Synthesis, Electrochemical and Photochemical Properties of Sulfanyl Porphyrazine with Ferrocenyl Substituents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Optical Properties
2.3. Photosensitized Production of Singlet Oxygen
2.4. Electrochemical Characterization of Studied Compounds in TBAP/DCM Electrolyte
3. Materials and Methods
3.1. General Procedures
3.2. Synthetic Procedures and Characterization
3.3. Optical Properties
3.4. Photosensitized Production of Singlet Oxygen
3.5. Electrochemical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Astruc, D. Why Is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2017, 2017, 6–29. [Google Scholar] [CrossRef]
- Damljanović, I.; Vukićević, M.; Radulović, N.; Palić, R.; Ellmerer, E.; Ratković, Z.; Joksović, M.D.; Vukićević, R.D. Synthesis and Antimicrobial Activity of Some New Pyrazole Derivatives Containing a Ferrocene Unit. Bioorg. Med. Chem. Lett. 2009, 19, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Kumar, V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J. Med. Chem. 2021, 64, 16865–16921. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Morgade, M.S.; Stuzhin, P.A. The Chemistry of Porphyrazines: An Overview. J. Porphyr. Phthalocyanines 2004, 8, 1129–1165. [Google Scholar] [CrossRef]
- Kudrevich, S.V.; van Lier, J.E. Azaanalogs of Phthalocyanine: Syntheses and Properties. Coord. Chem. Rev. 1996, 156, 163–182. [Google Scholar] [CrossRef]
- Fuchter, M.J.; Zhong, C.; Zong, H.; Hoffman, B.M.; Barrett, A.G.M. Porphyrazines: Designer Macrocycles by Peripheral Substituent Change. Aust. J. Chem. 2008, 61, 235–255. [Google Scholar] [CrossRef]
- Piskorz, J.; Lijewski, S.; Gierszewski, M.; Gorniak, K.; Sobotta, L.; Wicher, B.; Tykarska, E.; Düzgüneş, N.; Konopka, K.; Sikorski, M.; et al. Sulfanyl Porphyrazines: Molecular Barrel-like Self-Assembly in Crystals, Optical Properties and In Vitro Photodynamic Activity towards Cancer Cells. Dye. Pigment. 2017, 136, 898–908. [Google Scholar] [CrossRef]
- Piskorz, J.; Mlynarczyk, D.T.; Szczolko, W.; Konopka, K.; Düzgüneş, N.; Mielcarek, J. Liposomal Formulations of Magnesium Sulfanyl Tribenzoporphyrazines for the Photodynamic Therapy of Cancer. J. Inorg. Biochem. 2018, 184, 34–41. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Efficient Visible-Light-Driven Selective Conversion of Glucose to High-Value Chemicals over Bi2WO6/Co-Thioporphyrazine Composite in Aqueous Media. Appl. Catal. A Gen. 2021, 623, 118265. [Google Scholar] [CrossRef]
- Koczorowski, T.; Szczolko, W.; Teubert, A.; Goslinski, T. Sulfanyl Porphyrazines with Morpholinylethyl Periphery—Synthesis, Electrochemistry, and Photocatalytic Studies after Deposition on Titanium(IV) Oxide P25 Nanoparticles. Molecules 2021, 26, 2280. [Google Scholar] [CrossRef]
- Belviso, S.; Cammarota, F.; Rossano, R.; Lelj, F. Effect of Polyfluorination on Self-Assembling and Electronic Properties of Thioalkyl-Porphyrazines. J. Porphyr. Phthalocyanines 2016, 20, 223–233. [Google Scholar] [CrossRef]
- Rebis, T.; Lijewski, S.; Nowicka, J.; Popenda, L.; Sobotta, L.; Jurga, S.; Mielcarek, J.; Milczarek, G.; Goslinski, T. Electrochemical Properties of Metallated Porphyrazines Possessing Isophthaloxybutylsulfanyl Substituents: Application in the Electrocatalytic Oxidation of Hydrazine. Electrochim. Acta 2015, 168, 216–224. [Google Scholar] [CrossRef]
- Porolnik, W.; Kasprzycka, M.; Teubert, A.; Piskorz, J. Serendipitous Synthesis of Unsymmetrical Porphyrazine: Incomplete Transesterification during Macrocyclization. Inorg. Chem. Commun. 2021, 133, 108953. [Google Scholar] [CrossRef]
- Rębiś, T.; Falkowski, M.; Milczarek, G.; Goslinski, T. Electrocatalytic NADH Sensing Using Electrodes Modified with 2-[2-(4-Nitrophenoxy)Ethoxy]Ethylthio-Substituted Porphyrazine/Single-Walled Carbon Nanotube Hybrids. ChemElectroChem 2020, 7, 2838–2850. [Google Scholar] [CrossRef]
- Falkowski, M.; Rebis, T.; Piskorz, J.; Popenda, L.; Jurga, S.; Mielcarek, J.; Milczarek, G.; Goslinski, T. Multiwalled Carbon Nanotube/Sulfanyl Porphyrazine Hybrids Deposited on Glassy Carbon Electrode—Effect of Nitro Peripheral Groups on Electrochemical Properties. J. Porphyr. Phthalocyanines 2017, 21, 295–301. [Google Scholar] [CrossRef]
- Rębiś, T.; Falkowski, M.; Kryjewski, M.; Popenda, L.; Sobotta, L.; Jurga, S.; Marszall, M.P.; Mielcarek, J.; Milczarek, G.; Goslinski, T. Single-Walled Carbon Nanotube/Sulfanyl Porphyrazine Hybrids Deposited on Glassy Carbon Electrode for Sensitive Determination of Nitrites. Dye. Pigment. 2019, 171, 107660. [Google Scholar] [CrossRef]
- Stolarska, M.; Glowacka-Sobotta, A.; Ziental, D.; Dlugaszewska, J.; Falkowski, M.; Mielcarek, J.; Goslinski, T.; Sobotta, L. Photochemical Properties and Photocytotoxicities against Wound Bacteria of Sulfanyl Porphyrazines with Bulky Peripheral Substituents. J. Organomet. Chem. 2021, 934, 121669. [Google Scholar] [CrossRef]
- Bucher, C.; Devillers, C.H.; Moutet, J.-C.; Royal, G.; Saint-Aman, E. Ferrocene-Appended Porphyrins: Syntheses and Properties. Coord. Chem. Rev. 2009, 253, 21–36. [Google Scholar] [CrossRef]
- González-Cabello, A.; Vázquez, P.; Torres, T. A New Phthalocyanine–Ferrocene Conjugated Dyad. J. Organomet. Chem. 2001, 637–639, 751–756. [Google Scholar] [CrossRef]
- Lvova, L.; Galloni, P.; Floris, B.; Lundström, I.; Paolesse, R.; Natale, C.D. A Ferrocene-Porphyrin Ligand for Multi-Transduction Chemical Sensor Development. Sensors 2013, 13, 5841–5856. [Google Scholar] [CrossRef] [Green Version]
- Leda, A.; Hassani, M.; Rebis, T.; Falkowski, M.; Piskorz, J.; Mlynarczyk, D.T.; McNeice, P.; Milczarek, G. Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials. Nanomaterials 2023, 13, 862. [Google Scholar] [CrossRef] [PubMed]
- Akku, H.; Gül, A. Octakis(Ferrocene)-Substituted Porphyrazines. Transit. Met. Chem. 2001, 26, 689–694. [Google Scholar] [CrossRef]
- Giovannetti, R. The Use of Spectrophotometry UV-Vis for the Study of Porphyrins. In Macro to Nano Spectroscopy; Uddin, J., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0664-7. [Google Scholar]
- Gierszewski, M.; Falkowski, M.; Sobotta, L.; Stolarska, M.; Popenda, L.; Lijewski, S.; Wicher, B.; Burdzinski, G.; Karolczak, J.; Jurga, S.; et al. Porphyrazines with Peripheral Isophthaloxyalkylsulfanyl Substituents and Their Optical Properties. J. Photochem. Photobiol. A Chem. 2015, 307–308, 54–67. [Google Scholar] [CrossRef]
- Belviso, S.; Amati, M.; Rossano, R.; Crispini, A.; Lelj, F. Non-Symmetrical Aryl- and Arylethynyl-Substituted Thioalkyl-Porphyrazines for Optoelectronic Materials: Synthesis, Properties, and Computational Studies. Dalton Trans. 2015, 44, 2191–2207. [Google Scholar] [CrossRef] [PubMed]
- Gonca, E.; Baklacı, Ü.G.; Dinçer, H.A. Synthesis and Spectral Properties of Novel Seco-Porphyrazines with Eight 4-Biphenyl Groups. Polyhedron 2008, 27, 2431–2435. [Google Scholar] [CrossRef]
- Lijewski, S.; Gierszewski, M.; Sobotta, L.; Piskorz, J.; Kordas, P.; Kucinska, M.; Baranowski, D.; Gdaniec, Z.; Murias, M.; Karolczak, J.; et al. Photophysical Properties and Photochemistry of a Sulfanyl Porphyrazine Bearing Isophthaloxybutyl Substituents. Dye. Pigment. 2015, 113, 702–708. [Google Scholar] [CrossRef]
- Falkowski, M.; Kucinska, M.; Piskorz, J.; Wieczorek-Szweda, E.; Popenda, L.; Jurga, S.; Sikora, A.; Mlynarczyk, D.T.; Murias, M.; Marszall, M.P.; et al. Synthesis of Sulfanyl Porphyrazines with Bulky Peripheral Substituents—Evaluation of Their Photochemical Properties and Biological Activity. J. Photochem. Photobiol. A Chem. 2021, 405, 112964. [Google Scholar] [CrossRef]
- Mlynarczyk, D.T.; Ziental, D.; Kolasinski, E.; Sobotta, L.; Koczorowski, T.; Mielcarek, J.; Goslinski, T. Nipagin-Functionalized Porphyrazine and Phthalocyanine—Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25. Molecules 2021, 26, 2657. [Google Scholar] [CrossRef]
- Ehrlich, L.A.; Skrdla, P.J.; Jarrell, W.K.; Sibert, J.W.; Armstrong, N.R.; Saavedra, S.S.; Barrett, A.G.M.; Hoffman, B.M. Preparation of Polyetherol-Appended Sulfur Porphyrazines and Investigations of Peripheral Metal Ion Binding in Polar Solvents. Inorg. Chem. 2000, 39, 3963–3969. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy–Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Maharjan, P.S.; Bhattarai, H.K. Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death. J. Oncol. 2022, 2022, 7211485. [Google Scholar] [CrossRef]
- Pola, M.; Kolarova, H.; Bajgar, R. Generation of Singlet Oxygen by Porphyrin and Phthalocyanine Derivatives Regarding the Oxygen Level. J. Med. Sci. 2022, 91, e752. [Google Scholar] [CrossRef]
- Lagorio, M.G.; Dicelio, L.E.; San Roman, E.A.; Braslavsky, S.E. Quantum yield of singlet molecular oxygen sensitization by copper(II) tetracarboxyphthalocy anine. J. Photochem. Photobiol. B Biol. 1989, 3, 615–624. [Google Scholar] [CrossRef]
- Porolnik, W.; Kasprzycka, M.; Podciechowska, K.; Teubert, A.; Piskorz, J. Synthesis and Spectroscopic Properties of Novel Dipyrrole and Tetrapyrrole-Based Photosensitizers with Various Biphenylyl Substituents. Tetrahedron 2022, 127, 133088. [Google Scholar] [CrossRef]
- Ng, K.K.; Zheng, G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. Chem. Rev. 2015, 115, 11012–11042. [Google Scholar] [CrossRef]
- Wieczorek, E.; Piskorz, J.; Popenda, L.; Jurga, S.; Mielcarek, J.; Goslinski, T. First Example of a Diazepinoporphyrazine with Dendrimeric Substituents. Tetrahedron Lett. 2017, 58, 758–761. [Google Scholar] [CrossRef]
- Swarts, P.J.; Conradie, J. Redox Data of Ferrocenylcarboxylic Acids in Dichloromethane and Acetonitrile. Data Brief 2020, 30, 105650. [Google Scholar] [CrossRef]
- Ayaz, S.; Shah, A.; Munir, S. Investigation of Electron Transfer Mechanistic Pathways of Ferrocene Derivatives in Droplet at Carbon Electrode. C 2022, 8, 45. [Google Scholar] [CrossRef]
- Anari, E.H.B.; Romano, M.; Teh, W.X.; Black, J.J.; Jiang, E.; Chen, J.; To, T.Q.; Panchompoo, J.; Aldous, L. Substituted Ferrocenes and Iodine as Synergistic Thermoelectrochemical Heat Harvesting Redox Couples in Ionic Liquids. Chem. Commun. 2016, 52, 745–748. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Borrelli, R.; Bouyanfif, H.; Gottis, S.; Sauvage, F. Tunable Redox Potential, Optical Properties, and Enhanced Stability of Modified Ferrocene-Based Complexes. ACS Omega 2019, 4, 14780–14789. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, N.; Decavoli, C.; Boldrini, C.L.; Coluccini, C.; Abbotto, A. Ferrocene Derivatives Functionalized with Donor/Acceptor (Hetero)Aromatic Substituents: Tuning of Redox Properties. Energies 2020, 13, 3937. [Google Scholar] [CrossRef]
- Skvortsov, I.A.; Fazlyeva, A.M.; Khodov, I.A.; Stuzhin, P.A. Porphyrazines with Annulated Diazepine Rings. 5. Near-IR-Absorbing Tetrakis(6,7-Dihydro-1H-1,4-Diazepino)Porphyrazines and Effects of Acid Solvation on Their Spectral Properties. New J. Chem. 2020, 44, 18362–18371. [Google Scholar] [CrossRef]
- Szczolko, W.; Koczorowski, T.; Wicher, B.; Kryjewski, M.; Krakowska, Z.; Tykarska, E.; Goslinski, T. Porphyrazines with Bulky Peripheral Pyrrolyl Substituents–Synthesis via Microwave-Assisted Suzuki-Miyaura Cross-Coupling Reaction, Optical and Electrochemical Properties. Dye. Pigment. 2022, 206, 110607. [Google Scholar] [CrossRef]
- Kurd, M.; Salimi, A.; Hallaj, R. Highly Sensitive Amperometric Sensor for Micromolar Detection of Trichloroacetic Acid Based on Multiwalled Carbon Nanotubes and Fe(II)–Phtalocyanine Modified Glassy Carbon Electrode. Mater. Sci. Eng. C 2013, 33, 1720–1726. [Google Scholar] [CrossRef]
- Li, P.; Ding, Y.; Wang, A.; Zhou, L.; Wei, S.; Zhou, Y.; Tang, Y.; Chen, Y.; Cai, C.; Lu, T. Self-Assembly of Tetrakis (3-Trifluoromethylphenoxy) Phthalocyaninato Cobalt(II) on Multiwalled Carbon Nanotubes and Their Amperometric Sensing Application for Nitrite. ACS Appl. Mater. Interfaces 2013, 5, 2255–2260. [Google Scholar] [CrossRef]
- Cruz Moraes, F.; Cabral, M.F.; Machado, S.A.S.; Mascaro, L.H. Electrocatalytic Behavior of Glassy Carbon Electrodes Modified with Multiwalled Carbon Nanotubes and Cobalt Phthalocyanine for Selective Analysis of Dopamine in Presence of Ascorbic Acid. Electroanalysis 2008, 20, 851–857. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Xiong, Y.; Liu, X.; Li, X.; Wang, M.; Yan, S.; Alshahrani, L.A.M.; Liu, P.; Zhang, C. The Fabrication of a Co (II) Complex and Multi-Walled Carbon Nanotubes Modified Glass Carbon Electrode, and Its Application for the Determination of Dopamine. J. Electroanal. Chem. 2014, 731, 14–19. [Google Scholar] [CrossRef]
- Kryjewski, M.; Tykarska, E.; Rebis, T.; Dlugaszewska, J.; Ratajczak, M.; Teubert, A.; Gapiński, J.; Patkowski, A.; Piskorz, J.; Milczarek, G.; et al. Porphyrazine with Bulky 2-(1-Adamantyl)-5-Phenylpyrrol-1-Yl Periphery Tuning Its Spectral and Electrochemical Properties. Polyhedron 2015, 98, 217–223. [Google Scholar] [CrossRef]
- Spiller, W.; Kliesch, H.; Wöhrle, D.; Hackbarth, S.; Röder, B.; Schnurpfeil, G. Singlet Oxygen Quantum Yields of Different Photosensitizers in Polar Solvents and Micellar Solutions. J. Porphyr. Phthalocyanines (JPP) 1998, 2, 145–158. [Google Scholar] [CrossRef]
Solvent | λ1Abs (log ε) | λ2Abs (log ε) | ΦΔ |
---|---|---|---|
Dichloromethane | 378 (4.48) | 675 (4.86) | - |
N,N-Dimethylformamide | 380 (4.84) | 671 (4.86) | 0.064 |
Dimethyl sulfoxide | 380 (4.84) | 674 (4.88) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassani, M.; Leda, A.; Porolnik, W.; Falkowski, M.; Rębiś, T.; Piskorz, J.; Popenda, L.; Wicinski, M.; Mlynarczyk, D.T.; Düzgüneş, N.; et al. Synthesis, Electrochemical and Photochemical Properties of Sulfanyl Porphyrazine with Ferrocenyl Substituents. Molecules 2023, 28, 5215. https://doi.org/10.3390/molecules28135215
Hassani M, Leda A, Porolnik W, Falkowski M, Rębiś T, Piskorz J, Popenda L, Wicinski M, Mlynarczyk DT, Düzgüneş N, et al. Synthesis, Electrochemical and Photochemical Properties of Sulfanyl Porphyrazine with Ferrocenyl Substituents. Molecules. 2023; 28(13):5215. https://doi.org/10.3390/molecules28135215
Chicago/Turabian StyleHassani, Mina, Amanda Leda, Weronika Porolnik, Michal Falkowski, Tomasz Rębiś, Jaroslaw Piskorz, Lukasz Popenda, Michal Wicinski, Dariusz T. Mlynarczyk, Nejat Düzgüneş, and et al. 2023. "Synthesis, Electrochemical and Photochemical Properties of Sulfanyl Porphyrazine with Ferrocenyl Substituents" Molecules 28, no. 13: 5215. https://doi.org/10.3390/molecules28135215
APA StyleHassani, M., Leda, A., Porolnik, W., Falkowski, M., Rębiś, T., Piskorz, J., Popenda, L., Wicinski, M., Mlynarczyk, D. T., Düzgüneş, N., & Marszall, M. P. (2023). Synthesis, Electrochemical and Photochemical Properties of Sulfanyl Porphyrazine with Ferrocenyl Substituents. Molecules, 28(13), 5215. https://doi.org/10.3390/molecules28135215