Chemistry, Bioactivity, and Prediction of the Quality Marker (Q-Marker) of Ferula Plants in China: A Review
Abstract
:1. Introduction
2. Distribution of Ferula Plants in China
3. Research on the Chemical Composition of Ferula Plants in China
3.1. Coumarins
3.2. Sesquiterpenoids and Their Derivatives
3.3. Volatile Oil
3.4. Aromatic Compounds
3.5. Other Substances
4. Advances in the Bioactivity of Ferula Plants in China
4.1. Anticancer Activity
4.2. Antibacterial Activity
4.3. Anti-Allergic, Anti-Inflammatory, and Immunosuppressive Effects
4.4. Anticoagulant Effect
4.5. Effects on the Cardiovascular System
4.6. Effects on the Gastrointestinal Tract
4.7. Action on the Nervous System
4.8. Other Pharmacological Effects
4.9. Toxicological Studies
5. Quality Marker (Q-Marker) Prediction Analysis
5.1. Q-Marker Prediction Analysis by Kinship and Chemical Composition Specificity of Ferula Plants
5.2. Q-Marker Prediction Analysis by Chemical Composition Validity
5.2.1. Q-Marker Prediction Analysis by Traditional Drug Properties
5.2.2. Predictive Analysis by the Q-Marker of Traditional Efficacy
5.3. Q-Marker Predictive Analysis by Chemical Composition Measurability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salehi, M.; Naghavi, M.R.; Bahmankar, M. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind. Crops Prod. 2019, 139, 111511. [Google Scholar] [CrossRef]
- Znati, M.; Hichem, B.J.; Cazaux, S.; Bouajila, J. Chemical composition, biological and cytotoxic activities of plant extracts and compounds isolated from Ferula lutea. Molecules 2014, 19, 2733–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, R.H.; She, M.L. Flora of China; Science Press: Beijing, China, 1992; Volume 55, pp. 85–117. [Google Scholar]
- He, S.; Tan, G.Y. Advances in Studies of Ferula L. J. Xinjiang Agric. Univ. 2002, 25, 1–7. [Google Scholar]
- Eigner, D.; Scholz, D. The magic book of Gyani Dolma. Pharm. Unserer. Zeit. 1990, 19, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Basak, B.; Chatterjee, A.; Lai, T.K.; Banerji, A.; Banerji, J.; Neuman, A.; Prange, T. Saradaferin, a new sesquiterpenoid coumarin from Ferula assafoetida. Nat. Prod. Res. 2006, 20, 961–965. [Google Scholar] [CrossRef]
- Akaberi, M.; Iranshahy, M.; Iranshahi, M. Review of the traditional uses, phytochemistry, pharmacology and toxicology of giant fennel (Ferula communis L. subsp. communis). Iran. J. Basic Med. Sci. 2015, 18, 1050. [Google Scholar]
- Mahendra, P.; Bisht, S. Ferula asafoetida: Traditional uses and pharmacological activity. Pharmacogn. Rev. 2012, 6, 141. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Li, X.; Zhu, J.; Song, J.; Yao, H. Endangered Uyghur Medicinal Plant Ferula Identification through the Second Internal Transcribed Spacer. Evid. Based Complement. Altern. Med. 2015, 2015, 479879. [Google Scholar] [CrossRef] [Green Version]
- Xinjiang Food and Drug Administration. The Xinjiang Uygur Autonomous Region Traditional Chinese Medicine and Uygur Medicine Pieces Concoct Standard; Xinjiang People’s Saitary Press: Urumqi, China, 2010. [Google Scholar]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; Chinese Medicine Science and Technology Press: Beijing, China, 2020; Volume 1, p. 198. [Google Scholar]
- Iranshahy, M.; Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—A review. J. Ethnopharmacol. 2011, 134, 1–10. [Google Scholar] [CrossRef]
- Amalraj, A.; Gopi, S. Biological activities and medicinal properties of Asafoetida: A review. J. Tradit. Complement. Med. 2017, 7, 347–359. [Google Scholar] [CrossRef]
- Yatham, P.; Shukla, D.; Srivastava, A.K.; Pragadheesh, V.S.; Kumar, D. Purification and identification of anticancer organosulfides from Ferula assa-foetida gum: Integrative analysis employing GC/GC-MS/RP-HPLC/NMR. Nat. Prod. Res. 2022, 36, 2869–2874. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Alam, A.; Sultana, S. Asafoetida inhibits early events of carcinogenesis: A chemopreventive study. Life Sci. 2001, 68, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Ramalakshmi, K.; Murthy, P.S.; Jagan Mohan Rao, L. Volatile oils from Ferula asafoetida varieties and their antimicrobial activity. LWT Food Sci. Technol. 2014, 59, 774–779. [Google Scholar] [CrossRef]
- Javanshir, S.; Soukhtanloo, M.; Jalili-Nik, M.; Yazdi, A.J.; Amiri, M.S.; Ghorbani, A. Evaluation Potential Antidiabetic Effects of Ferula latisecta in Streptozotocin-Induced Diabetic Rats. J. Pharmacopunct. 2020, 23, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Chiang, L.C.; Cheng, L.H.; Chuang, L.C.; Mohamed, H.A.E.-R.; Chang, F.R.; Wu, Y.C. Influenza A (H1N1) Antiviral and Cytotoxic Agents from Ferula assa-foetida. J. Nat. Prod. 2009, 72, 1568–1572. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Rezaee, R.; Aslani, M.R.; Boskabady, M.H. Anti-inflammatory, anti-oxidant, and immunomodulatory activities of the genus Ferula and their constituents: A review. Iran J. Basic Med. Sci. 2021, 24, 1613–1623. [Google Scholar]
- Mobasheri, L.; Khorashadizadeh, M.; Safarpour, H.; Mohammadi, M.; Anani Sarab, G.; Askari, V.R. Anti-Inflammatory Activity of Ferula assafoetida Oleo-Gum-Resin (Asafoetida) against TNF-alpha-Stimulated Human Umbilical Vein Endothelial Cells (HUVECs). Mediat. Inflamm. 2022, 2022, 5171525. [Google Scholar] [CrossRef]
- Safaeian, L.; Ghannadi, A.; Javanmard, S.H.; Vahidian, M.H. The effect of hydroalcoholic extract of Ferula foetida stems on blood pressure and oxidative stress in dexamethasone-induced hypertensive rats. Res. Pharm. Sci. 2014, 10, 326–334. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Karimi, G.; Iranshahi, M.; Hosseinalizadeh, F.; Riahi, B.; Sahebkar, A. Screening of acetylcholinesterase inhibitory activity of terpenoid and coumarin derivatives from the genus Ferula. Pharmacol. 2010, 1, 566–574. [Google Scholar]
- Hashemzaei, M.; SadeghiBonjar, M.A.; Tabrizian, K.; Iranshahi, M.; Iranshahy, M.; Rezaee, R. Evaluation of the analgesic effect of Umbelliprenin and Umbelliprenin-morphine co-administration on the acute, chronic and neuropathic pain. Indian J. Pharm. Educ. Res. 2015, 49, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Dastan, D.; Salehi, P.; Aliahmadi, A.; Gohari, A.R.; Maroofi, H.; Ardalan, A. New coumarin derivatives from Ferula pseudalliacea with antibacterial activity. Nat. Prod. Res. 2016, 30, 2747–2753. [Google Scholar] [CrossRef]
- Nazari, Z.E.; Iranshahi, M. Biologically active sesquiterpene coumarins from Ferula species. Phytother. Res. 2011, 25, 315–323. [Google Scholar] [CrossRef]
- Pavela, R.; Morshedloo, M.R.; Lupidi, G.; Carolla, G.; Barboni, L.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Kavallieratos, N.G.; et al. The volatile oils from the oleo-gum-resins of Ferula assa-foetida and Ferula gummosa: A comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem. Toxicol. 2020, 140, 111312. [Google Scholar] [CrossRef]
- Soltani, S.; Amin, G.R.; Salehi-Sourmaghi, M.H.; Schneider, B.; Lorenz, S.; Iranshahi, M. Sulfur-containing compounds from the roots of Ferula latisecta and their cytotoxic activities. Fitoterapia 2018, 124, 108–112. [Google Scholar] [CrossRef]
- Rasulev, B.F.; Saidkhodzhaev, A.I.; Nazrullaev, S.S.; Akhmedkhodzhaeva, K.S.; Khushbaktova, Z.A.; Leszczynski, J. Molecular modelling and QSAR analysis of the estrogenic activity of terpenoids isolated from Ferula plants. SAR QSAR Environ. Res. 2007, 18, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.A.; Lu, A.; Liu, L. Modernization of traditional Chinese medicine. J. Ethnopharmacol. 2012, 141, 547–548. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.A.; Wu, Y.Y.; Ye, M.; Liu, X.; Cordell, G.A. A holistic approach to the quality control of traditional Chinese medicines. Science 2015, 347, 29–31. [Google Scholar]
- Liu, C.-X.; Cheng, Y.-Y.; Guo, D.-A.; Zhang, T.-J.; Li, Y.-Z.; Hou, W.-B.; Huang, L.-Q.; Xu, H.-Y. A New Concept on Quality Marker for Quality Assessment and Process Control of Chinese Medicines. Chin. Herb. Med. 2017, 9, 3–13. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Wu, W.; Huang, L.; Guo, D.; Liu, C. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm. Sin. B 2017, 7, 439–446. [Google Scholar] [CrossRef] [PubMed]
- State Key Laboratory of Systematic and Evolutionary Botany, I.o.B. The Chinese Academy of Sciences Angiospermae >> Apiaceae >> Ferula >> Ferula sinkiangensis. Available online: http://ppbc.iplant.cn/tu/6312937 (accessed on 15 June 2023).
- State Key Laboratory of Systematic and Evolutionary Botany, I.o.B. The Chinese Academy of Sciences Angiospermae >> Apiaceae >> Ferula >> Ferula fukanensis. Available online: http://ppbc.iplant.cn/tu/4351033 (accessed on 15 June 2023).
- State Key Laboratory of Systematic and Evolutionary Botany, I.o.B. The Chinese Academy of Sciences Angiospermae >> Apiaceae >> Ferula >> Ferula kingdon-wardii. Available online: http://ppbc.iplant.cn/tu/8596963 (accessed on 15 June 2023).
- State Key Laboratory of Systematic and Evolutionary Botany, I.o.B. The Chinese Academy of Sciences Angiospermae >> Apiaceae >> Ferula >> Ferula songarica. Available online: http://ppbc.iplant.cn/tu/6473066 (accessed on 15 June 2023).
- State Key Laboratory of Systematic and Evolutionary Botany, I.o.B. The Chinese Academy of Sciences Angiospermae >> Apiaceae >> Ferula >> Ferula syreitschikowii. Available online: http://ppbc.iplant.cn/tu/6509768 (accessed on 15 June 2023).
- State Key Laboratory of Systematic and Evolutionary Botany, I.o.B. The Chinese Academy of Sciences Angiospermae >> Apiaceae >> Ferula >> Ferula licentiana. Available online: http://ppbc.iplant.cn/tu/4286927 (accessed on 15 June 2023).
- Li, Y.D.; Fu, S.Y.; He, J.; Fan, C.Z.; Li, X.J. Analysis of Specific Medicinal Plants Resources Ferula sinkiangensis in Xinjiang. Mod. Chin. Med. 2016, 18, 714–717. [Google Scholar]
- Yan, X.H.; Zhou, B.; Liu, H.B.; Xu, H.Y.; Yang, W.X.; Jiao, X.G.; Tian, S.G. Investigation and protection for endangerd Ferula fukanensis K.M. Shen. J. Xinjiang Med. Univ. 2012, 35, 1155–1158. [Google Scholar]
- Xinjiang Institute of Biological Soil and Desert Research. Flora of Xinjiang Medical Plants; Xinjiang People’s Publishing House: Urumqi, China, 1977; Volume 1. [Google Scholar]
- Tan, Y.; Gao, T.T.; Ma, Y.; Ding, X.; Chen, Y.H. Pharmacognostic Identification of Ferula syreitschikowii. J. Chin. Med. Mater. 2011, 34, 1694–1696. [Google Scholar]
- Editorial Committee of the Chinese Medical Encyclopedia. Uyghur Medicine; Shanghai Scientific & Technical Publishers: Shanghai, China, 2005. [Google Scholar]
- Zhou, R.H. Resource of Chinese Medicinal Materials; China Medico-Pharmaceutical Science & Technology Publishing House: Beijing, China, 1993; Volume 05. [Google Scholar]
- Editorial Board of “Primary colour mapping of weeds in Chinese farmland”. Primary Colour Mapping of Weeds in Chinese Farmland; China Agriculture Press: Beijing, China, 1990. [Google Scholar]
- Ding, X.; Tan, Y.; Liu, J.S.; Zhao, W.B. Pharmacognostical Study on Ferula dissecta (Ledeb.) Ledeb. Lishizhen Med. Mater. Med. 2011, 22, 1555–1556. [Google Scholar]
- Science and Technology Commission of Tibet Autonomous Region. Tibetan Plant List; Science and Technology Commission of Tibet Autonomous Region: Lhasa, China, 1980. [Google Scholar]
- Jiang, J.W. Quick-Consultative Dicitionary of World Medicinal Plants; China Medico-Pharmaceutical Science & Technology Publishing House: Beijing, China, 2015. [Google Scholar]
- Xinjiang Bayi Agricultural College. Search List of Plants of Xinjiang; Xinjiang People’s Publishing House: Urumqi, China, 1983. [Google Scholar]
- Shangguan, T.L.; Ma, Z.Q.; Xie, S.L. Rare and Endangered Plants in Shanxi Province; China Science and Technology Press: Beijing, China, 1998. [Google Scholar]
- He, J.Q. Flora of Northern Anhui Resources; China Agriculture Press: Beijing, China, 2001. [Google Scholar]
- Liu, N.F. Scientific Expedition to Dunhuang Nature Reserve, Gansu; Chinese Forestry Publishing House: Beijing, China, 2001. [Google Scholar]
- Southwest Forestry College; Yunnan Forestry Department; Zhongdian County Forestry Bureau. Report on a Comprehensive Scientific Study of the Bitahai Nature Reserve in Yunnan; Southwest Forestry College, Yunnan Forestry Department, Zhongdian County Forestry Bureau: Kunming, China, 2002; Volume 2. [Google Scholar]
- Executive Committee of the First Annual Youth Academic Conference of Jiangsu Province. In Proceedings of the First Annual Youth Academic Conference of Jiangsu Province (Science Fascicle), Nanjing, China, 17–19 November 1992; China Science and Technology Press: Beijing, China, 1992.
- Lin, J.R.; Jin, M.; Wu, C.M. Advances in studies on chemical constituents and pharmacological effects of Ferula. Strait Pharm. J. 2014, 26, 1–3. [Google Scholar]
- El-Razek, M.A.; Ohta, S.; Hirata, T. Terpenoid Coumarins of the Genus Ferula. Heterocycles 2003, 34, 68971. [Google Scholar] [CrossRef]
- Xing, Y.; Li, N.; Zhou, D.; Chen, G.; Jiao, K.; Wang, W.; Si, Y.; Hou, Y. Sesquiterpene Coumarins from Ferula sinkiangensis Act as Neuroinflammation Inhibitors. Planta Med. 2017, 83, 135–142. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Zhang, M.; Li, X.; Zhao, Y.; Chen, G.; Si, J.; Jiang, L. Sesquiterpene coumarins from Ferula sinkiangensis KM Shen and their cytotoxic activities. Phytochemistry 2020, 180, 112531. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Li, G.Y.; Wang, H.Y.; Wang, Y.; Wang, J.H. Chemical Constituents from Ferula Lehmannii Boiss. Mod. Chin. Med. 2010, 12, 17–20. [Google Scholar]
- Yang, J.R.; An, Z.; Li, Z.H.; Jing, S.; Qina, H.L. Sesquiterpene coumarins from the roots of Ferula sinkiangensis and Ferula teterrima. Chem. Pharm. Bull. 2006, 54, 1595–1598. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.E.; Si, J.Y.; Li, X.J.; Jiang, L.; Zhu, J. Chemical Constituents from the Seeds of Ferula sinkiangensis. Mod. Chin. Med. 2011, 13, 26–28. [Google Scholar]
- Li, G.; Li, X.; Cao, L.; Zhang, L.; Shen, L.; Zhu, J.; Wang, J.; Si, J. Sesquiterpene coumarins from seeds of Ferula sinkiangensis. Fitoterapia 2015, 103, 222–226. [Google Scholar] [CrossRef]
- Meng, H.; Li, G.; Huang, J.; Zhang, K.; Wang, H.; Wang, J. Sesquiterpene coumarin and sesquiterpene chromone derivatives from Ferula ferulaeoides (Steud.) Korov. Fitoterapia 2013, 86, 70–77. [Google Scholar] [CrossRef]
- Motai, T.; Kitanaka, S. Sesquiterpene coumarins from Ferula fukanensis and nitric oxide production inhibitory effects. Chem. Pharm. Bull. (Tokyo) 2004, 52, 1215–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motai, T.; Daikonya, A.; Kitanaka, S. Sesquiterpene coumarins from Ferula fukanensis and their pro-inflammatory cytokine gene expression inhibitory effects. Chem. Pharm. Bull. 2013, 61, 618–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, H.; Li, G.; Huang, J.; Zhang, K.; Wei, X.; Ma, Y.; Zhang, C.; Wang, J. Sesquiterpenoid derivatives from Ferula ferulaeoides (Steud.) Korov. Phytochemistry 2013, 86, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, C.; Topcu, G.; Bedir, E.; Tatli, I.I.; Ekizoglu, M.; Akdemir, Z.S. Phytochemical screening and evaluation of the antimicrobial and antioxidant activities of Ferula caspica M. Bieb. extracts. Saudi Pharm. J. 2019, 27, 525–531. [Google Scholar] [CrossRef]
- Motai, T.; Kitanaka, S. Sesquiterpene Chromones from Ferula fukanensis and Their Nitric Oxide Production Inhibitory Effects. J. Nat. Prod. 2005, 68, 1732–1735. [Google Scholar] [CrossRef]
- Motai, T.; Kitanaka, S. Sesquiterpene Phenylpropanoids from Ferula fukanensis and Their Nitric Oxide Production Inhibitory Effects. J. Nat. Prod. 2005, 68, 365–368. [Google Scholar] [CrossRef]
- Garg, S.N.; Agarwal, S.K. New Sesquiterpenes from Ferula jaeschkeana. Planta Med. 1986, 53, 341–342. [Google Scholar] [CrossRef]
- Liu, Q.X.; Hui, H. The chemical constituents of volatile oil from Ferula L. in China and its taxonomical significance. J. Plant Resour. Environ. 1997, 6, 27–32. [Google Scholar]
- Lei, L.J.; Teng, L.; Zhao, X.; Yu, F.S.; Wang, C.H. Extraction and assay of volatile oil from Ferula ferlaeoidis (Sted.) Korov. Chin. Tradit. Pat. Med. 2013, 35, 1251–1256. [Google Scholar]
- Deng, W.P.; Xie, C.X.; Fu, J.H. Analysis of Volatile Oil from Ferula sinkiangensis by GC/MS. J. Chin. Mass Spectrom. Soc. 2007, 28, 114–116+121. [Google Scholar]
- Yang, M.H.; Luo, J.Y.; Qiao, M.L.; Yang, M.H.; Sheng, P. GC-MS Analysis of Volatile Oil from Ferula ferulaeoides and Anti-gastric Cancer Activity of D-Limonene in vitro. Chin. J. Mod. Appl. Pharm. 2020, 37, 806–813. [Google Scholar]
- Li, X.; Wang, Y.; Zhu, J.; Xiao, Q. Essential oil composition analysis of three cultivars seeds of Resina Ferulae from Xinjiang, China. Pharm. Mag. 2011, 7, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Zhi-da, M.; Qi-fi, M.; Mizuno, M.; Tanaka, T.; Munekazu, I. Polysulfanes in the volatile oils of Ferula species. Planta Med. 1986, 53, 300–302. [Google Scholar] [CrossRef]
- Xu, Q.M. Studies of the Chemical Constituents of Varia kweichowensis and Ferula fukanensis KM Shen. Ph.D. Thesis, Peking Union Medical College, Tsinghua University, Beijing, China, 2005. [Google Scholar]
- Zhu, G.X.; Zhang, H.Q. A New Compound from the Root of Ferula tunshanica Su. J. China Pharm. Univ. 1998, 29, 19–20. [Google Scholar]
- Hu, Y.; Li, X.D.; Li, G.Y.; Li, X.Y.; Zhang, K.; Zuo, W.J.; Zeng, Y.N.; Wang, J.H. Studies on the Chemical Constituents of Ferula songorica. Mod. Chin. Med. 2009, 11, 18–19. [Google Scholar]
- Zhu, G.X.; Zhang, H.Q. Studies on the Chemical Constituents in the Root of Ferula tunshanica Su. J. China Pharm. Univ. 1996, 27, 585–588. [Google Scholar]
- Liu, T. Chemical Constituents from Two Plants of Apiaceae and Their Biological Avtivities. Ph.D. Thesis, Fudan University, Shanghai, China, 2013. [Google Scholar]
- Liu, J. Study on Chemical Constituents and Quality Control Method of Ferula ferulaeoides. Master’s Thesis, Inner Mongolia Medical University, Hohhot, China, 2019. [Google Scholar]
- Zhao, W.B.; Tan, Y.; Xiang, Y.; Zhu, Y. Determination of Amino Acids and Mineral Elements Content in Ferulaeoides korov Boiss. Res. Pract. Chin. Med. 2009, 23, 67–68. [Google Scholar]
- Deng, W.P. Extract and Study of the Chemical Constituents of Ferula Sinkaingensis. Master’s Thesis, Xinjiang University, Urumqi, China, 2008. [Google Scholar]
- Han, H.Y.; Li, G.Y.; Wang, H.Y.; Ma, Q.D.; Gao, J.B.; Wang, J.H. Anticoagulantactivity of radiatinol and scopoletin from Ferula dissecta (Ledeb.) Ledeb. in vitro. J. Nongken Med. 2010, 32, 112–114. [Google Scholar]
- Furlan, V.; Bren, U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023, 12, 802. [Google Scholar] [CrossRef]
- Iranshahi, M.; Kalategi, F.; Rezaee, R.; Shahverdi, A.R.; Ito, C.; Furukawa, H.; Tokuda, H.; Itoigawa, M. Cancer chemopreventive activity of terpenoid coumarins from Ferula species. Planta Med. 2008, 74, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Monti, M.; Pinotti, M.; Appendino, G.; Dallocchio, F.; Bellini, T.; Antognoni, F.; Poli, F.; Bernardi, F. Characterization of anti-coagulant properties of prenylated coumarin ferulenol. Biochim. Biophys. Acta 2007, 1770, 1437–1440. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, H.; Yanmis, D.; Karadayi, M.; Bal, T.; Baris, O.; Gulluce, M. Determination of genotoxic and antigenotoxic properties of essential oil from Ferula orientalis L. using Ames/Salmonella and E. coli WP2 bacterial test systems. Toxicol. Ind. Health 2014, 30, 714–723. [Google Scholar] [CrossRef]
- Illuri, R.; Venkataramana, S.H.; Daguet, D.; Kodimule, S. Sub-acute and acute toxicity of Ferula asafoetida and Silybum marianum formulation and effect of the formulation on delaying gastric emptying. BMC Complement. Altern. Med. 2019, 19, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiuolo, J.; Bava, I.; Carresi, C.; Gliozzi, M.; Musolino, V.; Scicchitano, M.; Macri, R.; Oppedisano, F.; Scarano, F.; Caterina Zito, M.; et al. The Effect of Ferula communis Extract in Escherichia coli Lipopolysaccharide-Induced Neuroinflammation in Cultured Neurons and Oligodendrocytes. Int. J. Mol. Sci. 2021, 22, 7910. [Google Scholar] [CrossRef]
- Gholitabar, S.; Roshan, V.D. Effect of treadmill exercise and Ferula gummosa on myocardial HSP72, vascular function, and antioxidant defenses in spontaneously hypertensive rats. Clin. Exp. Hypertens. 2013, 35, 347–354. [Google Scholar] [CrossRef]
- Esmaeili, H.; Hafezimoghadam, Z.; Esmailidehaj, M.; Rezvani, M.E.; Hafizibarjin, Z. The effect of asafoetida essential oil on myocardial ischemic-reperfusion injury in isolated rat hearts. Avicenna J. Phytomed. 2017, 8, 338–349. [Google Scholar]
- Zhou, Y.; Xin, F.; Zhang, G.; Qu, H.; Yang, D.; Han, X. Recent Advances on Bioactive Constituents in Ferula. Drug Dev. Res. 2017, 78, 321–331. [Google Scholar] [CrossRef]
- Xing, Y.C.; Li, N.; Xue, J. Progress on chemical constituents of Ferula genus. J. Shenyang Pharm. Univ. 2012, 29, 730–741. [Google Scholar]
- Guo, T.T.; Zhou, Y.P.; Dang, W.; Meng, C.R.; Zhou, D.; Chen, G.; Li, N. “Preexistence” and “present life” of traditional Chinese medicine Ferulae Resina. Chin. Tradit. Herb. Drugs 2021, 52, 5401–5413. [Google Scholar]
- Ying, F.H.; Qian, X.Q.; Liu, B.R. Progress in the study of the anti-tumor mechanism of action of ferulic acid. Mod. J. Integr. Tradit. Chin. West. Med. 2010, 19, 4238–4240. [Google Scholar]
- Suzuki, K.; Okasaka, M.; Kashiwada, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Sekiya, M.; et al. Sesquiterpene Lactones from the Roots of Ferula Waria and Their Cytotoxic Activity. J. Nat. Prod. 2007, 70, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sheng, P.; Yao, L.; Du, B.J. GC-MS fingerprint of in vitro anti-gastric cancer active parts from roots of Uygur medicine Ferula ferulaeoides. Chin. Tradit. Herb. Drugs 2015, 46, 2874–2879. [Google Scholar]
- Wu, J.; Wang, Y.X.; Wei, N.; Wu, X.S.; Liu, X. Ferulic acid inhibits lung cancer growth and its mechanism. Zhejiang Med. J. 2018, 40, 1303–1306+1311+1414. [Google Scholar]
- Yang, M.H.; Luo, J.Y.; Qiao, M.L.; Sheng, P.; Yang, M.H. Mechanism of Uygur Medicine Root of Ferula ferulaeoides in Resisting Gastric Cancer Activity and Inducing Cell Apoptosis and Cell Cycle Arrest in vitro. Chin. J. Exp. Tradit. Med. Formulae 2018, 24, 112–122. [Google Scholar]
- Zhang, L.; Tong, X.; Zhang, J.; Huang, J.; Wang, J. DAW22, a natural sesquiterpene coumarin isolated from Ferula ferulaeoides (Steud.) Korov. that induces C6 glioma cell apoptosis and endoplasmic reticulum (ER) stress. Fitoterapia 2015, 103, 46–54. [Google Scholar] [CrossRef]
- Li, X.X.; Zhang, S.J.; Chiu, A.P.; Lo, L.H.; Huang, J.; Rowlands, D.K.; Wang, J.; Keng, V.W. Targeting of AKT/ERK/CTNNB1 by DAW22 as a potential therapeutic compound for malignant peripheral nerve sheath tumor. Cancer Med. 2018, 7, 4791–4800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Jiang, Y.; Zhang, J.; Huang, J.; Wang, J. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells. Int. J. Mol. Sci. 2015, 16, 14979–14996. [Google Scholar] [CrossRef]
- Kores, K.; Kolenc, Z.; Furlan, V.; Bren, U. Inverse Molecular Docking Elucidating the Anticarcinogenic Potential of the Hop Natural Product Xanthohumol and Its Metabolites. Foods 2022, 11, 1253. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.T.; Yu, F.H.; Tan, Y.; Liu, W.X. Study on Antimicrobial Activity in vitro of Extracts from Three Species of Ferula Root. North. Hortic. 2013, 24, 156–158. [Google Scholar]
- Liu, T.; Wang, S.; Fu, W.; Gibbons, S.; Mu, Q. Sesquiterpenoids with Anti-MDR Staphylococcus aureus Activities from Ferula ferulioides. Chem. Biodivers. 2015, 12, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Osman, K.; Kaatz, G.W.; Gibbons, S.; Mu, Q. Antibacterial Sesquiterpenoid Derivatives from Ferula ferulaeoides. Planta Med. 2013, 79, 701–706. [Google Scholar] [CrossRef]
- Nazemisalman, B.; Vahabi, S.; Yazdinejad, A.; Haghghi, F.; Jam, M.S.; Heydari, F. Comparison of antimicrobial effect of Ziziphora tenuior, Dracocephalum moldavica, Ferula gummosa, and Prangos ferulacea essential oil with chlorhexidine on Enterococcus faecalis: An in vitro study. Dent. Res. J. 2018, 15, 111–116. [Google Scholar]
- Sonigra, P.; Meena, M. Metabolic Profile, Bioactivities, and Variations in the Chemical Constituents of Essential Oils of the Ferula Genus (Apiaceae). Front. Pharm. 2020, 11, 608649. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Hu, J. Anti-allergic pharmacological action of Ferula sinkiangensis. China J. Chin. Mater. Med. 1986, 08, 49–52. [Google Scholar]
- Hu, H.J.; Hu, J. Effect of ferulic acid on metabolic reactions. J. China Pharm. Univ. 1991, 12, 49–52. [Google Scholar]
- Ye, E.B.; Liu, F.; Xiong, Y.J.; Cheng, G.; Yang, X.Z.; Gzo, Y. Anti-inflammatory and immunosuppressive effects of three types of Ferula from Xinjiang. Northwest Pharm. J. 1993, 8, 72–75. [Google Scholar]
- Li, X.Y.; Li, G.Y.; Wang, H.Y.; Lou, M.M.; Han, H.Y.; Zhang, K.; Ma, Q.D.; Wang, J.H. Study on Anticoagulation Effects of Ferula lehmannii Boiss. China Pharm. 2010, 13, 1626–1628. [Google Scholar]
- Cai, S.S.; Deng, S.Z.; Liu, L.; Sun, D.M. Effects of Ferulic Acid on Ventricular Collagen Remodeling in Mice with Chronic Heart Failure. Acta Med. Univ. Sci. Technol. Huazhong 2012, 41, 684–687. [Google Scholar]
- Jiangsu New Medical College. Dictionary of Chinese Medicines (Upper Volume); Shanghai Scientific & Technical Publishers: Shanghai, China, 1977. [Google Scholar]
- Pategule, Y.; Aierxili, T.; Gulishan, M.; Silapu, A. Clinical application and research progress of Uyghur medicine with the Uyghur drug Ferula in Uyghur medicine. J. Med. Pharm. Chin. Minor. 2011, 17, 61–64. [Google Scholar]
- Li, X.J.; Jiang, L.; Da, P. Preparation and Investigation of the Phamacodynamics of Effective Antiulcerative Composition in Ferula sinkiangensis KM Shen. Mod. Chin. Med. 2007, 9, 8–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.T.; Lu, J.; Jiang, L.; Kang, X.L. The effect of Ferula sinkiangensis K.M. Shen and its processed products on gastric ulcer model in rats. J. Xinjiang Med. Univ. 2013, 36, 1463–1466. [Google Scholar]
- Xiong, Y.J.; Liu, F.; Ye, E.B.; Hu, J.; Yng, X.Z. Comparison of the gastrointestinal effects of three types of Xinjiang Ferula. J. Xinjiang Med. Univ. 1993, 16, 300–302. [Google Scholar]
- Teng, L.; Ma, G.; Li, L.; Ma, L.; Xu, X. Karatavicinol a, a new anti-ulcer sesquiterpene coumarin from Ferula sinkiangensis. Chem. Nat. Compd. 2013, 49, 606–609. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, L.; Li, P.; Wang, C.; Shi, Y. Network pharmacology used to decode potential active ingredients in Ferula assafoetida and mechanisms for the application to Alzheimer’s disease. J. Tradit. Chin. Med. Sci. 2020, 7, 199–209. [Google Scholar] [CrossRef]
- Mi, Y.; Jiao, K.; Xu, J.K.; Wei, K.; Liu, J.Y.; Meng, Q.Q.; Guo, T.T.; Zhang, X.N.; Zhou, D.; Qing, D.G.; et al. Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. J. Ethnopharmacol. 2021, 269, 113718. [Google Scholar] [CrossRef]
- Zhang, W.; Mi, Y.; Jiao, K.; Xu, J.; Guo, T.; Zhou, D.; Zhang, X.; Ni, H.; Sun, Y.; Wei, K.; et al. Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytother. Res. 2020, 34, 2258–2274. [Google Scholar] [CrossRef]
- Yang, Z.M.; Wang, Y.T.; Wu, C.Q.; Li, C.G.; Zhang, H.Y.; Xing, B. A short summary of animal experimental observations on the anti-fertility of the Chinese medicine Ferula. Jilin J. Chin. Med. 1982, 04, 42–43. [Google Scholar]
- Zhang, S.; Zhang, Z.Y.; Zhang, Y.; He, W. Termination of pregnancy by Ferula. Chin. Tradit. Herb. Drugs 1991, 22, 458–459. [Google Scholar]
- Wang, D.M.; Wang, D.B. The effect of Ferula on the isolated uterus of mice and rabbits and its relationship with estrogen and progesterone levels in vivo. Chin. Tradit. Herb. Drugs 1986, 17, 28–30. [Google Scholar]
- Zhong, Z.L.; Zhang, F.; Jiang, Y.H.; Zhang, W.T.; Tong, J.C.; Li, J.; Chu, J.R.; Xie, H.T. Protective effects of Ferulic acid on acute liver injury induced by D-GalN /LPS in mice. Chin. J. Clin. Pharmacol. Ther. 2018, 23, 1335–1339. [Google Scholar]
- Zhang, H.Y.; Shi, H.; Jiang, L.; Zhou, L.L.; Zhou, M.X. Study on Screening of Active Parts of Xinjiang Ferulae Resina for Regulating Blood Lipid. Chin. J. Inf. Tradit. Chin. Med. 2015, 22, 43–46. [Google Scholar]
- Ping, Z.; Yoshihisa, T.; Hongquan, D.; Bei, C.; Gisho, H.; Michiho, I.; Yoshio, T.; Olimjon, K.K.; Kuo-Hsing, L. Coumarins and bicoumarin from Ferula sumbul: Anti-HIV activity and inhibition of cytokine release. Phytochemistry 2000, 53, 689–697. [Google Scholar]
- Luo, X.; Ma, G.Z.; Dan, M.; Wang, J.; Yu, F.S.; Teng, L.; Wang, C.H. A comparative study of the acute toxicity of two volatile oils of Ferula alba and their chemical composition. Chin. Tradit. Pat. Med. 2014, 37, 1130–1135. [Google Scholar]
- Li, J.; Xu, H.Y.; Jia, X.G.; Tian, S.G. Progress in the study of the chemical composition and biological activity of Ferula fukangensis KM Shen. J. Xinjiang Med. Univ. 2012, 35, 1159–1161. [Google Scholar]
- Mai, Q.F.; Chen, C.L. Studies on the volatile oils of two types of Ferula from Xinjiang. Chin. Tradit. Herb. Drugs 1983, 14, 10. [Google Scholar]
- Ren, Y.; Zhang, H.; Zhou, L. Experimental study on the toxicity of Ferula sinkiangensis. Xinjiang J. Tradit. Chin. Med. 2014, 32, 28–31. [Google Scholar]
- Liu, C.X.; Chen, S.L.; Xiao, X.H.; Zhang, T.J.; Hou, W.B.; Liao, M.L. A new concept on quality marker of Chinese materia medica: Quality control for Chinese medicinal products. Chin. Tradit. Herb. Drugs 2016, 47, 1443–1457. [Google Scholar]
- Wang, Z.H. Determination of ferulic acid in Angelica and research of quality standards. Hebei J. Tradit. Chin. Med. 2012, 34, 1058–1063. [Google Scholar]
- Zhang, X.L. Determination of ferulic acid in rhizoma chuanxiong by HPLC, China. Chin. Pharm. Aff. 2013, 23, 469–471. [Google Scholar]
- Zhao, X.D.; Chen, D.H.; Si, J.Y.; Shen, L.G. Studies on the phenolic acid constituents from Chinese medicine “Sheng-Ma”, rhizone of Cimicifuga foetida L. Acta Pharm. Sin. 2002, 37, 535–538. [Google Scholar]
- Zhang, J.L.; Zhou, Z.H.; Chen, R.Y.; Xie, F.Z.; Yu, D.Q.; Zhou, T.H. Study on chemistry and pharmcology of genus Ligusticum. Chin. Pharm. J. 2002, 37, 14–17. [Google Scholar]
- Li, F.; Zhu, X.; Chen, M.; Hou, Y. Study on the Chemical Constituents from Fructus Toosendan. J. Chin. Med. Mater. 2010, 33, 910–912. [Google Scholar]
- Li, D.; Rui, Y.X.; Guo, S.D.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021, 284, 119921. [Google Scholar] [CrossRef]
- Rahman, A.-U. Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Appendino, G.; Mercalli, E.; Fuzzati, N.; Arnoldi, L.; Stavri, M.; Gibbons, S.; Ballero, M.; Maxia, A. Antimycobacterial Coumarins from the Sardinian Giant Fennel (Ferula communis). J. Nat. Prod. 2004, 67, 2108–2110. [Google Scholar] [CrossRef]
- Yang, X.W. Bioactive Material Basis of Medicinal Plants in Genus Ferula. Mod. Chin. Med. 2018, 20, 123–144. [Google Scholar]
- Liu, C.X. Five-year review on development of quality markers of traditional Chinese medicine. Chin. Tradit. Herb. Drugs 2021, 52, 2511–2518. [Google Scholar]
- Zhou, K.; Xie, J.L.; Li, Y.J.; Wang, Y.L.; Zhang, X.; Liu, C.H. Advances in the study of the chemical composition and pharmacological effects and quality marker prediction of lysiontus pauciflorus. China Pharm. 2021, 32, 1391–1396. [Google Scholar]
- Lian, X.Y.; Wu, Y.L.; Feng, H.S. A brief discussion on the medicinal characteristics of bitter medicines and their combinatory effects. Heilongjiang J. Tradit. Chin. Med. 1999, 1, 52–53. [Google Scholar]
- Hao, X.X. Overview of bitter substance research. J. Huanggang Norm. Univ. 2008, 28, 90–92. [Google Scholar]
- Meng, Z.H.; Sun, W.N.; Fu, X.Y.; Zhou, X.; Wan, J. Progress on the mechanism of bitterness and evaluation methods of traditional Chinese medicine. J. Guangdong Pharm. Univ. 2016, 32, 537–540. [Google Scholar]
- Zhou, F.H.; Yi, Z.X.; Luo, X.F. Analysis of the chemical composition of xing(sin) taste herbs. J. Anhui Agric. Sci. 2006, 12, 2760–2782. [Google Scholar]
- China Herb Company. Commonly Used Chinese Herbs in China; Science Press: Beijing, China, 1995. [Google Scholar]
- Liang, Y.H.; Liu, W.X.; Wang, X.F.; Zhu, Y. Materia medica evidence of the efficacy of Uyghur medicine Ferula. J. Chin. Med. Mater. 2017, 40, 1478–1481. [Google Scholar]
- Liu, Y.M.; Shawuti, Y. Uyghur Pharmacopoeia (First Book); Xinjiang People’s Publishing House: Xinjiang, China, 1999; pp. 250–255. [Google Scholar]
- Zhang, L.; Fu, X.; Gui, T.; Wang, T.; Wang, Z.; Kullak-Ublick, G.A.; Gai, Z. Effects of Farnesiferol B on Ischemia-Reperfusion-Induced Renal Damage, Inflammation, and NF-kappaB Signaling. Int. J. Mol. Sci. 2019, 20, 6280. [Google Scholar] [CrossRef] [Green Version]
- Liang, N.; Sun, S.P.; Luo, Y.E.; Qiu, L.Z.; Liu, B. Advances in ferulic acid research. Heilongjiang J. Tradit. Chin. Med. 2009, 38, 39–40. [Google Scholar]
- Hu, Y.Y.; Xu, X.Y. Advances in the chemical and pharmacological study of ferulic acid. Chin. Tradit. Pat. Med. 2006, 28, 253–255. [Google Scholar]
- Xu, J.X.; Xu, J.; Cao, Y.; Zhu, Y.J.; Li, X.Y.; Ge, D.Z.; Ma, L.; Zhang, T.J.; Liu, C.X. Modern research progress on Chinese medicine Cynanchum otophyllum Schneid and its predictive analysis of quality markers. China J. Chin. Mater. Med. 2021, 46, 5486–5495. [Google Scholar]
- Gao, T.T.; Ding, X.; Tan, Y.; Wang, H.; Wang, X.F. Determination of Ferulic Acid in Different Parts of Ferula sinkiangensis Using HPLC. Nat. Prod. Res. Dev. 2013, 25, 1237–1239. [Google Scholar]
- Wang, D.D.; Liu, H.B.; Song, H.L.; Yang, W.X.; Jia, X.G.; Tian, S.G. Determination of Ferulic acid content in roots and leaves of Ferula fukanensis KM Shen. by HPLC. J. Xinjiang Med. Univ. 2012, 35, 1139–1142. [Google Scholar]
- Ainiwaer, A.; Ma, L.Y.; Ma, G.Z. HPLC determination on ferulic acid content of Xinjiang asafetida antiulcer extract. J. Xinjiang Med. Univ. 2009, 32, 1436–1438. [Google Scholar]
- Zhang, H.Y.; Li, W.; Zhou, L.L.; Jiang, L.; Zhou, M.X. Study on Quality Control of Ethyl-acetate Parts of Ferula sinkiangensis. Chin. J. Inf. Tradit. Chin. Med. 2016, 23, 83–86. [Google Scholar]
- Zhu, Y.; Zhang, K.; Liang, X.; Tan, Y.; Huang, J.; Wang, J.H. Content Determination of Sesquiterpene Coumarin (DAW22) in Ferula ferulaeoides by UPLC. Chin. J. Exp. Tradit. Med. Formulae 2016, 22, 63–65. [Google Scholar]
No | Plant Name | Major Origins | Growing Environment | Literature |
---|---|---|---|---|
1 | F. sinkiangensis K.M. Shen | Yining, Xinjiang | 750~1000 m in alpine meadows, stony slope areas | [40] |
2 | F. fukanensis K.M. Shen | Fukang, Xinjiang, Southern Gurbantunggut Desert, Xinjiang | The arid inland Gobi Desert | [41] |
3 | F. ferulaeoides (Steud.) Korovin | Junggar Basin and Tacheng Basin, Xinjiang | Growing in 430~1000 m sand dunes, sandy land, the environment is mostly desert land | [42] |
4 | F. conocaula Korov. | Ucha County, Xinjiang | Elevation 2700~3000 m in mountain valleys, environment is mostly mountainous yellow-brown desert soil | [42] |
5 | F.syreitschikowii K.-Pol. | Yili, Tacheng, Bole, Xinjiang | The environment is mostly low mountain brown calcareous soils, wastelands and gravelly slopes | [43] |
6 | F. songarica Pallas ex Sprengel | Tacheng and Altay, Xinjiang | The environment is mostly in mountainous grassy slopes and mountainous bushes | [42] |
7 | F. krylovii Korov. | Tori County, Xinjiang | The environment is mostly clayey saline grassland | [44] |
8 | F. lehmannii Boiss. | Manas County, Xinjiang | On low mountain slopes at 600~700 m elevation, the environment is mostly clayey gravelly sandy calcareous soil | [45] |
9 | F. bungeana Kitagawa | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Henan, etc. | The environment is mostly sandy and gravelly desert soil or near sandy areas | [46] |
10 | F. dissecta (Ledeb.) Ledeb | Tacheng Region, Altay Region, Junggar Basin, Xinjiang | The environment is mostly sandy and gravelly desert slopes, mostly in the mountains dominated by Artemisia spp. | [47] |
11 | F. jaeschkeana Vatka | Ali, Zada, Tibet | The environment is mostly at 3600 m above sea level on mountain slopes | [48] |
12 | F. akitschkensis B. Fedtsch. ex K.-Pol. | Xinjiang Alatau Mountains, Altai Mountains and western Junggar Mountains | The environment is mostly mountain shrublands and gravelly slopes at 900~2100 m above sea level. | [3] |
13 | F. ovina (Boiss.) Boiss. | Altai, Tacheng, Xinjiang | The environment is mostly gravelly hillsides | [3] |
14 | F. hexiensis K. M. Shen | Southern Gansu | The environment is mostly hillside with low humidity | [3] |
15 | F. olivacea (Diels) Wolff ex Hand.-Mazz. | Lijiang, Yunnan | The environment is mostly in canyons and mountain gaps, woods and grasses | [49] |
16 | F. caspica M. Bieb. | Burqin and Tacheng, Xinjiang | The environment is mostly low mountain slopes and mountain gaps and desert areas | [50] |
17 | F. sumbul (Kauffm.) Hook. f. | Zhaosu County, Xinjiang | The environment is mostly mountainous scrub and gravel slopes | [49] |
18 | F. licentiana Hand.-Mazz. | Taihang Mountains | The environment is mostly valley grassland at 400~600 m above sea level | [51] |
19 | F. licentiana Hand.-Mazz. | Jiangsu, Shandong, Anhui, etc. | The environment is mostly sunny slopes, mountain rock crevices and hillsides | [52] |
20 | F. gracilis (Ledeb.) Ledeb. | Xinjiang Altai Region | The environment is mostly meadows, riverside forest edges and gravelly mountain slopes | [3] |
21 | F. karataviensis (Regel et Schmaih.) Korov. | Xinyuan County, Xinjiang | The environment is mostly gravelly hillsides | [3] |
22 | F. dubjanskyi Korov. ex Pavlov | Gansu Province, Anxi and Su Bei, Mahaoshan area | The environment is mostly desert and Gobi desert in the sand and dunes | [53] |
23 | F. canescens (Ledeb.) Ledeb. | Fuyun County, Xinjiang | Gravelly hillsides in a mostly desert environment | [3] |
24 | F. kingdon-wardii Wolff | Northwest Yunnan | The environment is mostly grassy slopes and rock crevices at 2700~3200 m above sea level | [54] |
25 | F. kirialovii Pimenov | Tianshan Mountains and Junggar Basin, Xinjiang | The environment is mostly gravelly grassy slopes and shrubby places at an altitude of about 1500 m | [55] |
26 | F. lapidosa Korov. | Chabchal County, Xinjiang | The environment is mostly mountainous gravelly slopes and grassy areas | [3] |
No | Compound | Type | Literature |
---|---|---|---|
1 | (3′S, 8′R, 9′S, 10′R)-sinkianol A | A | [52] |
2 | (5′S, 8′R, 9′S, 10′R)-ferukrinone | A | [52] |
3 | Ferukrin | A | [52] |
4 | (3′S, 5′S, 8′R, 9′S, 10′R)-kellerin | A | [52] |
5 | (3′S, 5′S, 8′R, 9′S, 10′R)-deacetylkellerin | A | [52] |
6 | Farnesiferol A | A | [52] |
7 | Farnesiferone A | A | [52] |
8 | Gummosin | A | [52] |
9 | Polyanthinin | A | [52] |
10 | (3′R, 5′R, 10′R)-sinkianol B | B | [52] |
11 | Farnesiferol B | B | [52] |
12 | Farnesiferol C | B | [52] |
13 | Galbanic acid | B | [52] |
14 | Methyl galbanate | B | [52] |
15 | Sinkiangenol A | A | [52] |
16 | Karatavicinol | C | [52] |
17 | Umbelliprenin | C | [52] |
18 | Sinkiangenol B | A | [53] |
19 | Sinkiangenol C | B | [53] |
20 | Sinkiangenol D | A | [53] |
21 | Sinkiangenol E | A | [53] |
22 | Sinkiangenol F | E | [53] |
23 | 2,3-Dihydro-7-hydroxy-2R*,3S*-dimethyl-2- [4-methyl-5-(4-methyl-2-furanyl)-3(E)-pentenyl]-furano[3,2-c] coumarin | D | [53] |
24 | 2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2- [4-methyl-5-(4-methyl-2-furanyl)-3(E)-pentenyl]-furano[3,2-c]coumarin | D | [53] |
25 | 12′-hydroxy-karatavicinol | C | [53] |
26 | Fekrynol | B | [53] |
27 | Actylfekrynol | B | [53] |
28 | Ferocaulidin | A | [53] |
29 | Fekrol | B | [53] |
30 | Ferucrinone | A | [53] |
31 | Deacetylkellerin | A | [53] |
32 | Kellerin | A | [53] |
33 | Colladocin | A | [53] |
34 | Lehmannolol | A | [53] |
35 | Kamolone | A | [53] |
36 | Assafoetidnol B | A | [53] |
37 | Assafoetidnol A | A | [53] |
38 | Lehmannolone A | A | [54] |
39 | Assafoetidin | B | [54] |
40 | Lehmannolone | B | [55] |
41 | Sinkianone | B | [55] |
42 | Colladonin | E | [56] |
43 | Episamarcandin | A | [57] |
44 | Sinkiangenorin D | A | [57] |
45 | Fekolone | B | [57] |
46 | Feselol | A | [57] |
47 | Ferulin A | D | [58] |
48 | Ferulin B | D | [58] |
49 | Ferulin C | D | [58] |
50 | 2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c] coumarin | D | [58] |
51 | 2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c] coumarin (DAW22) | D | [58] |
52 | 2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furanyl)-3(E)-pentenyl]-furo-[3,2-c] coumarin | D | [58] |
53 | 2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furanyl)-3(E)-pentenyl]-furo[3,2-c] coumarin | D | [58] |
54 | 2,3-Dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c] coumarin | D | [58] |
55 | 2,3-Dihydro-7-methoxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c] coumarin | D | [58] |
56 | 2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-3-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c] coumarin | D | [58] |
57 | 2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-3-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c] coumarin | D | [58] |
58 | 4,7-Dihydroxy-3-[3,7,11-trimethyl-2(E),6(E),10-dodecatrienyl] coumarin | E | [58] |
59 | 2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadiene-6-onyl] furo[3,2-c] coumarin | D | [59] |
60 | Fukanefuromarin A | D | [59] |
61 | Fukanefuromarin B | D | [59] |
62 | Fukanefuromarin C | D | [59] |
63 | Fukanefuromarin D | D | [59] |
64 | Fukanemarin A | E | [59] |
65 | Fukanefuromarin H | D | [60] |
66 | Fukanefuromarin I | D | [60] |
67 | Fukanefuromarin J | D | [60] |
68 | Fukanefuromarin K | D | [60] |
69 | Fukanefuromarin L | D | [60] |
70 | Fukanefuromarin M | E | [60] |
No | Compound | Literature |
---|---|---|
71 | Ferulaeone A | [61] |
72 | Ferulaeone B | [61] |
73 | Ferulaeone C | [61] |
74 | Ferulaeone D | [61] |
75 | Ferulaeone E | [61] |
76 | Ferulaeone F | [61] |
77 | Ferulaeone G | [61] |
78 | Ferulaeone H | [61] |
79 | Dshamirone | [61] |
80 | (4E,8E)-1-(2,4-dihydroxyphenyl)-2-hydroxy-5,9,13-trimethylt-etra-deca-4,8,12-trien-1-one | [61] |
81 | (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6,10-dodecadien-1-one | [61] |
82 | (6E)-1-(2,4-dihydroxyphenyl)-3,7-dimethyl-3-vi-nyl-8-(4-methyl-2-furyl)-6-octen-1-one | [61] |
83 | 3-(2,4-dihydroxybenzoyl)-4S*,5R*-dimethyl-5- [4,8-dimethyl-3(E),7(E)-nonadien-1-yl] tetrahydro-2-furanone | [61] |
84 | 3-(2-hydroxyl-4-methoxybenzoyl)-4S*,5R*- dimethyl-5- [4,8-dimethyl-3(E),7(E)-nonadien-1-yl] tetrahydro-2-furanone | [61] |
85 | 3-(2,4-dihydroxybenzoyl)-4R*,5R*-dimethy-5- [4,8-dimethyl-3(E),7(E)-nonadien-1-yl] tetrahydro-2-furanone | [61] |
86 | 1-(2′,4′-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6(E),10-dodecadien-1-one | [62] |
87 | 2,3-dihydro-7-hydroxy-2,3-dimethyl-2-[4′,8′-dimethyl-3′,7′-nonadienyl] -furo [3,2,c] coumarin | [62] |
88 | 2,3-dihydro-7-hydroxy-2,3-dimethyl-3-[4′,8′-dimethyl-3′,7′-nonadienyl] -furo [3,2,c] coumarin | [62] |
89 | Fukanefurochromones A | [63] |
90 | Fukanefurochromones B | [63] |
91 | Fukanefurochromones C | [63] |
92 | Fukanefurochromones D | [63] |
93 | Fukanefurochromones E | [63] |
94 | 2,3-dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[2,3-b] chromone | [63] |
95 | Fukanedone A | [64] |
96 | Fukanedone B | [64] |
97 | Fukanedone C | [64] |
98 | Fukanedone D | [64] |
99 | Fukanedone E | [64] |
100 | Fukaneketoester A | [64] |
101 | Feruone | [5] |
102 | 5α-(p-hydroxybenzyl) ester of ferutriol | [65] |
103 | Ferutriol | [65] |
104 | 5ɑ-isovalerate of ferutriol | [65] |
105 | Jaeschkeanadiol | [65] |
106 | Lapidin | [65] |
No | Compound | Molecular Formula | Literature |
---|---|---|---|
107 | (1S)-β-Pinene | C10H16 | [73] |
108 | 1,7,7-Trimethyl-tricyclo[2.2.1.0 (2,6)] heptane | C10H16 | [73] |
109 | (1R)-α-Pinene | C10H16 | [73] |
110 | Camphene | C10H16 | [73] |
111 | 6-Methyl-5-hepten-2-one | C8H14O | [73] |
112 | β-Pinene | C10H16 | [73] |
113 | α-Phellandrene | C10H16 | [73] |
114 | 3-Carene | C10H16 | [73] |
115 | Terpinolene | C10H16 | [73] |
116 | 1-Isopropyl-2-methylbenzene | C10H16 | [73] |
117 | d-Limonene | C10H16 | [73] |
118 | (E)-3,7-Dimethyl-1,3,6-octatriene | C10H16 | [73] |
119 | (Z)-3,7-Dimethy-1,3, 6-octatriene | C10H16 | [73] |
120 | γ-Terpinene | C10H16 | [73] |
121 | l-Camphor | C10H16O | [73] |
122 | Borneol | C10H16O | [73] |
123 | (−)-α-Copaene | C15H24 | [73] |
124 | 2-Methoxy-4-methyl-1-(1-methylethy)-benzene | C11H16O2 | [73] |
125 | 1-Methoxy-4-methyl-2-(1-methylethyl)-benzene | C11H16O | [73] |
126 | L-Bornyl acetate | C12H20O2 | [73] |
127 | Lavandulol acetate | C12H20O2 | [73] |
128 | (+)-α-Longipinene | C15H24 | [73] |
129 | (Z)-2,6,10-Trimethy-1,5,9-undecatriene | C14H24 | [73] |
130 | Caryophyllene | C15H24 | [73] |
131 | (1S,2S,4R)-2-Acetate-1,3,3-trimethyl -bicyclo[2.2.1] hepten-2-ol | C12H20O2 | [73] |
132 | 1-Ethenyl-1-methyl-2-(1-methylethenyl)- 4-(1-methylethylidene)-cyclohexane | C15H24 | [73] |
133 | 1S-(1α,4α,7α)]-1,2,3,4,5,6,7,8-Octahydro -1,4-dimethyl-7-(1-methylethylenyl)-azule | C15H24 | [73] |
134 | (4αS,9αR)-2,4α,5,6,7,8,9,9α-Octahydro- 3,5,5-trimethyl-9-methyllene-benzocycloheptene | C15H24 | [73] |
135 | (3Z,6E) -3,7,11-Trimethyl-1,3,6,10-dodecanetetraene | C15H24 | [73] |
136 | α-Farnesene | C15H24 | [73] |
137 | Isolongjflene-8-ol | C15H26O | [73] |
138 | Tran-nerolidol | C15H26O | [73] |
139 | Guaiol | C15H26O | [73] |
140 | α-Eudesmol | C15H26O | [73] |
141 | (2R,4αR)-1,2,3,4,4α,5,6,7-Octanhydro-α, α -3,8-tetramethyl-naphthalenemethanol | C15H26O | [73] |
142 | [3S-(3α,3aβ,5α)]-1,2,3,3α,4,5,6,7-Octahydro-α, α -3,8-tetramethyl-5-azulenemethanol | C15H26O | [73] |
143 | (1S)-1-[(1S)1,5-Dimethyl-4-hexen-l- 4-methyl-3-cyclohexen-1-ol | C15H26O | [73] |
144 | Isoledene | C15H24 | [73] |
145 | Ethanol | C2H6O | [74] |
146 | Ethyl ester | C4H8O2 | [74] |
147 | 3-Methyl-butanal | C5H10O | [74] |
148 | 2-Butanethiol | C4H10S | [74] |
149 | 2,5-Dimethyl-furan | C6H8O | [74] |
150 | Furfural | C5H4O2 | [74] |
151 | Methyl 1-propenyl disulfde | C4H8S2 | [74] |
152 | Dimethyl trisulfide | C2H6S3 | [74] |
153 | n-Propyl sec-butyl disulfide | C7H16S2 | [74] |
154 | Propyl n-butyl disulfide | C7H16S2 | [74] |
155 | 1,2-Dithiacyclopentane | C3H6O2 | [74] |
156 | 2-Ethyl-hexanethiol | C8H18S | [74] |
157 | bis (1-Methylpropyl)-disulfide | C8H18S2 | [74] |
158 | 2,2′-Bioxirane | C4H6O2 | [74] |
159 | 3-Methyl-4-heptanol | C8H18O | [74] |
160 | 1,1-bis (Methylthio)-ethane | C4H10O2 | [74] |
161 | 1,1-Dimethoxy-propane | C5H12O2 | [74] |
162 | Heptadecane | C17H36 | [74] |
163 | 2-Ethylthio-butane | C6H14S | [74] |
164 | α-Humulene | C15H24 | [74] |
165 | β-Selinene | C15H/ | [74] |
166 | Hexadecane | C16H32 | [74] |
167 | 2-Methylthio butyrat methyl ester | C6H12OS | [74] |
168 | 2,3-Dimeth yl-3-hexanol | C8H18O | [74] |
169 | Hedycaryol | C15H26O | [74] |
170 | 2,2-bis (Methylthio)-propane | C5H12S2 | [74] |
171 | Octadecatriene | C18H32 | [74] |
172 | Palmitic acid | C16H32O2 | [74] |
173 | Oleic acid | C18H34O2 | [74] |
174 | α-Myrcene | C10H16 | [75] |
175 | o-Cymene | C10H14 | [75] |
176 | Enol | C10H16O | [75] |
177 | Limonene oxide | C10H16O | [75] |
178 | Camphor | C10H16O | [75] |
179 | Thymol | C10H14O | [75] |
180 | α-Terpineol | C10H18O | [75] |
181 | Anisyl acetate | C12H2O2 | [75] |
182 | Carvacrol acetate | C10H16O | [75] |
183 | 1-Methoxy-4-methyl-2-(1-ethyl)-benzene | C11H16O | [75] |
184 | Carvone | C10H14O | [75] |
185 | Bornyl acetate | C12H2O2 | [75] |
186 | (−)-Verbenone | C10H16O | [75] |
187 | α-(E)-BETA-FARNESENE | C15H24 | [75] |
188 | 1-Cycloethyl-1-pentyne | C11H18 | [75] |
189 | α-Bergamotene | C15H24 | [75] |
190 | 1,11-Hexadecadiyne | C16H26 | [75] |
191 | α-Bisabolene | C15H24 | [75] |
192 | Asarone | C12H16O3 | [75] |
193 | 3,7,11-trimethyl(E)1,6,10-dodecatrien-3-ol | C15H26O | [75] |
194 | Farnesol | C15H26O | [75] |
195 | Graphene oxide | C15H24O | [75] |
196 | Disulfide bis(1-methylpropyl) | C8H18S2 | [75] |
197 | n-Propyl sec-butyl disulfide | C7H16S2 | [76] |
198 | Ocimene | C10H16 | [76] |
199 | Ocimene (Mixture of isomers) | C10H16 | [76] |
200 | Disulfide, bis[1-(methylthio)ethyl] | C6H14S4 | [76] |
201 | 2-Methylbutyl benzene | C11H16 | [76] |
202 | Ethyl 1-methylpropyl disulfide | C6H14S2 | [76] |
203 | (Z)-1,6,10-Dodecatriene-7,11-dimethyl-3-methylene | C15H24 | [76] |
204 | cis-α-Bisabolene | C15H24 | [76] |
205 | Dipropyl disulfide | C6H14S2 | [76] |
206 | Hinesol | C15H26O | [76] |
207 | Neoisolongifolene | C15H22 | [76] |
208 | Bicyclo[4.4.0]dec-l-ene,2-isopropyl-5-methyl-9-methylene | C15H24 | [76] |
209 | 2H-Pyran, tetrahydro-4-methyl-2-(2-methyl-1-propenyl) | C10H18O | [76] |
210 | 2,4,6-Octatriene, 2,6-dimethyl-, (E,Z)- | C10H16 | [76] |
211 | Estragole | C10H12O | [76] |
212 | 1-Methoxy-4-methyl-2-(1-methylethyl) Benzene | C11H16O | [76] |
213 | 2,6-Dimethyl-2,6-octadiene | C10H18 | [76] |
214 | Methyl 2-(methylthio)butyrate | C6H12O2S | [76] |
215 | 1-Methyl-4-(1-methylethyl)-1,3-cyclohexadiene, | C10H16 | [76] |
216 | Methyl sec-butyl disulphide | C6H12O2S | [76] |
217 | 3-(Methylthio)-2-butanone | C5H10OS | [76] |
218 | Naphthalene,1,2,3,4.4a,5,6,8a-octahydro-7 -methyl-4-methylene-1-(1-methyl-ethyl)-, (1α.,4aβ.,8aα)- | C15H22 | [76] |
219 | 1,4-Methanoazulene, decahydro-4,8,8-trimethyl-9-methylene-, [IS-(l.a.,3a.β.,4a.,8a.β)]- | C15H26O | [76] |
220 | Tetrahydro thiazole | C5H12S2 | [76] |
221 | (4aS-cis)-2,4a,5,6,7,8,9,9a-octahydro- 3,5,5-trimethyl-9-methylene -1H-Benzocycloheptene | C5H10OS | [76] |
222 | Thiopropionamide | C3H7NS | [76] |
223 | Longifolene-(V4) | C15H24 | [76] |
224 | Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro -4a,8-dimethyl-2-(1-methyl ethenyl)-, [2R-(2α.,4aα.,8aβ)] | C15H24 | [76] |
225 | Seychellene | C3H7NS | [76] |
226 | (R)-2,4a,5,6,7,8-hexahydro-3,5,5,9-tetramethyl-1H-benzocycloheptene | C15H24 | [76] |
227 | [S-(Z)]-3,7,11-trimethyl-1,6,10-Dodecatrien-3-ol | C15H24 | [76] |
228 | E-Famesene epoxide | C3H7NS | [76] |
229 | Di-epi-α-cedrene | C15H24 | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahetjan, Y.; Muhaxi, M.; Pang, K.; Kizaibek, M.; Tang, H.; Sefidkon, F.; Yang, X. Chemistry, Bioactivity, and Prediction of the Quality Marker (Q-Marker) of Ferula Plants in China: A Review. Molecules 2023, 28, 5191. https://doi.org/10.3390/molecules28135191
Bahetjan Y, Muhaxi M, Pang K, Kizaibek M, Tang H, Sefidkon F, Yang X. Chemistry, Bioactivity, and Prediction of the Quality Marker (Q-Marker) of Ferula Plants in China: A Review. Molecules. 2023; 28(13):5191. https://doi.org/10.3390/molecules28135191
Chicago/Turabian StyleBahetjan, Yerlan, Muguli Muhaxi, Kejian Pang, Murat Kizaibek, Hui Tang, Fatemeh Sefidkon, and Xinzhou Yang. 2023. "Chemistry, Bioactivity, and Prediction of the Quality Marker (Q-Marker) of Ferula Plants in China: A Review" Molecules 28, no. 13: 5191. https://doi.org/10.3390/molecules28135191
APA StyleBahetjan, Y., Muhaxi, M., Pang, K., Kizaibek, M., Tang, H., Sefidkon, F., & Yang, X. (2023). Chemistry, Bioactivity, and Prediction of the Quality Marker (Q-Marker) of Ferula Plants in China: A Review. Molecules, 28(13), 5191. https://doi.org/10.3390/molecules28135191