Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport
Abstract
:1. Introduction
2. Results
2.1. Water Permeation and Energetics of the Transporter
2.2. Dynamics of the Domain Structure
- (A)
- Alternating opening and closing of the mouth on opposite sides,
- (B)
- Up–down sliding of one domain relative to the other along the channel direction,
- (C)
- Opening or closing of the entire water channel simultaneously.
3. Discussion
4. Materials and Methods
4.1. Homology Models
4.2. Docking of Inhibitors
4.3. MD Simulations
4.4. Determining Water Permeation Events
4.5. Principal Component Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SGLT | Sodium glucose cotransporters |
MD | Molecular Dynamics |
PCA | Principal Component Analysis |
CoM | Center of Mass |
References
- Ma, T.; Verkman, A.S. Aquaporin water channels in gastrointestinal physiology. Physiol. J. 1999, 517, 317–326. [Google Scholar] [CrossRef]
- Wright, E.M.; Loo, D.D.F.; Hirayama, B.A. Biology of Human Sodium Glucose Transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccigrossi, V.; Lo Vecchio, A.; Bruzzese, E.; Russo, C.; Marano, A.; Terranova, S.; Cioffi, V.; Guarino, A. Potency of Oral Rehydration Solution in Inducing Fluid Absorption is Related to Glucose Concentration. Sci. Rep. 2020, 10, 7803. [Google Scholar] [CrossRef]
- Inoue, T.; Takemura, M.; Fushimi, N.; Fujimori, Y.; Onozato, T.; Kurooka, T.; Asari, T.; Takeda, H.; Kobayashi, M.; Nishibe, H.; et al. Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur. J. Pharmacol. 2017, 806, 25–31. [Google Scholar] [CrossRef]
- Zeuthen, T.; Gorraitz, E.; Her, K.; Wright, E.M.; Loo, D.D.F. Structural and functional significance of water permeation through cotransporters. Proc. Natl. Acad. Sci. USA 2016, 113, E6887–E6894. [Google Scholar] [CrossRef] [PubMed]
- Loo, D.D.F.; Wright, E.M.; Zeuthen, T. Water pumps. Physiol. J. 2002, 542, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Loo, D.D.F.; Hirayama, B.A.; Meinild, A.; Chandy, G.; Zeuthen, T.; Wright, E.M. Passive water and ion transport by cotransporters. Physiol. J. 1999, 518, 195–202. [Google Scholar] [CrossRef]
- Meinild, A.K.; Klaerke, D.A.; Loo, D.D.F.; Wright, E.M.; Zeuthen, T. The human Na+-glucose cotransporter is a molecular water pump. Physiol. J. 1998, 508, 15–21. [Google Scholar] [CrossRef]
- Erokhova, L.; Horner, A.; Ollinger, N.; Siligan, C.; Pohl, P. The Sodium Glucose Cotransporter SGLT1 is an Extremely Efficient Facilitator of Passive Water Transport. J. Biol. Chem. 2016, 291, 9712–9720. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M.; Loo, D.D.F. Active Glucose Transport 2020 and Beyond. Function 2021, 2, 1. [Google Scholar] [CrossRef]
- Forrest, L.R.; Krämer, R.; Ziegler, C. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 2011, 1807, 167–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldham, M.L.; Davidson, A.L.; Chen, J. Structural insights into ABC transporter mechanism. Curr. Opin. Struct. Biol. 2008, 18, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Jardetzky, O. Simple Allosteric Model for Membrane Pumps. Nature 1966, 211, 969–970. [Google Scholar] [CrossRef] [PubMed]
- Forrest, L.R.; Rudnick, G. The Rocking Bundle: A Mechanism for Ion-Coupled Solute Flux by Symmetrical Transporters. Physiology 2009, 24, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Drew, D.; Boudker, O. Shared Molecular Mechanisms of Membrane Transporters. Annu. Rev. Biochem. 2016, 85, 543–572. [Google Scholar] [CrossRef]
- Abramson, J.; Wright, E.M. Function Trumps Form in Two Sugar Symporters, LacY and vSGLT+. Int. J. Mol. Sci. 2021, 22, 3572. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shaikh, S.A.; Enkavi, G.; Wen, P.C.; Huang, Z.; Tajkhorshid, E. Transient formation of water-conducting states in membrane transporters. Proc. Natl. Acad. Sci. USA 2013, 110, 7696–7701. [Google Scholar] [CrossRef]
- Wu, H.C.; Yoshioka, T.; Nakagawa, K.; Shintani, T.; Matsuyama, H. Water Transport and Ion Diffusion Investigation of an Amphotericin B-Based Channel Applied to Forward Osmosis: A Simulation Study. Membranes 2021, 11, 646. [Google Scholar] [CrossRef]
- Bisignano, P.; Ghezzi, C.; Jo, H.; Polizzi, N.F.; Althoff, T.; Kalyanaraman, C.; Friemann, R.; Jacobson, M.P.; Wright, E.M.; Grabe, M. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat. Commun. 2018, 9, 5245. [Google Scholar] [CrossRef] [Green Version]
- Yange, N.; Rui, L.; Chengcheng, G.; Yuan, Z.; Zhixing, C.; Stefan, H.; Herbert, N.; Lei, C. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 2022, 601, 280–284. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Dominguez Rieg, J.A.; Rieg, T. What does sodium-glucose co-transporter 1 inhibition add: Prospects for dual inhibition. Diabetes Obes. Metab. 2019, 21, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Qu, Q.; Aydin, D.; Panova, O.; Robertson, M.J.; Xu, Y.; Dror, R.O.; Skiniotis, G.; Feng, L. Structure and mechanism of the SGLT family of glucose transporters. Nature 2022, 601, 274. [Google Scholar] [CrossRef] [PubMed]
- BIOVIA, Dassault Systèmes, S.D. Discovery Studio 4.1. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/ (accessed on 2 February 2019).
- Søndergaard, C.R.; Olsson, M.H.M.; Rostkowski, M.; Jensen, J.H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pka values. J. Chem. Theory Comput. 2011, 7, 2284–2295. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09 Rev. A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. Charmm-gui input generator for namd, gromacs, amber, openmm, and charmm/openmm simulations using the charmm36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Lomize, M.A.; Pogozheva, I.D.; Joo, H.; Mosberg, H.I.; Lomize, A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 2012, 40, D370–D376. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef] [PubMed]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D.; Pastor, R.W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Chem. Phys. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.E.M.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, T.; Stoll, E. SMolecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions. Phys. Rev. B 1978, 17, 1302–1322. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef] [Green Version]
- Feller, S.E.; Zhang, Y.; Pastor, R.W.; Brooks, B.R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103, 4613–4621. [Google Scholar] [CrossRef]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys 1977, 23, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Kitao, A. Principal Component Analysis and Related Methods for Investigating the Dynamics of Biological Macromolecules. J 2022, 5, 21. [Google Scholar] [CrossRef]
- David, C.C.; Jacobs, D.J. Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol. 2014, 1084, 193–226. [Google Scholar] [CrossRef] [Green Version]
Ligand | (lig.:prot.) [kcal/mol] | (lig.:prot.) [kcal/mol] | (bundle:hash) [kcal/mol] |
---|---|---|---|
phlorizin | −80.5 ± 6.6 | −29.5 ± 4.7 | −95.9 ± 9.1 |
sotagliflozin | −89.5 ± 7.1 | −42.5 ± 5.2 | −101.6 ± 11.5 |
mizagliflozin | −112.9 ± 9.3 | −47.2 ± 6.8 | −99.8 ± 10.9 |
galactose | −26.2 ± 6.4 | −4.4 ± 2.1 | −68.4 ± 4.5 |
no ligand | / | / | −56.4 ± 11.9 |
Inhibitor | IC [nmol/L] |
---|---|
phlorizin | 400 |
sotagliflozin | 36 |
mizagliflozin | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sever, M.; Merzel, F. Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport. Molecules 2023, 28, 5295. https://doi.org/10.3390/molecules28145295
Sever M, Merzel F. Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport. Molecules. 2023; 28(14):5295. https://doi.org/10.3390/molecules28145295
Chicago/Turabian StyleSever, Marko, and Franci Merzel. 2023. "Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport" Molecules 28, no. 14: 5295. https://doi.org/10.3390/molecules28145295
APA StyleSever, M., & Merzel, F. (2023). Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport. Molecules, 28(14), 5295. https://doi.org/10.3390/molecules28145295