na2CO3 |
|
| Nanda et al. [35] |
Feedstock | Catalyst | Operating Conditions | Main Findings | Reference |
---|---|---|---|---|
2-Propanol | Pt/Al2O3 and Ru/Al2O3 |
|
| Karakuş et al. [49] |
Glucose | Ni/Al2O3 and Ni/CeO2-Al2O3 |
|
| Lu et al. [50]; Lu et al. [51] |
Glucose | Ni/Al2O3 and Ru-Ni/Al2O3 |
|
| Hossain et al. [52] |
Glucose, cellulose, fructose, xylan, pulp, lignin, and bark | Ni/Al2O3, Ni/hydrotalcite, Raney nickel, Ru/C, and Ru/Al2O3 |
|
| Azadi et al. [27] |
Plastic wastes | NiO/γ-Al2O3, RuO2/γ-Al2O3, and bimetallic catalysts |
|
| Onwudili and Williams [53] |
Soyabean straw | Ni supported on carbon nanotubes (CNT), ZrO2, Al2O3, SiO2, and Al2O3-SiO2, and promoted by K, Ce, and Na. |
|
| Okolie et al. [54] |
Waste cooking oil | Ru/Al2O3, Ni/Si-Al2O3, K2CO3, and Na2CO3 |
|
| Nanda et al. [55] |
Wheat straw | Ni/MgO, Fe/MgO, Cu/MgO, Ni/ZnO, Ni/Al2O3, and Ni/ZrO2 |
|
| Lu et al. [51] |
Feedstock | Catalyst | Operating Conditions | Main Findings | Reference |
---|---|---|---|---|
Almond shell | Hydrochar generated from SCWG of wheat straw and algae (Cladophora glomerata) |
|
| Safari et al. [91] |
Banana pseudo-stem | In-situ impregnated biomass with Fe, Ru, and Ni |
|
| Kumar et al. [92] |
Dewater sewage sludge and model compounds | AlCl3 with Ni, KOH, and K2CO3 catalysts with H2O2, K2S2O8, and CaO2 oxidants |
|
| Li et al. [71] |
Glycerol | Ni/MgAl2O4-Al2O3, Ni/Al2O3, and Ni/CNT |
|
| Li et al. [65] |
Pinewood and wheat straw | In-situ Ni impregnation |
|
| Nanda et al. [93] |
Sugarcane bagasse | Ru/AC and Ru/TiO2 |
|
| Osada et al. [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khandelwal, K.; Boahene, P.; Nanda, S.; Dalai, A.K. A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel. Molecules 2023, 28, 5137. https://doi.org/10.3390/molecules28135137
Khandelwal K, Boahene P, Nanda S, Dalai AK. A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel. Molecules. 2023; 28(13):5137. https://doi.org/10.3390/molecules28135137
Chicago/Turabian StyleKhandelwal, Kapil, Philip Boahene, Sonil Nanda, and Ajay K. Dalai. 2023. "A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel" Molecules 28, no. 13: 5137. https://doi.org/10.3390/molecules28135137
APA StyleKhandelwal, K., Boahene, P., Nanda, S., & Dalai, A. K. (2023). A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel. Molecules, 28(13), 5137. https://doi.org/10.3390/molecules28135137