Quantitative Analysis of Flavonoids in Fruiting Bodies of Sanghuangporus Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Optimization of Sample Preparation Methods
2.2. Optimization of MS/MS Conditions
2.3. Optimization of Chromatography Conditions
2.4. Validation of the Method
2.4.1. Linearity, Limit of Detection (LOD), and Limit of Quantification (LOQ)
2.4.2. Precision
2.5. Target Flavonoid Compound Analysis in Fruiting Bodies of Sanghuangporus
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Chemicals and Reagents
4.3. Instruments
4.4. Preparation of Standard Solutions
4.5. Sample Preparation
4.6. UHPLC Conditions
4.7. MS/MS Conditions
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cai, C.; Ma, J.; Han, C.; Jin, Y.; Zhao, G.; He, X. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci. Rep. 2019, 9, 7418. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.-W.; Vlasák, J.; Decock, C.; Assefa, A.; Stenlid, J.; Abate, D.; Wu, S.-H.; Dai, Y.-C. Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Divers. 2016, 77, 335–347. [Google Scholar] [CrossRef]
- Wu, S.H.; Dai, Y.C. Species clarification of the medicinal fungus Sanghuang. Mycosystema 2020, 39, 781–794. [Google Scholar]
- Shao, Q.; Yang, Y.; Li, T.T.; Feng, J.; Liu, Y.F.; Yan, M.Q.; Tan, Q. Biological activities of Inonotus baumii mycelium extract obtained by different cultivation methods. Mycosystema 2014, 33, 1103–1111. [Google Scholar]
- Cheng, J.; Song, J.; Wei, H.; Wang, Y.; Huang, X.; Liu, Y.; Lu, N.; He, L.; Lv, G.; Ding, H.; et al. Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia. Int. J. Biol. Macromol. 2020, 164, 3305–3314. [Google Scholar] [CrossRef]
- Guo, S.; Duan, W.; Wang, Y.; Chen, L.; Yang, C.; Gu, X.; Xue, Q.; Li, R.; Zhang, Z. Component Analysis and Anti-Colorectal Cancer Mechanism via AKT/mTOR Signalling Pathway of Sanghuangporus vaninii Extracts. Molecules 2022, 27, 1153. [Google Scholar] [CrossRef]
- Liu, M.M.; Zeng, P.; Li, X.T.; Shi, L.G. Antitumor and immunomodulation activities of polysaccharide from Phellinus baumii. Int. J. Biol. Macromol. 2016, 91, 1199–1205. [Google Scholar] [CrossRef]
- Zuo, K.; Tang, K.; Liang, Y.; Xu, Y.; Sheng, K.; Kong, X.; Wang, J.; Zhu, F.; Zha, X.; Wang, Y. Purification and antioxidant and anti-Inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola. J. Sci. Food Agric. 2021, 101, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Ming, Y.; Chu, J.; Yang, S.; Wu, G.; Li, W.; Zhang, R.; Cheng, X. Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii. Molecules 2021, 26, 3850. [Google Scholar] [CrossRef]
- Wang, H.; Ma, J.X.; Wu, D.M.; Gao, N.; Si, J.; Cui, B.K. Identifying Bioactive Ingredients and Antioxidant Activities of Wild Sanghuangporus Species of Medicinal Fungi. J. Fungi 2023, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.S.; Lee, I.K.; Choi, H.J.; Yun, B.S. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorg. Med. Chem. Lett. 2015, 25, 3256–3260. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, Y.; Liu, X.; Chen, K.; Xiong, W.; Qiu, Y.; He, X.; Liu, B.; Zeng, F. Sanghuangporus vaninii mixture ameliorated type 2 diabetes mellitus and altered intestinal microbiota in mice. Food Funct. 2022, 13, 11758–11769. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Deng, J.S.; Huang, S.S.; Wu, S.H.; Chen, C.C.; Lin, W.R.; Lin, H.Y.; Huang, G.J. Anti-Inflammatory Activity of Sanghuangporus sanghuang Mycelium. Int. J. Mol. Sci. 2017, 18, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.H.; Yang, Y.; Zhu, L.N.; Jia, W.; Zhang, J.S.; Liu, Y.F.; Yan, M.Q.; Zhao, X.L.; Zhang, K.; Zhang, H.N.; et al. Inhibitory effects of ethanol extract of Sanghuangporus sanghuang fruiting bodies on SW620 colon cancer cells. Mycosystema 2018, 37, 1751–1760. [Google Scholar]
- Yang, Y.; Chen, X.H.; Dai, Y.C.; Zhou, L.W.; Cai, W.M.; Guo, L.D.; Cui, B.K.; Li, N.; Lei, P.; Li, C.T.; et al. Sanghuang industry in China: Current status, challenges and perspectives: The Qiandao Lake declaration for sanghuang industry development. Mycosystema 2023, 42, 855–873. [Google Scholar]
- Kui-Wu, W.; Ting-Ting, Z. Bioactive Flavonoids from Verbenaceae. Mini-Rev. Org. Chem. 2020, 17, 754–766. [Google Scholar]
- Liu, K.; Xiao, X.; Wang, J.; Chen, C.Y.O.; Hu, H. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. LWT Food Sci. Technol. 2017, 82, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, Z.; Wang, X.; Liu, R.; Zou, L. Mushrooms Do Produce Flavonoids: Metabolite Profiling and Transcriptome Analysis of Flavonoid Synthesis in the Medicinal Mushroom Sanghuangporus baumii. J. Fungi 2022, 8, 582. [Google Scholar] [CrossRef]
- Wu, S.H.; Huang, G.Z.; Chen, Y.P.; Dai, Y.C.; Zhou, L.W. Taxonomy and Development Prospects of Sanghuang (Sanghuangporus sanghuang). J. Fungal Res. 2016, 14, 185+187–200. [Google Scholar]
- Li, T.; Mei, Y.; Li, J.; Yang, W.; He, F.; Ge, J.; Chen, F.; Yang, Y.; Xie, A.; Liu, Y.; et al. Comparative Compositions and Activities of Flavonoids from Nine Sanghuang Strains Based on Solid-State Fermentation and In Vitro Assays. Fermentation 2023, 9, 308. [Google Scholar] [CrossRef]
- Wan, X.; Jin, X.; Xie, M.; Liu, J.; Gontcharov, A.A.; Wang, H.; Lv, R.; Liu, D.; Wang, Q.; Li, Y. Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells. Int. J. Biol. Macromol. 2020, 163, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Kamisah, Y.; Jalil, J.; Yunos, N.M.; Zainalabidin, S. Cardioprotective Properties of Kaempferol: A Review. Plants 2023, 12, 2096. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, M.T.; Bellanti, F.; Zadorozhna, M.; Fiocco, D.; Mangieri, D. Multi-Faceted Role of Luteolin in Cancer Metastasis: EMT, Angiogenesis, ECM Degradation and Apoptosis. Int. J. Mol. Sci. 2023, 24, 8824. [Google Scholar] [CrossRef]
- Hamad, R.S. Rutin, a Flavonoid Compound Derived from Garlic, as a Potential Immunomodulatory and Anti-Inflammatory Agent against Murine Schistosomiasis mansoni. Nutrients 2023, 15, 1206. [Google Scholar] [CrossRef]
- Shen, Q.H.; Huang, Q.; Xie, J.Y.; Wang, K.; Qian, Z.M.; Li, D.Q. A rapid analysis of antioxidants in Sanghuangporus baumii by online extraction-HPLC-ABTS. RSC Adv. 2021, 11, 25646–25652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, X.; Xu, Y.; Liu, X.; Zhang, J.; He, Z. Simultaneous determination of 49 amino acids, B vitamins, flavonoids, and phenolic acids in commonly consumed vegetables by ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2021, 344, 128712. [Google Scholar] [CrossRef]
- Li, L.; Yu, X.; Xie, D.; Peng, N.; Wang, W.; Wang, D.; Li, B. Influence of traditional Chinese medicines on the in vivo metabolism of lopinavir/ritonavir based on UHPLC-MS/MS analysis. J. Pharm. Anal. 2022, 12, 270–277. [Google Scholar] [CrossRef]
- Song, J.L.; Zhou, Z.F.; Yan, J.; Lu, N.; Cheng, J.W.; Yuan, W.D.; Wang, W.K. Study of effects of bran on the metabolism of Sanghuangporus vaninii based on metabolomics of UPLC-MS/MS. Mycosystema 2021, 40, 641–655. [Google Scholar]
- Fu, L.Z.; Lu, N.; Yan, J.; Wang, W.K.; Song, J.L.; Yuan, W.D.; Zhou, Z.F. Analyses and evaluation of nutrition, active component and antioxidant activities of fruiting bodies of three species of Sanghuangporus. Mycosystema 2021, 40, 2148–2158. [Google Scholar]
Analyte | Q1 | Q3 | RT (min) | DP (V) | CE (V) |
---|---|---|---|---|---|
Sakuranetin 1 | 285.1 | 119.1 | 10.44 | −130 | −42 |
Sakuranetin 2 | 285.1 | 97 | 10.44 | −130 | −31 |
Quercitrin 1 | 447.1 | 271 | 8.00 | −76 | −62 |
Quercitrin 2 | 447.1 | 255 | 8.00 | −76 | −51 |
Myricitrin 1 | 463.1 | 316 | 7.25 | −72 | −35 |
Myricitrin 2 | 463.1 | 271 | 7.25 | −76 | −52 |
Kaempferol 1 | 285.1 | 143 | 9.58 | −130 | −43 |
Kaempferol 2 | 285.1 | 117.1 | 9.58 | −130 | −50 |
Luteolin 1 | 285.1 | 133.2 | 9.14 | −115 | −46 |
Luteolin 2 | 285.1 | 132.1 | 9.14 | −115 | −65 |
Rutin 1 | 609.2 | 300.1 | 7.44 | −120 | −48 |
Rutin 2 | 609.2 | 271 | 7.44 | −120 | −70 |
Hyperoside 1 | 463.2 | 301.2 | 7.43 | −129 | −33 |
Hyperoside 2 | 463.2 | 150.9 | 7.43 | −100 | −42 |
Kaempferol-3-O-rutinoside 1 | 593.2 | 285.1 | 8.02 | −100 | −43 |
Catechin 1 | 289.1 | 109.1 | 4.71 | −118 | −37 |
Catechin 2 | 289.1 | 123 | 4.71 | −120 | −39 |
Catechin Gallate 1 | 441.1 | 169.2 | 6.20 | −130 | −30 |
Analyte | Regression Equation | R2 | Linear Range (μg/L) | LOD 1 (μg/L) | LOQ 2 (μg/L) | Intra-Day (RSD, %) (n = 6) | Inter-Day (RSD, %) (n = 6) |
---|---|---|---|---|---|---|---|
Sakuranetin | y = 7047.30x − 397.62 | 0.99999 | 0.50–100 | 0.100 | 0.333 | 2.5–3.7 | 6.1–7.2 |
Quercitrin | y = 2524.34x − 373.40 | 0.99965 | 0.50–100 | 0.273 | 0.909 | 1.1–8.9 | 1.0–12.5 |
Myricitrin | y = 3442.19x − 366.26 | 0.99974 | 0.50–100 | 0.429 | 1.429 | 3.1–12.6 | 5.9–17.7 |
Kaempferol | y = 827.16x + 56.89 | 0.99998 | 1.00–100 | 0.857 | 2.857 | 2.1–15.4 | 1.5–5.9 |
Luteolin | y = 18,920.86x − 102.42 | 0.99905 | 0.05–100 | 0.009 | 0.029 | 0.9–3.7 | 1.6–4.5 |
Rutin | y = 1248.26x − 187.98 | 0.99953 | 0.50–100 | 0.333 | 1.111 | 3.8–7.2 | 3.7–17.2 |
Hyperoside | y = 1003.12x − 61.44 | 0.99946 | 1.00–100 | 0.462 | 1.538 | 3.0–10.4 | 2.5–18.3 |
Kaempferol-3-O-rutinoside | y = 3572.55x − 1111.41 | 0.99968 | 0.50–100 | 0.273 | 0.909 | 1.7–5.7 | 3.6–6.1 |
Catechin | y = 867.22x + 167.18 | 0.99903 | 0.10–100 | 0.086 | 0.286 | 2.3–9.2 | 3.4–14.0 |
Catechin Gallate | y = 1485.81x − 62.16 | 0.99917 | 0.50–100 | 0.667 | 2.222 | 2.3–4.2 | 1.9–7.8 |
Sample No. | Species | Strain | Cultivation Methods 1 | Developmental Stages 2 |
---|---|---|---|---|
H1 | Sanghuangporus baumii | S13 | Cut-log | 1-year-old |
H2 | S. baumii | S13 | Cut-log | 2-year-old |
H3 | S. baumii | S13 | Cut-log | 3-year-old |
H4 | S. baumii | S13 | Sawdust | 30 days |
H5 | S. baumii | S13 | Sawdust | 45 days |
H6 | S. baumii | S13 | Sawdust | 60 days |
H7 | S. baumii | S13 | Sawdust | 75 days |
H8 | S. baumii | S13 | Sawdust | 90 days |
H9 | Sanghuangporus vaninii | S943 | Sawdust | 30 days |
H10 | S. vaninii | S943 | Sawdust | 45 days |
H11 | S. vaninii | S943 | Sawdust | 60 days |
H12 | S. vaninii | S943 | Sawdust | 75 days |
H13 | S. vaninii | S943 | Sawdust | 90 days |
H14 | S. baumii | S13 | Cut-log | 3-year-old |
H15 | S. sanghuang | S23 | Cut-log | 3-year-old |
H16 | S. vaninii | S19 | Cut-log | 3-year-old |
H17 | S. sanghuang | Wild | Wild | Wild |
H18 | S. vaninii | S93 | Sawdust | 90 days |
Sample | Quercitrin | Myricitrin | Kaempferol | Luteolin | Rutin | Hyperoside | Kaempferol-3-O-Rutinoside |
---|---|---|---|---|---|---|---|
H1 | 3.99 ± 0.03 | 311.04 ± 1.74 | 3.83 ± 0.19 | 2.89 ± 0.08 | 25.398 ± 0.21 | 386.72 ± 4.79 | 14.16 ± 0.34 |
H2 | 6.07 ± 0.12 | 293.99 ± 5.07 | 8.97 ± 0.25 | 0.9 ± 0.04 | 20.23 ± 0.29 | 342.72 ± 1.31 | 8.33 ± 0.24 |
H3 | 16.28 ± 0.13 | 264.85 ± 2.44 | 1.45 ± 0.03 | 2.16 ± 0.02 | 11.79 ± 0.09 | 290.73 ± 3.5 | 13.71 ± 0.17 |
H4 | 3.42 ± 0.05 | 52.65 ± 0.41 | 6.49 ± 0.05 | 0.53 ± 0.01 | 106.25 ± 0.49 | 6.58 ± 0.15 | 15.04 ± 0.2 |
H5 | 3.23 ± 0.04 | 60.87 ± 0.45 | 2.08 ± 0.02 | 0.59 ± 0.01 | 6.57 ± 0.1 | 36.19 ± 0.38 | 7.78 ± 0.07 |
H6 | 4.12 ± 0.05 | 66.14 ± 0.3 | 14.45 ± 0.07 | 0.3 ± 0.01 | 8.72 ± 0.16 | 17.94 ± 0.58 | 12.02 ± 0.21 |
H7 | 2.76 ± 0.03 | 15.2 ± 0.12 | 4.66 ± 0.19 | 0.54 ± 0.01 | 3.56 ± 0.05 | 6.26 ± 0.28 | 24.15 ± 0.38 |
H8 | 3.13 ± 0.05 | 10.39 ± 0.1 | 4.63 ± 0.13 | 0.55 ± 0.003 | 3.35 ± 0.04 | 4.28 ± 0.09 | 13.55 ± 0.15 |
H9 | 2.43 ± 0.01 | 30.15 ± 0.43 | 4.18 ± 0.23 | 0.44 ± 0.01 | 35.77 ± 0.37 | 8.1 ± 0.34 | 9.76 ± 0.1 |
H10 | 2.67 ± 0.02 | 80.91 ± 0.44 | 12.5 ± 0.35 | 0.88 ± 0.005 | 6.46 ± 0.08 | 17.02 ± 0.59 | 6.28 ± 0.08 |
H11 | 3.14 ± 0.02 | 40.683 ± 0.36 | 7.51 ± 0.09 | 0.62 ± 0.01 | 8.76 ± 0.1 | 8.86 ± 0.16 | 8.54 ± 0.09 |
H12 | 3.12 ± 0.02 | 5.73 ± 0.06 | 5.81 ± 0.26 | 0.35 ± 0.01 | 4.96 ± 0.06 | 2.12 ± 0.03 | 14.88 ± 0.28 |
H13 | 3.26 ± 0.06 | 2.86 ± 0.02 | 2.31 ± 0.02 | 0.21 ± 0.003 | 15.08 ± 0.12 | 5.53 ± 0.22 | 15.41 ± 0.23 |
H14 | 3.93 ± 0.06 | 313.15 ± 4.76 | 10.54 ± 0.09 | 0.27 ± 0.01 | 9.12 ± 0.11 | 355.23 ± 2.37 | 18.89 ± 0.34 |
H15 | 4.13 ± 0.08 | 85.97 ± 0.83 | 9.64 ± 0.04 | 0.3 ± 0.01 | 3.55 ± 0.04 | 21.19 ± 0.43 | 6.05 ± 0.05 |
H16 | 4.17 ± 0.05 | 278.71 ± 2.53 | 3.84 ± 0.03 | 1.25 ± 0.02 | 18.02 ± 0.21 | 191.66 ± 1.95 | 7.74 ± 0.11 |
H17 | 3.5 ± 0.08 | 141.08 ± 0.9 | 64.92 ± 1.06 | 180.97 ± 0.99 | 145.6 ± 0.99 | 271.68 ± 3.09 | 26.36 ± 0.11 |
H18 | 3.76 ± 0.07 | 2.9 ± 0.07 | 6.96 ± 0.06 | 4.37 ± 0.13 | 15.68 ± 0.39 | 9.66 ± 0.19 | 6.00 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Deng, Z.; Liang, S.; Zou, X.; Teng, Y.; Wang, W.; Fu, L. Quantitative Analysis of Flavonoids in Fruiting Bodies of Sanghuangporus Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Molecules 2023, 28, 5166. https://doi.org/10.3390/molecules28135166
Zhou Z, Deng Z, Liang S, Zou X, Teng Y, Wang W, Fu L. Quantitative Analysis of Flavonoids in Fruiting Bodies of Sanghuangporus Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Molecules. 2023; 28(13):5166. https://doi.org/10.3390/molecules28135166
Chicago/Turabian StyleZhou, Zhongjing, Zhiping Deng, Shuang Liang, Xiaowei Zou, Yi Teng, Weike Wang, and Lizhong Fu. 2023. "Quantitative Analysis of Flavonoids in Fruiting Bodies of Sanghuangporus Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry" Molecules 28, no. 13: 5166. https://doi.org/10.3390/molecules28135166
APA StyleZhou, Z., Deng, Z., Liang, S., Zou, X., Teng, Y., Wang, W., & Fu, L. (2023). Quantitative Analysis of Flavonoids in Fruiting Bodies of Sanghuangporus Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Molecules, 28(13), 5166. https://doi.org/10.3390/molecules28135166