Chemical Profiling and Bioactivity Assessment of Helichrysum italicum (Roth) G. Don. Essential Oil: Exploring Pure Compounds and Synergistic Combinations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Study of Aerial Parts of the Plant
2.2. Chemical Composition of H. italicum Essential Oils
2.3. The Cytotoxicity of H. italicum Essential Oils
2.4. Statistical Correlation of Cytotoxicity and Essential Oil Chemical Composition
2.5. The Cytotoxicity of Individual Compounds and Their Synthetic Mixture
3. Materials and Methods
3.1. Plant Material Origin
3.2. Scanning Electron Microscopy
3.3. Essential Oil Extraction, Gas Chromatography-Mass Spectrometry (GC-MS) Analyses
3.4. Cytotoxicity Assay
3.4.1. Chemicals and Cell Lines
3.4.2. Measurement of Cytotoxicity of Pure Compounds and Their Mixture with MTT Assay
3.4.3. Measurement of EOs Cytotoxicity with MTS Assays
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Antunes Viegas, D.; Palmeira-De-Oliveira, A.; Salgueiro, L.; Martinez-De-Oliveira, J.; Palmeira-De-Oliveira, R. Helichrysum italicum: From Traditional Use to Scientific Data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, B.; Piras, A.; Desogus, E.; Porcedda, S.; Ballero, M. Analysis of the Volatile Concentrate of the Leaves and Flowers of Helichrysum italicum (Roth.) Don ssp. Microphyllum (Willd.) Nyman (Asteraceae) by Supercritical Fluid Extraction and Their Essential Oils. J. Essent. Oil Res. 2003, 15, 120–126. [Google Scholar] [CrossRef]
- Furlan, V.; Bren, U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023, 12, 802. [Google Scholar] [CrossRef]
- Jažo, Z.; Glumac, M.; Drventić, I.; Žilić, L.; Dujmović, T.; Bajić, D.; Vučemilo, M.; Ivić, E.; Bektić, S.; Anačkov, G.T.; et al. The Essential Oil Composition of Helichrysum italicum (Roth.) G. Don: Influence of Steam, Hydro and Microwave-Assisted Distillation. Separations 2022, 9, 280. [Google Scholar] [CrossRef]
- Ninčević, T.; Grdiša, M.; Šatović, Z.; Jug-Dujaković, M. Helichrysum italicum (Roth.) G. Don: Taxonomy, Biological Activity, Biochemical and Genetic Diversity. Ind. Crops Prod. 2019, 138, 111487. [Google Scholar] [CrossRef]
- Galbany-Casals, M.; Blanco-Moreno, J.M.; Garcia-Jacas, N.; Breitwieser, I.; Smissen, R.D. Genetic Variation in Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): Do Disjunct Populations of subsp. Microphyllum Have a Common Origin? Plant Biol. 2011, 13, 678–687. [Google Scholar] [CrossRef]
- Zec Vojinović, M.; Dudaš, S.; Peršić, M.; Magdić, M.; Tomičić, M. Morphometric Characteristics of Helichrysum italicum (Roth.) g. Don from Northwestern Coast of Istria. Zb. Veleučilišta Rijeci 2022, 10, 453–466. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules 2021, 26, 3625. [Google Scholar] [CrossRef]
- Mouhoub, A.; Guendouz, A.; Belkamel, A.; El Alaoui Talibi, Z.; Ibnsouda Koraichi, S.; El Modafar, C.; Delattre, C. Assessment of the Antioxidant, Antimicrobial and Antibiofilm Activities of Essential Oils for Potential Application of Active Chitosan Films in Food Preservation. World J. Microbiol. Biotechnol. 2022, 38, 179. [Google Scholar] [CrossRef]
- Lafraxo, S.; El Moussaoui, A.; A Bin Jardan, Y.; El Barnossi, A.; Chebaibi, M.; Baammi, S.; Ait Akka, A.; Chebbac, K.; Akhazzane, M.; Chelouati, T.; et al. GC-MS Profiling, in Vitro Antioxidant, Antimicrobial, and in Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus Thurifera Bark. Evid.-Based Complement. Altern. Med. 2022, 2022, 6305672. [Google Scholar] [CrossRef]
- Badalamenti, N.; Bruno, M.; Schicchi, R.; Geraci, A.; Leporini, M.; Gervasi, L.; Tundis, R.; Loizzo, M.R. Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L. Molecules 2022, 27, 1580. [Google Scholar] [CrossRef] [PubMed]
- Gautam, N.; Mantha, A.K.; Mittal, S. Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View. Biomed. Res. Int. 2014, 2014, 154106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judzentiene, A.; Budiene, J.; Nedveckyte, I.; Garjonyte, R. Antioxidant and Toxic Activity of Helichrysum arenarium (L.) Moench and Helichrysum italicum (Roth.) G. Don Essential Oils and Extracts. Molecules 2022, 27, 1311. [Google Scholar] [CrossRef]
- Balázs, V.L.; Filep, R.; Répás, F.; Kerekes, E.; Szabó, P.; Kocsis, B.; Böszörményi, A.; Krisch, J.; Horváth, G. Immortelle (Helichrysum italicum (Roth.) G. Don) Essential Oil Showed Antibacterial and Biofilm Inhibitory Activity against Respiratory Tract Pathogens. Molecules 2022, 27, 5518. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Semerdjieva, I.; Yankova-Tsvetkova, E.; Astatkie, T.; Stanev, S.; Dincheva, I.; Kačániová, M. Chemical Profile and Antimicrobial Activity of the Essential Oils of Helichrysum arenarium (L.) Moench. and Helichrysum italicum (Roth.) G. Don. Plants 2022, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Węglarz, Z.; Kosakowska, O.; Pióro-Jabrucka, E.; Przybył, J.L.; Gniewosz, M.; Kraśniewska, K.; Szyndel, M.S.; Costa, R.; Bączek, K.B. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals 2022, 15, 735. [Google Scholar] [CrossRef] [PubMed]
- Primitivo, M.J.; Neves, M.; Pires, C.L.; Cruz, P.F.; Brito, C.; Rodrigues, A.C.; de Carvalho, C.C.C.R.; Mortimer, M.M.; Moreno, M.J.; Brito, R.M.M.; et al. Edible Flowers of Helichrysum italicum: Composition, Nutritive Value, and Bioactivities. Food Res. Int. 2022, 157, 111399. [Google Scholar] [CrossRef]
- Cávar Zeljković, S.; Šolić, M.E.; Maksimović, M. Volatiles of Helichrysum italicum (Roth.) G. Don from Croatia. Nat. Prod. Res. 2015, 29, 1874–1877. [Google Scholar] [CrossRef]
- Tzanova, M.; Grozeva, N.; Gerdzhikova, M.; Atanasov, V.; Terzieva, S.; Prodanova, R. Biochemical Composition of Essential Oil of Corsican Helichrysum italicum (Roth.) G. Don, Introduced and Cultivated in South Bulgaria. Bulg. J. Agric. Sci. 2018, 24, 1071–1077. [Google Scholar]
- Lemaire, G.; Olivero, M.; Rouquet, V.; Moga, A.; Pagnon, A.; Cenizo, V.; Portes, P. Neryl Acetate, the Major Component of Corsican Helichrysum italicum Essential Oil, Mediates Its Biological Activities on Skin Barrier. PLoS ONE 2023, 18, e0268384. [Google Scholar] [CrossRef]
- Maksimovic, S.; Tadic, V.; Skala, D.; Zizovic, I. Separation of Phytochemicals from Helichrysum italicum: An Analysis of Different Isolation Techniques and Biological Activity of Prepared Extracts. Phytochemistry 2017, 138, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Garzoli, S.; Sabatino, M.; Tadić, V.; Costantini, S.; Ragno, R.; Božović, M. Chemical Composition and Antimicrobial Activity of Essential Oil of Helichrysum italicum (Roth.) G. Don Fil. (Asteraceae) from Montenegro. Nat. Prod. Res. 2020, 34, 445–448. [Google Scholar] [CrossRef]
- Kokalj Ladan, M.; Kočevar Glavač, N. GC–MS Analysis of a Helichrysum italicum Hydrosol: Sensitivity, Repeatability and Reliability of Solvent Extraction versus Direct Hydrosol Analysis. Appl. Sci. 2022, 12, 10040. [Google Scholar] [CrossRef]
- Najar, B.; Nardi, V.; Cervelli, C.; Mecacci, G.; Mancianti, F.; Ebani, V.V.; Nardoni, S.; Pistelli, L. Volatilome Analyses and in Vitro Antimicrobial Activity of the Essential Oils from Five South African Helichrysum Species. Molecules 2020, 25, 3196. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Giovanelli, S.; Ambryszewska, K.E.; Ruffoni, B.; Cervelli, C.; Pistelli, L.; Flamini, G.; Pistelli, L. Essential Oil Composition of Six Helichrysum Species Grown in Italy. Biochem. Syst. Ecol. 2018, 79, 15–20. [Google Scholar] [CrossRef]
- Giovanelli, S.; De Leo, M.; Cervelli, C.; Ruffoni, B.; Ciccarelli, D.; Pistelli, L. Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy. Chem. Biodivers. 2018, 15, e1700545. [Google Scholar] [CrossRef] [PubMed]
- Mancini, E.; De Martino, L.; Marandino, A.; Scognamiglio, M.R.; De Feo, V. Chemical Composition and Possible in Vitro Phytotoxic Activity of Helichrsyum italicum (Roth.) Don ssp. italicum. Molecules 2011, 16, 7725–7735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kladar, N.V.; Anačkov, G.T.; Rat, M.M.; Srđenović, B.U.; Grujić, N.N.; Božin, B.N. Biochemical Characterization of Helichrysum italicum (Roth.) G. Don subsp. italicum (Asteraceae) from Montenegro: Phytochemical Screening, Chemotaxonomy, and Antioxidant Properties. Chem. Biodivers. 2015, 12, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Jaganjac, J.D.; Ademović, Z.; Šarić Kundalić, B.; Horozić, E. Chemical Composition and Antioxidant. Technol. Acta 2021, 14, 21–26. [Google Scholar] [CrossRef]
- Dodoš, T.; Janković, S.; Marin, P.D.; Rajčević, N. Essential Oil Composition and Micromorphological Traits of Satureja montana L., S. Subspicata Bartel Ex Vis., and S. Kitaibelii Wierzb. Ex Heuff. Plants 2021, 10, 511. [Google Scholar] [CrossRef]
- Schmiderer, C.; Grassi, P.; Novak, J.; Weber, M.; Franz, C. Diversity of Essential Oil Glands of Clary Sage (Salvia sclarea L., Lamiaceae). Plant Biol. 2008, 10, 433–440. [Google Scholar] [CrossRef]
- Afolayan, A.J.; Meyer, J.J.M. Morphology and Ultrastructure of Secreting and Nonsecreting Foliar Trichomes of Helichrysum aureonitens (Asteraceae). Int. J. Plant Sci. 1995, 156, 481–487. [Google Scholar] [CrossRef]
- Ascensao, L.; Da Silva, J.A.T.; Barroso, J.g.; Figueiredo, A.C.; Pedro, L.G. Glandular Trichomes and Essential Oils of Helichrysum Stoechas. Isr. J. Plant Sci. 2001, 49, 115–122. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Silva, L.; Falé, P.L.V.; Serralheiro, M.L.; Ascensão, L. Glandular Trichomes and Biological Activities in Helichrysum italicum and H. Stoechas, Two Asteraceae Species Growing Wild in Portugal. Microsc. Microanal. 2015, 21, 91–92. [Google Scholar] [CrossRef]
- Perrini, R.; Morone-Fortunato, I.; Lorusso, E.; Avato, P. Glands, Essential Oils and in Vitro Establishment of Helichrysum italicum (Roth.) G. Don ssp. Microphyllum (Willd.) Nyman. Ind. Crops Prod. 2009, 29, 395–403. [Google Scholar] [CrossRef]
- Peršić, M.; Leko, K.; Dudaš, S. Kriteriji Kvalitete Biljnog Materijala i Eteričnog Ulja Primorskog Smilja (Helichrysum italicum (Roth.) G. Don). Zb. Veleučilišta Rijeci 2019, 7, 425–431. [Google Scholar] [CrossRef]
- Mastelic, J.; Politeo, O.; Jerkovic, I.; Radosevic, N. Composition and Antimicrobial Activity of Helichrysum italicum Essential Oil and Its Terpene and Terpenoid Fractions. Chem. Nat. Compd. 2005, 41, 35–40. [Google Scholar] [CrossRef]
- Talic, S.; Odak, I.; Lukic, T.; Brkljaca, M.; Martinovic Bevanda, A.; Lasic, A. Chemodiversity of Helichrysum italicum (Roth.) G. Don subsp. italicum Essential Oils from Bosnia and Herzegovina. Fresenius Environ. Bull. 2021, 30, 2492–2502. [Google Scholar]
- Dzamic, A.M.; Mileski, K.S.; Ciric, A.D.; Ristic, M.S.; Sokovic, M.D.; Marin, P.D. Essential Oil Composition, Antioxidant and Antimicrobial Properties of Essential Oil and Deodorized Extracts of Helichrysum italicum (Roth.) G. Don. J. Essent. Oil Bear. Plants 2019, 22, 493–503. [Google Scholar] [CrossRef]
- Bianchini, A.; Tomi, P.; Costa, J.; Bernardini, A.F. Composition of Helichrysum italicum (Roth.) G. Don Fil. subsp. italicum Essential Oils from Corsica (France). Flavour Fragr. J. 2001, 16, 30–34. [Google Scholar] [CrossRef]
- Leonardi, M.; Ambryszewska, K.E.; Melai, B.; Flamini, G.; Cioni, P.L.; Parri, F.; Pistelli, L. Essential-oil composition of Helichrysum italicum (Roth.) G. Don ssp. italicum from Elba Island (Tuscany, Italy). Chem. Biodivers. 2013, 10, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Ljujić, J.; Vulić, J.; Zheljazkov, V.D.; Pezo, L.; Varga, A.; Tumbas Šaponjac, V. Helichrysum italicum (Roth.) G. Don. Essential Oil from Serbia: Chemical Composition, Classification and Biological Activity-May It Be a Suitable New Crop for Serbia? Agronomy 2021, 11, 1282. [Google Scholar] [CrossRef]
- Fraternale, D.; Flamini, G.; Ascrizzi, R. In Vitro Anticollagenase and Antielastase Activities of Essential Oil of Helichrysum italicum subsp. italicum (Roth.) G. Don. J. Med. Food 2019, 22, 1041–1046. [Google Scholar] [CrossRef]
- Staver, M.M.; Gobin, I.; Ratkaj, I.; Petrovic, M.; Vulinovic, A.; Dinarina-Sablic, M.; Broznic, D. In Vitro Antiproliferative and Antimicrobial Activity of the Essential Oil from the Flowers and Leaves of Helichrysum italicum (Roth.) G. Don. Growing in Central Dalmatia (Croatia). J. Essent. Oil-Bear. Plants 2018, 21, 77–91. [Google Scholar] [CrossRef]
- Widiyastuti, Y.; Sholikhah, I.Y.M.; Haryanti, S. Cytotoxic Activities of Ethanolic and Dichloromethane Extract of Leaves, Stems, and Flowers of Jarong [Stachytarpheta jamaicensis (L.) Vahl.] on HeLa and T47D Cancer Cell Line. AIP Conf. Proc. 2019, 2202, 020101. [Google Scholar] [CrossRef]
- Jažo, Z.; Glumac, M.; Paštar, V.; Bektić, S.; Radan, M.; Carev, I. Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil. Plants 2023, 12, 1794. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.M.; Peng, J.Q.; Chen, Y.; Tao, L.; Zhang, Y.Y.; Fu, L.Y.; Long, Q.D.; Shen, X.C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Rajput, A.; Kasar, A.; Thorat, S.; Kulkarni, M. Borneol: A Plant-Sourced Terpene with a Variety of Promising Pharmacological Effects. Nat. Prod. J. 2023, 13, 13–28. [Google Scholar] [CrossRef]
- Akiel, M.A.; Alshehri, O.Y.; Aljihani, S.A.; Almuaysib, A.; Bader, A.; Al-Asmari, A.I.; Alamri, H.S.; Alrfaei, B.M.; Halwani, M.A. Viridiflorol Induces Anti-Neoplastic Effects on Breast, Lung, and Brain Cancer Cells through Apoptosis. Saudi J. Biol. Sci. 2022, 29, 816–821. [Google Scholar] [CrossRef]
- Carev, I.; Gelemanović, A.; Glumac, M.; Tutek, K.; Dželalija, M.; Paiardini, A.; Prosseda, G. Centaurea Triumfetii Essential Oil Chemical Composition, Comparative Analysis, and Antimicrobial Activity of Selected Compounds. Sci. Rep. 2023, 13, 7475. [Google Scholar] [CrossRef]
- Elbe, H.; Ozturk, F.; Yigitturk, G.; Baygar, T.; Cavusoglu, T. Anticancer Activity of Linalool: Comparative Investigation of Ultrastructural Changes and Apoptosis in Breast Cancer Cells. Ultrastruct. Pathol. 2022, 46, 348–358. [Google Scholar] [CrossRef]
- Mendanha, S.A.; Moura, S.S.; Anjos, J.L.V.; Valadares, M.C.; Alonso, A. Toxicity of Terpenes on Fibroblast Cells Compared to Their Hemolytic Potential and Increase in Erythrocyte Membrane Fluidity. Toxicol. Vitr. 2013, 27, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Glumac, M.; Čikeš Čulić, V.; Marinović-Terzić, I.; Radan, M. Mechanism of Cis-Nerolidol-Induced Bladder Carcinoma Cell Death. Cancers 2023, 15, 981. [Google Scholar] [CrossRef]
- Lin, C.C.; Wu, C.S.; Chen, Y.J.; Chen, J.J.W.; Shieh, J.J.; Huang, C.H.; Lin, P.S.; Chang, G.C.; Chang, J.T. Terpinen-4-ol Induces Apoptosis in Human Nonsmall Cell Lung Cancer in Vitro and in Vivo. Evid.-Based Complement. Altern. Med. 2012, 2012, 818261. [Google Scholar] [CrossRef] [Green Version]
- Khaw-On, P.; Banjerdpongchai, R. Induction of Intrinsic and Extrinsic Apoptosis Pathways in the Human Leukemic MOLT-4 Cell Line by Terpinen-4-ol. Asian Pac. J. Cancer Prev. 2012, 13, 3073–3076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banjerdpongchai, R.; Khaw-On, P. Terpinen-4-ol Induces Autophagic and Apoptotic Cell Death in Human Leukemic HL-60 Cells. Asian Pac. J. Cancer Prev. 2013, 14, 7537–7542. [Google Scholar] [CrossRef]
- Xiong, S.; Chng, W.J.; Zhou, J. Crosstalk between Endoplasmic Reticulum Stress and Oxidative Stress: A Dynamic Duo in Multiple Myeloma. Cell. Mol. Life Sci. 2021, 78, 3883–3906. [Google Scholar] [CrossRef] [PubMed]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and Molecular Mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [Green Version]
- Talbot, M.J.; White, R.G. Methanol Fixation of Plant Tissue for Scanning Electron Microscopy Improves Preservation of Tissue Morphology and Dimensions. Plant Methods 2013, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomblies, K.; Shukla, V.; Graham, C. Scanning Electron Microscopy (SEM) of Plant Tissues. Cold Spring Harb. Protoc. 2008. [Google Scholar] [CrossRef] [PubMed]
Compound | RI-E | RI-L | LA-P | LA-Z | VI | KS | PL | PT | MA | KO-1 | KO-2 | ID |
---|---|---|---|---|---|---|---|---|---|---|---|---|
α-Pinene | 940 | 943 | 12.64 | 11.28 | 8.45 | 4.25 | 9.99 | 12.49 | 7.41 | 7.30 | 4.01 | RI, MS |
α-Fenchene | 953 | 954 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | RI, MS |
Limonene | 1033 | 1035 | 3.60 | 5.16 | 1.41 | 1.96 | 1.97 | 5.74 | 2.76 | 3.70 | 2.44 | RI, MS |
1,8-Cineole | 1036 | 1036 | 0.67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.78 | 0.00 | 0.00 | 0.00 | RI, MS |
Isobutyl angelate | 1054 | 1055 | 0.69 | 0.00 | 0.57 | 0.00 | 0.00 | 0.73 | 0.00 | 0.00 | 0.00 | RI, MS |
Linalool | 1100 | 1103 | 1.02 | nd | 1.47 | 1.05 | 0.87 | 2.17 | 1.03 | 1.49 | 1.39 | RI, MS |
2-Methylbutyl angelate | 1156 | 1158 | 1.42 | 1.11 | 3.27 | 0.83 | 0.98 | 2.89 | 2.23 | 3.41 | 2.17 | RI, MS |
endo-Borneol | 1170 | 1171 | 0.00 | 1.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | RI, MS |
Terpinen-4-ol | 1180 | 1181 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.21 | 0.87 | RI, MS |
4,6-Dimethyloctane-3,5-dione | 1188 | - | 1.75 | 3.44 | 2.43 | 1.95 | 2.64 | 3.61 | 2.26 | 1.97 | 2.35 | RI |
α-Terpineol | 1193 | 1195 | 1.79 | 2.60 | 1.01 | 1.55 | 1.82 | 1.65 | 1.35 | 1.73 | 1.73 | RI, MS |
Nerol | 1231 | 1234 | 0.00 | 0.00 | 0.95 | 0.84 | 1.76 | 1.67 | 1.76 | 3.49 | 2.74 | RI, MS |
Neryl acetate | 1367 | 1371 | 10.63 | 4.48 | 20.00 | 11.00 | 15.50 | 17.60 | 21.36 | 10.97 | 11.12 | RI, MS |
α-Copaene | 1376 | 1378 | 2.47 | 3.10 | 0.48 | 2.70 | 2.77 | 1.70 | 1.99 | 2.90 | 2.95 | RI, MS |
Italicene | 1402 | 1405 | 2.30 | 3.60 | 1.80 | 3.09 | 3.77 | 3.51 | 2.63 | 3.73 | 3.86 | RI, MS |
cis-α-Bergamotene | 1414 | 1417 | 0.00 | 0.00 | 0.00 | 0.00 | 0.97 | 0.00 | 0.00 | 0.00 | 0.78 | RI, MS |
trans-β-Caryophyllene | 1419 | 1421 | 1.72 | 2.08 | 0.90 | 0.00 | 1.72 | 2.86 | 3.07 | 2.30 | 2.54 | RI, MS |
trans-α-Bergamotene | 1436 | 1437 | 0.00 | 0.00 | 0.00 | 0.81 | 1.03 | 0.00 | 0.00 | 0.00 | 0.85 | RI, MS |
Italidione I | 1443 | 1446 | 9.17 | 2.75 | 2.37 | 2.50 | 4.37 | 3.54 | 2.24 | 4.07 | 3.61 | RI, MS |
Neryl propanoate | 1455 | 1458 | 0.00 | 0.00 | 3.02 | 2.10 | 3.03 | 1.76 | 1.56 | 3.25 | 3.03 | RI, MS |
γ-Selinene | 1475 | 1477 | 0.00 | 1.48 | 1.15 | 1.32 | 1.60 | 0.00 | 0.00 | 0.00 | 1.25 | RI, MS |
γ-Curcumene | 1480 | 1480 | 0.00 | 0.00 | 0.00 | 0.00 | 1.53 | 1.11 | 3.00 | 6.85 | 6.82 | RI, MS |
Ar-curcumene | 1484 | 1487 | 5.92 | 7.01 | 8.14 | 10.65 | 7.57 | 9.21 | 6.54 | 8.08 | 7.07 | RI, MS |
β-Selinene | 1486 | 1488 | 6.88 | 4.85 | 6.85 | 2.27 | 6.44 | 2.42 | 6.89 | 5.25 | 5.21 | RI, MS |
Italidione II | 1490 | 1493 | 10.90 | 8.86 | 6.16 | 4.23 | 5.10 | 2.84 | 4.71 | 5.56 | 4.68 | RI, MS |
α-Selinene | 1494 | 1496 | 3.95 | 4.77 | 6.06 | 2.96 | 4.70 | 0.00 | 4.07 | 3.64 | 3.38 | RI, MS |
δ-Cadinene | 1523 | 1525 | 1.07 | 1.15 | 0.00 | 0.00 | 1.19 | 0.00 | 1.22 | 1.12 | 1.30 | RI, MS |
Phenylethyl tiglate | 1540 | 1541 | 0.00 | 0.00 | 0.00 | 1.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.92 | RI, MS |
Nerolidol | 1566 | 1567 | 0.97 | 6.46 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | RI, MS |
Italidione III | 1582 | 1583 | 9.54 | 10.78 | 13.79 | 7.36 | 8.35 | 10.14 | 5.45 | 6.73 | 5.20 | RI, MS |
Viridiflorol | 1594 | 1591 | 0.00 | 0.00 | 0.00 | 1.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | RI |
Guaiol | 1597 | 1599 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.37 | 0.00 | 0.00 | 1.08 | RI, MS |
Humulene epoxide II | 1605 | 1605 | 3.22 | 4.47 | 0.00 | 5.87 | 2.28 | 1.07 | 3.67 | 2.14 | 3.16 | RI |
Rosifoliol | 1608 | 1611 | 1.14 | 0.00 | 0.77 | 1.01 | 1.71 | 4.13 | 6.24 | 4.67 | 3.54 | RI, MS |
γ-Eudesmol | 1634 | 1634 | 1.15 | 0.00 | 0.00 | 0.00 | 0.65 | 1.19 | 0.00 | 0.00 | 0.74 | RI |
τ-Cadinol | 1643 | 1644 | 1.26 | 1.44 | 0.00 | 1.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | RI, MS |
β-Eudesmol | 1651 | 1654 | 1.17 | 0.00 | 0.00 | 1.84 | 1.13 | 1.82 | 0.00 | 0.00 | 1.63 | RI, MS |
α-Muurolol | 1656 | 1654 | 2.06 | 2.85 | 2.15 | 3.40 | 3.19 | 0.00 | 3.17 | 2.25 | 2.87 | RI, MS |
β-Bisabolol | 1671 | 1672 | 0.00 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 1.28 | RI, MS |
Neryl hexanoate | 1729 | 1731 | 0.00 | 0.00 | 0.60 | 0.00 | 1.36 | 0.00 | 0.00 | 0.00 | 0.00 | RI |
TOTAL | 99.10 | 95.53 | 93.80 | 80.28 | 99.99 | 98.33 | 96.61 | 97.81 | 96.57 |
Sample | HDF | BEAS-2B | MDA-MB-231 |
---|---|---|---|
LA-P | 184.77 ± 4.63 | 52.90 ± 1.15 | 212.83 ± 20.43 |
LA-Z | 177.40 ± 1.44 | 59.97 ± 4.32 | 169.00 ± 3.61 |
VI | 189.63 ± 4.82 | 162.33 ± 4.21 | 207.33 ± 13.04 |
KS | 167.67 ± 2.89 | 150.00 ± 10.54 | 165.20 ± 1.59 |
PL | 189.23 ± 14.35 | 104.67 ± 17.47 | 192.17 ± 12.09 |
PT | 186.33 ± 6.90 | 173.67 ± 1.53 | 193.67 ± 6.60 |
MA | 175.67 ± 4.54 | 112.50 ± 12.76 | 227.50 ± 28.81 |
KO-1 | 224.37 ± 20.35 | 90.20 ± 11.70 | 228.50 ± 34.65 |
KO-2 | 190.27 ± 6.51 | 55.80 ± 0.72 | 199.07 ± 15.08 |
Terpene Compounds vs. IC50 | HDF | BEAS-2B | MDA-MB-213 |
Monoterpene hydrocarbons | ns | ns | ns |
Derivatives of monoterpenes | ns | r = 0.5948 p = 0.0456 | ns |
Sesquiterpene hydrocarbons | ns | ns | ns |
Derivatives of sesquiterpenes | ns | ns | ns |
Other compounds | ns | ns | ns |
Functional Groups vs. IC50 | HDF | BEAS-2B | MDA-MB-213 |
Alkenes | ns | r = −0.7103 p = 0.0160 | ns |
Alcohols | ns | ns | ns |
Ketones | ns | ns | ns |
Aromatic | ns | r = 0.6173 p = 0.0383 | ns |
Esters | ns | r = 0.6547 p = 0.0278 | ns |
Other compounds | ns | ns | ns |
Size (Molecular Weight) vs. IC50 | HDF | BEAS-2B | MDA-MB-213 |
136.23 | ns | ns | ns |
150–197 | ns | r = 0.6151 p = 0.0390 | r = 0.5845 p = 0.0492 |
202–211 | ns | r = −0.5953 p = 0.0454 | ns |
220–225 | ns | r = −0.7598 p = 0.0088 | ns |
>225 | ns | ns | ns |
Structure vs. IC50 | HDF | BEAS-2B | MDA-MB-213 |
Acylic (n = 0) | ns | ns | ns |
Cyclic (n = 1) | ns | ns | ns |
Cyclic (n = 2) | ns | r = −0.7733 p = 0.0073 | ns |
Cyclic (n = 3) | ns | ns | ns |
No. of Oxygen Atoms vs. IC50 | HDF | BEAS-2B | MDA-MB-213 |
n = 0 | ns | r = −0.6407 p = 0.0315 | ns |
n = 1 | ns | ns | ns |
n = 2 | ns | ns | ns |
No. of Unsaturated Bonds vs. IC50 | HDF | BEAS-2B | MDA-MB-213 |
n = 0 | ns | ns | r = −0.7974 p = 0.0050 |
n = 1 | ns | ns | ns |
n = 2 | ns | r = −06772 p = 0.0225 | ns |
n = 3 | ns | ns | r = 0.6433 p = 0.0308 |
Individual Compounds vs. IC50 | HDF | BEAS-2B | MDA-MB-213 |
2-Methylbutyl angelate | r = 0.6569 p = 0.0273 | ns | r = 0.6606 p = 0.0264 |
Terpinen-4-ol | r = 0.8019 p = 0.0047 | ns | ns |
Nerol | r = 0.7088 p = 0.0163 | ns | ns |
γ-Curcumene | r = 0.6702 p = 0.0241 | ns | ns |
α-Terpineol | ns | r = −0.6237 p = 0.0363 | ns |
Neryl acetate | ns | r = 0.6496 p = 0.0292 | ns |
α-Copaene | ns | r = −0.06936 p = 0.0191 | ns |
Ar-curcumene | ns | r = 0.7437 p = 0.0108 | ns |
Italidione II | ns | r = −0.6532 p = 0.0282 | ns |
δ-Cadinene | ns | r = −0.8730 p = 0.0011 | ns |
γ-Selinene | ns | ns | r = −0.7128 p = 0.0156 |
β-Selinene | ns | ns | r = 0.6186 p = 0.0379 |
Rosifoliol | ns | ns | r = 0.6751 p = 0.0230 |
Name of Location | Latitude | Longitude | Approximate Elevation |
---|---|---|---|
Lastovo (LA-P) | 42°45′23″ N | 16°54′48″ E | 31 m |
Lastovo (LA-Z) | 42°44′44″ N | 16°52′21″ E | 120 m |
Vitina (VI) | 43°14′39″ N | 17°28′52″ E | 174 m |
Kaštel Stari (KS) | 43°34′49″ N | 16°19′40″ E | 429 m |
Plano (PL) | 43°33′52″ N | 16°16′58″ E | 263 m |
Prgomet (PT) | 43°37′04″ N | 16°14′43″ E | 337 m |
Marina (MA) | 43°30′33″ N | 16°07′49′′ E | 18 m |
Kornati (KO-1, KO-2) | 43°49′30″ N | 15°16′19″ E | 38 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glumac, M.; Jažo, Z.; Paštar, V.; Golemac, A.; Čikeš Čulić, V.; Bektić, S.; Radan, M.; Carev, I. Chemical Profiling and Bioactivity Assessment of Helichrysum italicum (Roth) G. Don. Essential Oil: Exploring Pure Compounds and Synergistic Combinations. Molecules 2023, 28, 5299. https://doi.org/10.3390/molecules28145299
Glumac M, Jažo Z, Paštar V, Golemac A, Čikeš Čulić V, Bektić S, Radan M, Carev I. Chemical Profiling and Bioactivity Assessment of Helichrysum italicum (Roth) G. Don. Essential Oil: Exploring Pure Compounds and Synergistic Combinations. Molecules. 2023; 28(14):5299. https://doi.org/10.3390/molecules28145299
Chicago/Turabian StyleGlumac, Mateo, Zvonimir Jažo, Vlatka Paštar, Anja Golemac, Vedrana Čikeš Čulić, Sanida Bektić, Mila Radan, and Ivana Carev. 2023. "Chemical Profiling and Bioactivity Assessment of Helichrysum italicum (Roth) G. Don. Essential Oil: Exploring Pure Compounds and Synergistic Combinations" Molecules 28, no. 14: 5299. https://doi.org/10.3390/molecules28145299
APA StyleGlumac, M., Jažo, Z., Paštar, V., Golemac, A., Čikeš Čulić, V., Bektić, S., Radan, M., & Carev, I. (2023). Chemical Profiling and Bioactivity Assessment of Helichrysum italicum (Roth) G. Don. Essential Oil: Exploring Pure Compounds and Synergistic Combinations. Molecules, 28(14), 5299. https://doi.org/10.3390/molecules28145299