Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures
Abstract
:1. Introduction
1.1. Research Background
1.2. Definition of Dynamic Metal Nanoclusters
2. Advances in the Synthesis and Properties of Dynamic Metal Nanoclusters
2.1. Synthesis and Characterization of Au13Ag12(PPh3)10Cl8 Nanoclusters (Single-Atom Exchange)
2.2. Synthesis and Characterization of [Au25−yAgy(PPh3)10Cl8]+ Nanoclusters (Photoinduced)
2.3. Synthesis and Characterization of [Au13Ag12(PPh3)10Cl8]SbBF6 Nanoclusters (Reduction Method)
2.4. Synthesis and Characterization of Multidimensional Silver Cluster-Based Polymers (Ag-CBPs) via Self-Assembly
3. Properties and Applications of Dynamic Metal Nanoclusters
3.1. Catalytic Applications
3.2. Optical Applications
3.3. Electronics Applications
4. Trends and Challenges in Dynamic Nanometal Clusters
4.1. Size and Composition Control
4.2. Structural Characterization
4.3. Functional Applications
4.4. Stability and Scalability
4.5. Understanding the Structure–Property Relationship
4.6. Integration and Compatibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, R.; Li, G.; Sharma, S.; Li, Y.; Du, X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem. Rev. 2021, 121, 567–648. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Qin, Z.; Sharma, S.; Li, G. Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal Nanoclusters. Chem. Rec. 2021, 21, 879–892. [Google Scholar] [CrossRef] [PubMed]
- Kawawaki, T.; Ebina, A.; Hosokawa, Y.; Ozaki, S.; Suzuki, D.; Hossain, S.; Negishi, Y. Thiolate-Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. Small 2021, 17, 2005328. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Zhang, Y.; Li, Z.; Yang, D.; Zhang, D.H.; Tsukuda, T.; Li, G. A Revealing Insight into Gold Cluster Photocatalysts: Visible versus (Vacuum) Ultraviolet Light. J. Phys. Chem. Lett. 2023, 14, 4179–4184. [Google Scholar] [CrossRef]
- Zhang, Y.; Busari, K.; Cao, C.; Li, G. Structural Quasi-Isomerism in Au/Ag Nanoclusters. Photochem 2022, 2, 932–946. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Li, G. Recent Advances in Aerobic Photo-Oxidation over Small-Sized IB Metal Nanoparticles. Photochem 2022, 2, 528–538. [Google Scholar] [CrossRef]
- Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem. Rev. 2020, 120, 526–622. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, Z.; Waheed, A.; Gao, Y.; Xu, H.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, Z.; Liu, S.; Zhu, M.; Li, G. On the redox property of Ag16Au13 clusters: One-way conversion from anionic [Au13Ag16L24]3− to charge neutral [Au13Ag16L24]. J. Chem. Phys. 2021, 154, 164308. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, H.; Qin, Z.; Tian, S.; Ye, Z.; Ye, L.; Abroshan, H.; Li, G. TixCe1−xO2 nanocomposites: A monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate. Green Chem. 2019, 21, 4642–4649. [Google Scholar] [CrossRef]
- Li, Y.; Jin, R. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. J. Am. Chem. Soc. 2020, 142, 13627–13644. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Liu, S.; Qin, Z.; Zhang, Y.; Li, G.; Zhao, Z. Butterfly-Like Tetranuclear Copper(I) Clusters for Efficient Alkyne Homocoupling Reactions. Eur. J. Inorg. Chem. 2021, 2021, 392–397. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Li, Z.; Qin, Z.; Sharma, S.; Li, G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun. Chem. 2023, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Sharma, S.; Wan, C.; Malola, S.; Xu, W.; Häkkinen, H.; Li, G. A Homoleptic Alkynyl-Ligated [Au13Ag16L24]3− Cluster as a Catalytically Active Eight-Electron Superatom. Angew. Chem. Int. Ed. 2021, 60, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N.L.; Yoon, B.; Barnett, R.N.; Whetten, R.L.; Landman, U.; Jin, R. Total Structure and Electronic Properties of the Gold Nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 2012, 51, 13114–13118. [Google Scholar] [CrossRef]
- Zeng, C.; Chen, Y.; Das, A.; Jin, R. Transformation Chemistry of Gold Nanoclusters: From One Stable Size to Another. J. Phys. Chem. Lett. 2015, 6, 2976–2986. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, Z.; Ping, G.; Liu, S.; Xu, H.; Li, G. Alkynyl- and phosphine-ligated quaternary Au2Ag2 clusters featuring an Alkynyl-AuAg motif for multicomponent coupling. RSC Adv. 2020, 10, 21650–21655. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Liu, C.; Li, Z.; Li, G. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application. Nanoscale 2016, 8, 10059–10065. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, S.; Yu, C.; Zhang, J.; Pan, X.; Li, G. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15767–15773. [Google Scholar] [CrossRef]
- Wang, S.; Abroshan, H.; Liu, C.; Luo, T.-Y.; Zhu, M.; Kim, H.J.; Rosi, N.L.; Jin, R. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lambright, K.J.; Taylor, M.G.; Kirschbaum, K.; Luo, T.-Y.; Zhao, J.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N.L.; Jin, R. Reconstructing the Surface of Gold Nanoclusters by Cadmium Doping. J. Am. Chem. Soc. 2017, 139, 17779–17782. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wang, P.; Yan, N.; Chai, X.; He, L.; Zhao, Y.; Xia, N.; Yao, C.; Li, J.; Deng, H.; et al. The Fourth Alloying Mode by Way of Anti-Galvanic Reaction. Angew. Chem. Int. Ed. 2018, 57, 4500–4504. [Google Scholar] [CrossRef] [PubMed]
- Higaki, T.; Liu, C.; Chen, Y.; Zhao, S.; Zeng, C.; Jin, R.; Wang, S.; Rosi, N.L.; Jin, R. Oxidation-Induced Transformation of Eight-Electron Gold Nanoclusters: [Au23(SR)16]− to [Au28(SR)20]0. J. Phys. Chem. Lett. 2017, 8, 866–870. [Google Scholar] [CrossRef]
- Kamei, Y.; Shichibu, Y.; Konishi, K. Generation of Small Gold Clusters with Unique Geometries through Cluster-to-Cluster Transformations: Octanuclear Clusters with Edge-sharing Gold Tetrahedron Motifs. Angew. Chem. Int. Ed. 2011, 50, 7442–7445. [Google Scholar] [CrossRef]
- Zhao, M.H.; Huang, S.; Fu, Q.; Li, W.F.; Guo, R.; Yao, Q.X.; Wang, F.L.; Cui, P.; Tung, C.H.; Sun, D. Ambient Chemical Fixation of CO2 Using a Robust Ag27 Cluster-Based Two-Dimensional Metal–Organic Framework. Angew. Chem. Int. Ed. 2020, 59, 20031–20036. [Google Scholar] [CrossRef]
- Chen, S.; Du, W.J.; Qin, C.W.L.; Liu, D.Y.; Tang, L.; Liu, Y.; Wang, S.X.; Zhu, M.Z. Assembly of the Thiolated [Au1Ag22(S-Adm)12]3+ Superatom Complex into a Framework Material through Direct Linkage by SbF6− Anions. Angew. Chem.Int. Ed. 2020, 59, 7542–7547. [Google Scholar] [CrossRef] [PubMed]
- Teo, B.K.; Zhang, H. Molecular Machines: Molecular Structure of [(p-Tol3P)10Au13Ag12Cl8](PF7)—A Cluster with a Biicosahedral Rotorlike Metal Core and an Unusual Arrangement of Bridging Ligands. Angew. Chem. Int. Ed. 1992, 31, 445–447. [Google Scholar] [CrossRef]
- Teo, B.K.; Shi, X.; Zhang, H. Cluster of clusters. Structure of a novel gold-silver cluster [(Ph3P)10Au13Ag12Br8](SbF6) containing an exact staggered-eclipsed-staggered metal configuration. Evidence of icosahedral units as building blocks. J. Am. Chem. Soc. 1991, 113, 4329–4331. [Google Scholar] [CrossRef]
- Teo, B.K.; Zhang, H. Cluster of clusters. Structure of a new cluster [(p-Tol3P)10Au13Ag12Cl7](SbF6)2 containing a nearly staggered-eclipsed-staggered metal configuration and five doubly-bridging ligands. Inorg. Chem. 1991, 30, 3115–3116. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D.-E.; Rosi, N.L.; Jin, R. Isomerism in Au28(SR)20 Nanocluster and Stable Structures. J. Am. Chem. Soc. 2016, 138, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Grzybowski, B.A. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- Miszta, K.; de Graaf, J.; Bertoni, G.; Dorfs, D.; Brescia, R.; Marras, S.; Ceseracciu, L.; Cingolani, R.; van Roij, R.; Dijkstra, M.; et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 2011, 10, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Li, Y.; Xi, W.; Hussain, I.; Chen, M.; Tan, B. Facile preparation of silver nanocluster self-assemblies with aggregation-induced emission by equilibrium shifting. Nanoscale 2021, 13, 14207–14213. [Google Scholar] [CrossRef]
- Zhang, W.F.; Ye, G.M.; Liao, D.H.; Chen, X.L.; Lu, C.Y.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.Q.; Pan, Y.; Dai, Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022, 27, 7166. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, X.L.; Fang, D.; Lieu, W.Y.; Chen, C.; Khan, M.S.; Li, D.-S.; Tian, B.; Shi, Y.; Yang, H.Y. Metal–Organic-Framework-Derived 3D Hierarchical Matrixes for High-Performance Flexible Li–S Batteries. ACS Appl. Mater. Interfaces 2023, 15, 20064–20074. [Google Scholar] [CrossRef]
- Shi, Y.; Zou, Y.; Khan, M.S.; Zhang, M.; Yan, J.; Zheng, X.; Wang, W.; Xie, Z. Metal–organic framework-derived photoelectrochemical sensors: Structural design and biosensing technology. J. Mater. Chem. C 2023, 11, 3692–3709. [Google Scholar] [CrossRef]
- Song, Y.; Jin, S.; Kang, X.; Xiang, J.; Deng, H.; Yu, H.; Zhu, M. How a Single Electron Affects the Properties of the “Non-Superatom” Au25 Nanoclusters. Chem. Mater. 2016, 28, 2609–2617. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, T.; Ou, M.; Rowell, N.; Fan, H.; Han, J.; Tan, L.; Dove, M.T.; Ren, Y.; Zuo, X.; et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Wang, J.; Wu, K.; Zhang, L.; Zhang, J. Isomerism in Titanium-Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity. Angew. Chem. Int. Ed. 2019, 58, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zhang, J.; Zhao, D.; Yang, Y.; Li, Z.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507. [Google Scholar] [CrossRef]
- Liao, L.; Yao, C.; Wang, C.; Tian, S.; Chen, J.; Li, M.-B.; Xia, N.; Yan, N.; Wu, Z. Quantitatively Monitoring the Size-Focusing of Au Nanoclusters and Revealing What Promotes the Size Transformation from Au44(TBBT)28 to Au36(TBBT)24. Anal. Chem. 2016, 88, 11297–11301. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Hu, S.; Han, W.; Li, Z.; Xu, W.W.; Zhang, J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Zhang, J.; Xu, L.; Han, Z.; Baiker, A.; Li, G. Nanostructured Ni-MoCx: An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res. 2023. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, J.; Sharma, S.; Malola, S.; Wu, K.; Häkkinen, H.; Li, G. Photo-Induced Cluster-to-Cluster Transformation of [Au37–xAgx(PPh3)13Cl10]3+ into [Au25–yAgy(PPh3)10Cl8]+: Fragmentation of a Trimer of 8-Electron Superatoms by Light. J. Phys. Chem. Lett. 2021, 12, 10920–10926. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, J.; Wan, C.; Liu, S.; Abroshan, H.; Jin, R.; Li, G. Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors. Nat. Commun. 2020, 11, 6019. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Z.; Sharma, S.; Peng, Y.; Jin, R.; Li, G. Self-Assembly of Silver Clusters into One- and Two-Dimensional Structures and Highly Selective Methanol Sensing. Research 2022, 5, 0018. [Google Scholar] [CrossRef]
- Kauffman, D.R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. Experimental and Computational Investigation of Au25 Clusters and CO2: A Unique Interaction and Enhanced Electrocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 10237–10243. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Jiang, D.-E.; Kumar, S.; Chen, Y.; Jin, R. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure. ACS Catal. 2014, 4, 2463–2469. [Google Scholar] [CrossRef]
- Li, Y.-H.; Zhao, S.-N.; Zang, S.-Q. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. Exploration 2023, 3, 20220005. [Google Scholar] [CrossRef]
- Pniakowska, A.; Ramankutty, K.K.; Obstarczyk, P.; Bakulić, M.P.; Maršić, Ž.S.; Bonačić-Koutecký, V.; Bürgi, T.; Olesiak-Bańska, J. Gold-Doping Effect on Two-Photon Absorption and Luminescence of Atomically Precise Silver Ligated Nanoclusters. Angew. Chem. Int. Ed. 2022, 61, e202209645. [Google Scholar] [CrossRef]
- Yonesato, K.; Yamazoe, S.; Kikkawa, S.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. Variable control of the electronic states of a silver nanocluster via protonation/deprotonation of polyoxometalate ligands. Chem. Sci. 2022, 13, 5557–5561. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Q.; Xu, L.; Han, Z.; Guo, S.; Li, G.; Baiker, A. Effect of the Configuration of Copper Oxide–Ceria Catalysts in NO Reduction with CO: Superior Performance of a Copper–Ceria Solid Solution. ACS Appl. Mater. Interfaces 2021, 13, 61078–61087. [Google Scholar] [CrossRef]
- Qin, Z.; Zhao, D.; Zhao, L.; Xiao, Q.; Wu, T.; Zhang, J.; Wan, C.; Li, G. Tailoring the stability, photocatalysis and photoluminescence properties of Au11 nanoclusters via doping engineering. Nanoscale Adv. 2019, 1, 2529–2536. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, Z.; Cui, C.; Luo, Z.; Yang, B.; Jiang, Y.; Lai, C.; Wang, Z.; Wang, X.; Fang, X.; et al. In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Sci. China Chem. 2022, 65, 1196–1203. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Pei, W.; Li, G.; Liu, W.; Du, P.; Wang, Z.; Qin, Z.; Qi, H.; Liu, X.; et al. Crystal-Phase-Mediated Restructuring of Pt on TiO2 with Tunable Reactivity: Redispersion versus Reshaping. ACS Catal. 2022, 12, 3634–3643. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Li, Z.; Yang, X.; Meng, F.; Liang, H.; Lei, Y.; Wu, H.; Zhang, J.; Li, G.; et al. Surface isolation of single metal complexes or clusters by a coating sieving layer via atomic layer deposition. Cell Rep. Phys. Sci. 2022, 3, 100787. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Shi, Q.; Gong, X.; Xu, H.; Li, G. Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation. Nanoscale Adv. 2021, 3, 7002–7006. [Google Scholar] [CrossRef]
- Du, X.; Huang, Y.; Pan, X.; Han, B.; Su, Y.; Jiang, Q.; Li, M.; Tang, H.; Li, G.; Qiao, B. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Zhang, Y.; Li, Z.; Han, Z.; Xu, L.; Baiker, A.; Li, G. Morphology effects in MnCeOx solid solution-catalyzed NO reduction with CO: Active sites, water tolerance, and reaction pathway. Nano Res. 2023, 16, 6951–6959. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, X.; Li, Z.; Raza, A.; Li, G. Plasmonic Au Nanoparticle of a Au/TiO2–C3N4 Heterojunction Boosts up Photooxidation of Benzyl Alcohol Using LED Light. ACS Appl. Mater. Interfaces 2023, 15, 30161–30169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, Y.; Jiang, Q.; Guo, S.; Huang, J.; Xu, L.; Wang, Y.; Li, G. Facile synthesis of cobalt cluster-CoNx composites: Synergistic effect boosts electrochemical oxygen reduction. J. Mater. Chem. A 2022, 10, 16920–16927. [Google Scholar] [CrossRef]
- Cao, Y.; Su, Y.; Xu, L.; Yang, X.; Han, Z.; Cao, R.; Li, G. Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. J. Energy Chem. 2022, 71, 167–173. [Google Scholar] [CrossRef]
- Shi, Q.; Wei, X.; Raza, A.; Li, G. Recent Advances in Aerobic Photo-Oxidation of Methanol to Valuable Chemicals. ChemCatChem 2021, 13, 3381–3395. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Peng, F.; Li, G.; Diao, K. Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures. Molecules 2023, 28, 5306. https://doi.org/10.3390/molecules28145306
Liu X, Peng F, Li G, Diao K. Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures. Molecules. 2023; 28(14):5306. https://doi.org/10.3390/molecules28145306
Chicago/Turabian StyleLiu, Xiang, Fan Peng, Gao Li, and Kai Diao. 2023. "Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures" Molecules 28, no. 14: 5306. https://doi.org/10.3390/molecules28145306
APA StyleLiu, X., Peng, F., Li, G., & Diao, K. (2023). Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures. Molecules, 28(14), 5306. https://doi.org/10.3390/molecules28145306