Fabrication of Composite Gel Electrolyte and F-Doping Carbon/Silica Anode from Electro-Spun P(VDF-HFP)/Silica Composite Nanofiber Film for Advanced Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. P(VDF-HFP)@SiO2 Composite Nanofiber Film
2.2. F-C@SiO2 Composite Nanofibers
2.3. P(VDF-HFP)@SiO2-Based Gel Electrolyte
2.4. F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li Battery
3. Experimental Section
3.1. Materials
3.2. Synthesis of Electro-Spun P(VDF-HFP)/Mesoporous Silica Composite Nanofiber Film and F-Doped Carbon/Silica Composite Nanofibers
3.3. Assembly of LiFePO4/Li and F-C@SiO2/Li Batteries and Electrochemical Tests
3.4. General Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, D.; Guo, H.; Jiang, S.; Zeng, G.; Zhou, W.; Li, Z. Microstructures and electrochemical performances of TiO2-coated Mg-Zr co-doped NCM as a cathode material for lithium-ion batteries with high power and long circular life. New J. Chem. 2021, 45, 19446–19455. [Google Scholar] [CrossRef]
- Deng, W.; Xu, Y.; Zhan, X.; Li, C.; Liu, Y.; Xiang, K.; Chen, H. (NH4)2Co2V10O28·16H2O/(NH4)2V10O25·8H2O heterostructure as cathode for high-performance aqueous Zn-ion batteries. J. Alloys Compd. 2022, 903, 163824. [Google Scholar] [CrossRef]
- Zhou, W.; Zeng, G.; Jin, H.; Jiang, S.; Huang, M.; Zhang, C.; Chen, H. Bio-Template Synthesis of V2O3@Carbonized Dictyophora Composites for Advanced Aqueous Zinc-Ion Batteries. Molecules 2023, 28, 2147. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, H.; Zhang, H.; He, S.; Zhang, Q.; Liu, K.; Jiang, S.; Duan, G.; Zhang, K. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. J. Bioresour. Bioprod. 2022, 7, 245–269. [Google Scholar] [CrossRef]
- Arora, P.; Zhang, Z. Battery Separators. Chem. Rev. 2004, 104, 4419–4462. [Google Scholar] [CrossRef] [PubMed]
- Jana, K.K.; Lue, S.J.; Huang, A.; Soesanto, J.F.; Tung, K. Separator Membranes for High Energy-Density Batteries. ChemBioEng Rev. 2018, 5, 346–371. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Dias, J.P.; Lanceros-Mendez, S.; Costa, C.M. Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Membranes 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Liu, S.; Duan, G.; Fang, H.; Hou, H. Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery. Compos. Commun. 2020, 19, 239–245. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Anion-Sorbent Composite Separators for High-Rate Lithium-Ion Batteries. Adv. Mater. 2019, 31, 1808338. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Yuan, A.; Xie, X.; Xia, B. Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries. Ionics 2016, 22, 2143–2149. [Google Scholar] [CrossRef]
- Gao, T.; Tian, P.; Yang, Y.; Xu, Q.; Pang, H.; Ye, J.; Ning, G. A Composite Fiber Separator with Reversible Thermal Shutdown for Safety of Lithium-Ion Batteries. Energy Technol. 2022, 10, 2200. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, J.; Zhang, F.; He, X. Highly porous and thermally stable zeolitic imidazolate framework-8/aramid nanofibers composite separator for lithium-ion batteries. Compos. Commun. 2022, 32, 101183. [Google Scholar] [CrossRef]
- Liu, H.; Dai, Z.; Xua, J.; Guo, B.; He, X. Effect of silica nanoparticles/poly(vinylidenefluoride-hexafluoropropylene) coated layers on the performance of polypropylene separator for lithium-ion batteries. J. Energy Chem. 2014, 23, 582–586. [Google Scholar] [CrossRef]
- Gan, H.; Zhang, Y.; Li, S.; Zhu, W.; Wang, J.; Xue, Z. Synergetic effects of silica-coated silver nanowires in composite single-ion conducting polymer electrolytes for lithium metal batteries. J. Power Sources 2022, 551, 232171. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, L.; Xu, S.; Zhang, H.; Ren, B.; Li, T.; Zhang, S. Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery. J. Mater. Chem. A 2018, 6, 18479. [Google Scholar] [CrossRef]
- Yan, Y.; Kong, Q.; Sun, C.; Yuan, J.; Huang, Z.; Fang, L.; Zhu, B.; Song, Y. Copolymer-assisted Polypropylene Separator for Fast and Uniform Lithium Ion Transport in Lithium-ion Batteries. Chin. J. Polym. Sci. 2020, 38, 1313–1324. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, Z.; Feng, C.; Lv, W.; Wei, Z.; Zhang, K.H.L.; Lin, B.; Wu, S.; Lei, T.; Guo, X.; et al. An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials. Adv. Energy Mater. 2019, 9, 1803627. [Google Scholar] [CrossRef]
- Frankenberger, M.; Singh, M.; Dinter, A.; Pettinger, K.H. EIS Study on the Electrode-Separator Interface Lamination. Batteries 2019, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Facile manufacture technique for lithium-ion batteries composite separator via online construction of fumed SiO2 coating. Mater. Des. 2022, 215, 110476. [Google Scholar] [CrossRef]
- Zhang, C.; Li, F.; Zhu, X.; Yu, J. Triallyl Isocyanurate as an Efficient Electrolyte Additive for Layered Oxide Cathode Material-Based Lithium-Ion Batteries with Improved Stability under High-Voltage. Molecules 2022, 27, 3107. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Xu, H.; Duan, H.; Lv, X.; Xin, S.; Zhou, W.; Xue, L.; Fu, G.; Manthiram, A.; et al. Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2017, 56, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Shen, J.; Zhang, J.; Li, G. A novel separator material consisting of ZeoliticImidazolate Framework-4 (ZIF-4) and its electrochemical performance for lithium-ions battery. J. Power Sources 2017, 369, 27–34. [Google Scholar] [CrossRef]
- Shi, L.; Wang, W.; Wang, C.; Zhou, Y.; Feng, Y.; Jia, T.; Wang, F.; Min, Z.; Hu, J.; Xue, Z. In situ formed cross-linked polymer networks as dual-functional layers for high-stable lithium metal batteries. J. Energy Chem. 2023, 79, 253–262. [Google Scholar] [CrossRef]
- Jiang, Z.; Xie, H.; Wang, S.; Song, X.; Yao, X.; Wang, H. Perovskite Membranes with Vertically Aligned Microchannels for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2018, 8, 1801433. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, R.; Dai, H.; Yan, J.; Zhang, J.; Zhong, M.; Shen, W.; Guo, S. Reinforce the Adhesion of Gel Electrolyte to Electrode and the Interfacial Charge Transfer via In Situ Electrospinning the Polymeric Nanofiber Matrix. Energy Technol. 2021, 9, 2000865. [Google Scholar] [CrossRef]
- Karthik, K.; Din, M.M.U.; Jayabalan, A.D.; Murugan, R. Lithium garnet incorporated 3D electrospun fibrous membrane for high capacity lithium-metal batteries. Mater. Today Energy 2020, 16, 100389. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Zhang, R.; Li, Y.; Shen, W.; Zhang, J.; Zhong, M.; Guo, S. Core−Shell PMIA@PVdF-HFP/Al2O3 Nanofiber Mats In Situ Coaxial Electrospun on LiFePO4 Electrode as Matrices for Gel Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 9875–9884. [Google Scholar] [CrossRef]
- Song, X.; Qi, W.; Zhang, H.; Wang, G. Construction of core-shell nanofiber membrane with enhanced interface compatibility for lithium-metal battery. Solid State Ion. 2020, 347, 115266. [Google Scholar] [CrossRef]
- Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikov, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 2102. [Google Scholar] [CrossRef]
- Qie, L.; Chen, W.; Wang, Z.; Shao, Q.; Li, X.; Yuan, L.; Hu, X.; Zhang, W.; Huang, Y. Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Adv. Mater. 2012, 24, 2047. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, H.; Yang, Y.; Li, Y.; Wu, Q.H. A highly conductive quasi-solid-state electrolyte based on helical silica nanofibers for lithium batteries. RSC Adv. 2021, 11, 33858–33866. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Shao, W.; Cui, S.; Zhao, Y.; Zhou, Y.; He, J. Graphite oxide doping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Compos. Commun. 2019, 16, 150–157. [Google Scholar] [CrossRef]
- Jia, S.; Huang, K.; Long, J.; Yang, S.; Liang, Y.; Yang, N.; Xiao, J. Electron beam irradiation modified electrospun polyvinylidene fluoride/polyacrylonitrile fibrous separators for safe lithium-ion batteries. J. Appl. Polym. Sci. 2021, 138, 50359. [Google Scholar] [CrossRef]
- Liu, C.; Hu, J.; Zhu, Y.; Yang, Y.; Li, Y.; Wu, Q. Quasi-Solid-State Polymer Electrolyte Based on Electro-spun Polyacrylonitrile/Polysilsesquioxane Composite Nanofibers Membrane for High-Performance Lithium Batteries. Materials 2022, 15, 7527. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Fang, X.; Peng, H.; Li, Y.; Yang, Y. Fabrication of Composite Gel Electrolyte and F-Doping Carbon/Silica Anode from Electro-Spun P(VDF-HFP)/Silica Composite Nanofiber Film for Advanced Lithium-Ion Batteries. Molecules 2023, 28, 5304. https://doi.org/10.3390/molecules28145304
Liu C, Fang X, Peng H, Li Y, Yang Y. Fabrication of Composite Gel Electrolyte and F-Doping Carbon/Silica Anode from Electro-Spun P(VDF-HFP)/Silica Composite Nanofiber Film for Advanced Lithium-Ion Batteries. Molecules. 2023; 28(14):5304. https://doi.org/10.3390/molecules28145304
Chicago/Turabian StyleLiu, Caiyuan, Xin Fang, Hui Peng, Yi Li, and Yonggang Yang. 2023. "Fabrication of Composite Gel Electrolyte and F-Doping Carbon/Silica Anode from Electro-Spun P(VDF-HFP)/Silica Composite Nanofiber Film for Advanced Lithium-Ion Batteries" Molecules 28, no. 14: 5304. https://doi.org/10.3390/molecules28145304
APA StyleLiu, C., Fang, X., Peng, H., Li, Y., & Yang, Y. (2023). Fabrication of Composite Gel Electrolyte and F-Doping Carbon/Silica Anode from Electro-Spun P(VDF-HFP)/Silica Composite Nanofiber Film for Advanced Lithium-Ion Batteries. Molecules, 28(14), 5304. https://doi.org/10.3390/molecules28145304