Antioxidant Activities, Anticancer Activity, Physico-Chemistry Characteristics, and Acute Toxicity of Alginate/Lignin Polymer
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activities
2.2. Anticancer Activities
2.3. Physico-Chemistry Characteristics
2.4. Acute Toxicity
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.1.1. Extraction of Sodium Alginate
4.1.2. Extraction of Alkaline Lignin
4.1.3. Preparation of Alginate/Lignin Particles
4.2. Determination of Antioxidant Activity
4.2.1. Total Antioxidant Activity
4.2.2. Reducing Power Activity
4.2.3. DPPH Free Radical Scavenging Activity
4.2.4. α-Glucosidase Inhibition Activity
4.3. Determination of Anticancer Activity
4.3.1. Cell Culture
4.3.2. Investigation of Cancer Cytotoxic Activity Using the SRB Method
- ODav: average OD value of the cells well,
- ODblank: OD value of blank well (no cells),
- ODTS: the OD value of the test sample calculated from Formulas (1) and (2),
- ODC: OD value of the control specimen calculated from Formulas (1) and (2).
4.4. Determination of Physico-Chemistry Characteristics
4.4.1. Functional Groups
4.4.2. Surface Morphology and Elemental Composition
4.4.3. Crystallographic Characteristics
4.4.4. Thermal Analysis
4.4.5. NMR Spectra
4.5. Determination of Acute Toxicity
4.5.1. Test Mice
4.5.2. Investigation of Acute Oral Toxicity
- -
- Case 1: After the mice drank the test sample, the mice did not die, continue determining the highest possible dose of the test sample through the needle without causing the mouse to die (Dmax).
- -
- Case 2: After giving the test sample to mice, the mortality rate is 100%, then try ½ dose of the first dose until a minimum amount is lethal to 100% of mice (LD100) and a maximum amount that is not lethal to rats (LD0). Conduct testing to determine LD50.Divide mice into four lots, each batch of 6 mice. Divide the four doses by an exponential interval from LD0 to LD100. At doses close to LD50, the number of mice was increased for more accurate measurements and monitored for 72 h to record the movements of mice, and the number of dead mice in each batch, and to calculate the mortality fraction to find LD50.
- -
- Case 3: After giving the test sample, the death rate is lower than 100%, the dose of LD100 cannot be determined, and the LD50 cannot be determined. In this case, it is only possible to determine the maximum dose which is not lethal to the mice, called sub-lethal dose (LD0).The LD50 value determined via the Behrens method based on two doses close to the LD50 lethal dose:
- D1 is the lethal dose a% of test animals (dose close to 50%).
- D2 is the deadly dose b% of test animals (the upper dose is nearly 50%).
- d = D2 − D1 is the dose step between 2 doses near LD50.
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saji, S.; Hebden, A.; Goswami, P.; Du, C. A brief review on the development of alginate extraction process and its sustainability. Sustainability 2022, 14, 5181. [Google Scholar] [CrossRef]
- Roya, A.-K.; Latifa, T.; Nasim, S.; Anil, K.P.; Slim, A.; Philippe, M. Structures, properties and applications of alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Savindra, K.; Dinabandhu, S. A comprehensive analysis of alginate content and biochemical composition of leftover pulp from brown seaweed Sargassum wightii. Algal Res. 2017, 23, 233–239. [Google Scholar]
- Vijayalakshmi, K.; Latha, S.; Rose, M.H.; Sudha, P.N. Industrial applications of alginate. In Industrial Applications of Marine Biopolymers; Sudha, P.N., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 545–575. [Google Scholar]
- Niculescu, A.-G.; Grumezescu, A.M. An up-to-date review of biomaterials application in wound management. Polymers 2022, 14, 421. [Google Scholar] [CrossRef] [PubMed]
- Hecht, H.; Srebnik, S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules 2016, 17, 2160–2167. [Google Scholar] [CrossRef]
- Okolie, C.L.; Mason, B.; Mohan, A.; Pitts, N.; Udenigwe, C.C. Extraction technology impacts on the structure-function relationship between sodium alginate extracts and their in vitro prebiotic activity. Food Biosci. 2020, 37, 100672. [Google Scholar] [CrossRef]
- Thuy, T.T.T.; Thu, T.M.Q.; Van, T.T.T.; Thanh, V.N.; Shiho, S.; Shinichi, K.; Yoshiaki, Y. Structural characteristics and biological activity of different alginate blocks extracted from brown seaweed Turbinaria ornate. J. Carbohydr. Chem. 2021, 40, 97–114. [Google Scholar]
- Dang, X.C.; Dang, T.T.T.; Do, T.K. Biophysical-chemistry characterization of alginate in brown algae species Sargassum dupplicatum. World J. Food Sci. Technol. 2020, 4, 17–22. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Vu, N.B.; Nguyen, X.H.; Dang, T.T.T.; Do, T.K.; Nguyen, K.N.; Nguyen, N.B.H.; Pham, T.T.; Pham, T.T.; Dang, X.C. The content, antioxidant activity, and structural characteristics of sodium alginate extracting from Sargassum polycystum grew in Vietnam: Effect of various extraction conditions. J. Pharm. Res. Int. 2021, 33, 197–206. [Google Scholar]
- Cör, A.D.; Knez, Ž.; Knez, M.M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 2022, 13, 934982. [Google Scholar] [CrossRef]
- Xing, M.; Cao, Q.; Wang, Y.; Xiao, H.; Zhao, J.; Zhang, Q.; Ji, A.; Song, S. Advances in research on the bioactivity of alginate oligosaccharides. Mar. Drugs 2020, 18, 144. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hu, Y.; Zhang, L.; Wang, Y.; Wang, S.; Zhang, Y.; Guo, H.; Ji, D.; Wang, Y. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery. Front. Pharmacol. 2017, 8, 623. [Google Scholar] [CrossRef] [PubMed]
- Qingquan, L.; Le, L.; Luqing, Z. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [Green Version]
- Jianming, T.; Sheng, L.; Fayin, Y.; Yun, Z.; Lin, L.; Guohua, Z. Lignin—An underutilized, renewable and valuable material for food industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 2011–2033. [Google Scholar]
- Atika, A.; Fahriya, P.S.; Asma, S.; Witta, K.R.; Melati, S.; Nurhani, A.; Widya, F.; Adarsh, K. Current roles of lignin for the agroindustry: Applications, challenges, and opportunities. Int. J. Biol. Macromol. 2023, 240, 124523. [Google Scholar]
- Theodoros, V.; George, Z.; Francis, V. Plant food residues as a source of nutraceuticals and functional foods. Foods 2016, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.V.; Hang, T.T.; Nhi, D.B.; Cuong, D.V.; Hung, V.N. Lignin and cellulose extraction from Vietnam’s rice straw using ultrasound-assisted alkaline treatment method. Int. J. Polym. Sci. 2017, 2017, 1063695. [Google Scholar] [CrossRef]
- Tarasov, D.; Leitch, M.; Fatehi, P. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnol. Biofuels 2018, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Jost, R.; Fredrik, H.B.; Gary, C.-C. Functional surfaces, films, and coatings with lignin—A critical review. RSC Adv. 2023, 13, 12529–12553. [Google Scholar] [CrossRef]
- Nan, N.; Wanhe, H.; Jingxin, W. Lignin-based porous biomaterials for medical and pharmaceutical applications. Biomedicines 2022, 10, 747. [Google Scholar] [CrossRef]
- Nasrullah, A.; Bhat, A.H.; Sada, K.A.; Ajab, H. 9—Comprehensive approach on the structure, production, processing, and application of lignin. In Lignocellulosic Fibre and Biomass-Based Composite Materials. Processing, Properties and Applications; Mohammad, J., Paridah, M.T., Naheed, S., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 165–178. [Google Scholar]
- Roland, E.H.; Nicolas, B.; Laurent, C.; Christian, S.; Poulomi, S.; Arthur, R. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym. Degrad. Stab. 2009, 94, 1632–1638. [Google Scholar]
- Luo, T.; Hao, Y.; Wang, C.; Jiang, W.; Ji, X.; Yang, G.; Chen, J.; Janaswamy, S.; Lyu, G. Lignin nanoparticles and alginate gel beads: Preparation, characterization and removal of methylene blue. Nanomaterials 2022, 12, 176. [Google Scholar] [CrossRef] [PubMed]
- Dominika, F.; Zbigniew, H.; Dorota, K. Fabrication, characterization and evaluation of an alginate–lignin composite for rare-earth elements recovery. Materials 2022, 15, 944. [Google Scholar] [CrossRef]
- Fatima-Zahra, E.B.; El-Houssaine, A.; Ihsane, K.; Zineb, K.; Houssine, S.; Mounir, E.A. Slow-release fertilizers based on lignin–sodium alginate biopolymeric blend for sustained N–P nutrients release. J. Coat. Technol. Res. 2022, 19, 1551–1565. [Google Scholar]
- Toby, A.A.; Sue, E.N.; Michael, D.M. Evaluating the feasibility of using lignin–alginate beads with starch additive for entrapping and releasing Rhizobium spp. J. Appl. Polym. 2022, 139, e53181. [Google Scholar] [CrossRef]
- Keshaw, R.A.; Dolly, P.; Harit, J. Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. Food Packag. Shelf Life 2016, 10, 25–33. [Google Scholar]
- Weiyi, S.; Zhiwei, Y.; Haoyang, W.; Jing, F.; Chunli, L.; Gaojin, L.; Hao, L. Synergistic effect of sodium alginate and lignin on the properties of biodegradable poly(vinyl alcohol) mulch films. ACS Sustain. Chem. Eng. 2022, 10, 11800–11814. [Google Scholar]
- Sakeena, Q.; Marta, M.; Alexandre, A.B.; Pavel, G.; Raman, S.P.; Irina, S.; Ana, R.C.D.; Rui, L.R. Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercrit. Fluids 2015, 105, 1–8. [Google Scholar]
- Orsavová, J.; Tunde, J.; Růžena, B.; Jiří, M. Total phenolic and total flavonoid content, individual phenolic compounds and antioxi-dant activity in sweet rowanberry cultivars. Antioxidants 2023, 12, 913. [Google Scholar] [CrossRef]
- Benslima, A.; Sellimi, S.; Hamdi, M.; Nasri, R.; Jridi, M.; Cot, D.; Suming, L.; Moncef, N.; Zouari, N. The brown seaweed Cystoseira schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Biosci. 2021, 40, 100873. [Google Scholar] [CrossRef]
- Chen, T.; Liu, H.; Gao, J.; Hu, G.; Zhao, Y.; Tang, X.; Han, X. Efficient removal of methylene blue by bio-based sodium alginate/lignin composite hydrogel beads. Polymers 2022, 14, 2917. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef]
- Rita, A.; Federica, M.; Rodolfo, E.; Gerardino, D.; Lucia, P.; Alessandra, N. Recovery of lignins with potent antioxidant properties from shells of edible nuts by a green ball milling/deep eutectic solvent (des)-based protocol. Antioxidants 2022, 11, 1860. [Google Scholar] [CrossRef]
- Huy, T.N.; Thanh-Trung, N.; Thuc-Huy, D.; Nguyen-Minh-An, T.; Chuong, H.N.; Thi-Hong-Anh, N.; Jirapast, S. α-glucosidase inhibitory and antimicrobial benzoylphloroglucinols from Garcinia schomburgakiana fruits: In vitro and in silico studies. Molecules 2022, 27, 2574. [Google Scholar] [CrossRef]
- Zhang, B.W.; Li, X.; Sun, W.L.; Xing, Y.; Xiu, Z.L.; Zhuang, C.L.; Dong, Y.S. Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose. J. Agric. Food Chem. 2017, 65, 8319–8330. [Google Scholar] [CrossRef] [PubMed]
- Bin, S.; Hongxu, L.; Ruru, S.; Pai, P.; Yun, J.; Diao, S. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 2020, 144, 219–230. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, H.; Wu, H.; Chen, R.; Guo, S. Preparation of alginate hydrogels through solution extrusion and the release behavior of different drugs. J. Biomater. Sci. Polym. Ed. 2016, 27, 1808–1823. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Nanta, S.; Ayumu, T.; Olena, S.; Pelle, M.; Weihong, Y. Characterization of lignin at pre-pyrolysis temperature to investigate its melting problem. Fuel 2019, 235, 1061–1069. [Google Scholar]
- Keshaw, R.A.; Harit, J. Physico-chemical properties of lignin–alginate based films in the presence of different plasticizers. Iran. Polym. J. 2016, 25, 661–670. [Google Scholar]
- Köhnke, J.; Gierlinger, N.; Prats-Mateu, B.; Unterweger, C.; Solt, P.; Mahler, A.; Schwaiger, E.; Liebner, F.; Gindl-Altmutter, W. Comparison of four technical lignins as a resource for electrically conductive carbon particles. BioResources 2019, 14, 1091–1109. [Google Scholar] [CrossRef]
- Samer, R.A.; Mutasem, O.T. Enhanced drug encapsulation and extended release profiles of calcium–alginate nanoparticles by using tannic acid as a bridging cross-linking agent. J. Microencapsul. 2015, 32, 96–105. [Google Scholar]
- Mtibe, A.; John, M.J.; Andrew, J.E.; Mokhena, T.C. Sequential extraction of carbohydrates and lignin from agricultural waste and their structural characterization. Biomater. Polym. Horiz. 2022, 1, 1–15. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Zhu, Q.; Hackman, R.; Ensunsa, J.; Holt, R.; Keen, C. Antioxidative activities of Oolong tea. J. Agric. Food Chem. 2002, 50, 6929–6934. [Google Scholar] [CrossRef]
- Thomas, J.H.; Priyadarshini, G.; Michael, T. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 2012, 92, 2326–2331. [Google Scholar] [CrossRef]
- Wan, L.S.; Chen, C.P.; Xiao, Z.Q.; Wang, Y.L.; Min, Q.X.; Yue, Y.; Chen, J. In vitro and in vivo anti-diabetic activity of Swertia kouitchensis extract. J. Ethnopharmacol. 2013, 147, 622–630. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Nguyen, T.V.; Tat, T.T.; Nguyen, T.T.G.; Nguyen, N.H.; Ho, H.T.D. Standardize the sulforhodamine B (SRB) test to determine the cytotoxicity of the natural compound. In Proceedings of the National Scientific Conference 2007—Basic Research in Life Sciences, Quy Nhon, Vietnam, 10 August 2007; p. 809. [Google Scholar]
- My-Nuong, T.N.; Thuy-Duong, H.-H. Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against MCF-7 cells by synergistic effects. BMC Complement. Altern. Med. 2016, 16, 202–236. [Google Scholar]
- Do, T.D. Methods for Determining Acute Toxicity of Drugs; Medical Publishing House: Ha Noi, Vietnam, 2014. [Google Scholar]
Sample | Total Antioxidant Activity (mg Ascorbic Acid Equivalent/g DW) | Reducing Power Activity (mg FeSO4 Equivalent/g DW) |
---|---|---|
Alginate/lignin | 218.73 ± 10.45 | 479.62 ± 23.18 |
Sample | Concentration (µg/mL) | DPPH Free Radical Scavenging Activity (%) |
---|---|---|
Alginate/lignin | 4000 | 15.31 ± 1.90 |
2000 | 19.75 ± 4.07 | |
1000 | 15.72 ± 1.84 | |
500 | 9.59 ± 1.13 | |
250 | 4.12 ± 1.03 | |
125 | 1.61 ± 0.79 | |
62.5 | 0.50 ± 0.96 | |
31.3 | 0.53 ± 0.78 | |
Trolox | 180 | 81.48 ± 3.30 |
90 | 52.01 ± 0.44 | |
45 | 30.34 ± 1.69 | |
22.5 | 20.87 ± 0.83 | |
11.25 | 5.20 ± 0.75 |
Sample | Concentration (µg/mL) | α-Glucosidase Inhibition Activity (%) | IC50 (µg/mL) |
---|---|---|---|
Alginate/lignin | 250 | 87.62 ± 1.13 | 50.56 ± 0.8 |
125 | 79.74 ± 3.04 | ||
62.5 | 49.55 ± 4.83 | ||
31.25 | 32.96 ± 5.07 | ||
15.63 | 27.33 ± 3.62 | ||
Acarbose | 1000 | 65.95 ± 0.72 |
Cancer Cell Lines | Sample | Concentration (µg/mL) | Cell Toxicity (%) |
---|---|---|---|
NCl-H460 | Alginate/lignin | 1000 | −5.66 ± 6.33 |
H2O | 10% | 3.34 ± 7.05 | |
Camptothecin | 0.007 | 64.93 ± 1.58 | |
Fibroblast | Alginate/lignin | 1000 | 14.80 ± 2.00 |
H2O | 10% | 6.10 ± 3.24 | |
Camptothecin | 2.5 | 47.89 ± 2.58 | |
HepG2 | Alginate/lignin | 1000 | 3.71 ± 4.35 |
H2O | 10% | −5.73 ± 4.70 | |
Camptothecin | 0.07 | 57.62 ± 2.06 | |
MCF-7 | Alginate/lignin | 1000 | 1.76 ± 9.14 |
H2O | 10% | −5.57 ± 3.95 | |
Camptothecin | 0.05 | 53.89 ± 3.28 |
Metal and Non-Metal of Alginate/Lignin | Content (%) | Oxide of Alginate/Lignin | Content (%) | Oxide of Alginate/Lignin | Content (%) |
---|---|---|---|---|---|
Sr | 0.10 | SiO2 | 2.10 | SrO | 0.03 |
Ta | 0.10 | P2O5 | 1.23 | Sb2O3 | 0.01 |
Fe | 0.20 | SO3 | 43.74 | CdO | 0.02 |
Mg | 0.70 | K2O | 0.21 | SnO2 | 0.01 |
Na | 54.90 | Fe2O3 | 0.12 | HfO2 | 0.02 |
K | 0.50 | CoO | 0.01 | Ta2O5 | 0.03 |
P | 1.00 | NiO | 0.01 | WO3 | 0.03 |
Si | 3.50 | ZnO | 0.01 | PbO | 0.02 |
S | 38.7 | As2O3 | 0.01 | Bi2O3 | 0.02 |
Na2O | 51.8 |
Dosage (g/kg) | Actual Number | Cumulative Amount | Mice Have Diarrhea | ||||||
---|---|---|---|---|---|---|---|---|---|
Deaths | Lives | Total | Deaths | Lives | Total | % Deaths | Quantity | Recovery Time (h) | |
3.91 | 0 | 6 | 6 | 0 | 17 | 17 | 0.00 | 2 | 8–10 |
5.86 | 1 | 5 | 6 | 1 | 11 | 12 | 8.33 | 3 | 12–15 |
7.81 | 2 | 4 | 6 | 3 | 6 | 9 | 33.33 | 4 | 12–18 |
8.79 | 6 | 2 | 8 | 9 | 2 | 11 | 81.82 | 8 | 12–24 |
9.77 | 6 | 0 | 6 | 15 | 0 | 15 | 100.00 | 6 | Dead mouse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoan, N.X.; Anh, L.T.H.; Ha, H.T.; Cuong, D.X. Antioxidant Activities, Anticancer Activity, Physico-Chemistry Characteristics, and Acute Toxicity of Alginate/Lignin Polymer. Molecules 2023, 28, 5181. https://doi.org/10.3390/molecules28135181
Hoan NX, Anh LTH, Ha HT, Cuong DX. Antioxidant Activities, Anticancer Activity, Physico-Chemistry Characteristics, and Acute Toxicity of Alginate/Lignin Polymer. Molecules. 2023; 28(13):5181. https://doi.org/10.3390/molecules28135181
Chicago/Turabian StyleHoan, Nguyen Xuan, Le Thi Hong Anh, Hoang Thai Ha, and Dang Xuan Cuong. 2023. "Antioxidant Activities, Anticancer Activity, Physico-Chemistry Characteristics, and Acute Toxicity of Alginate/Lignin Polymer" Molecules 28, no. 13: 5181. https://doi.org/10.3390/molecules28135181
APA StyleHoan, N. X., Anh, L. T. H., Ha, H. T., & Cuong, D. X. (2023). Antioxidant Activities, Anticancer Activity, Physico-Chemistry Characteristics, and Acute Toxicity of Alginate/Lignin Polymer. Molecules, 28(13), 5181. https://doi.org/10.3390/molecules28135181