Diastereoselective Formal 1,3-Dipolar Cycloaddition of Trifluoroethyl Amine-Derived Ketimines Enables the Desymmetrization of Cyclopentenediones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization Studies
2.2. Substrate Scope Studies
2.3. Scale-Up Experiment and Versatile Transformations of the Products
2.4. Proposed Mechanism for the 1,3-Dipolar Cycloaddition Reaction Accompanied by Desymmetrization Process
3. Materials and Methods
3.1. General Information
3.2. General Experimental Procedure for the 1,3-Dipolar Cycloaddition Reaction of N-2,2,2-Trifluoroethylisatin Ketimines and Cyclopentene-1,3-Diones for the Synthesis of Compounds 3 (Scheme 2 and Table 2)
3.3. General Experimental Procedure for the 1,3-Dipolar Cycloaddition Reaction of Trifluoromethyl-Substituted Iminomalonate and Cyclopentene-1,3-Diones for the Synthesis of Compounds 5 (Scheme 3)
3.4. Procedure for the Scale-Up Experiment
3.5. Procedure for the Synthesis of Compound 6
3.6. Procedure for the Synthesis of Compound 7
3.7. Procedure for the Synthesis of Compound 8
3.8. Procedure for the Synthesis of Compound 9
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References and Note
- García-Urdiales, E.; Alfonso, I.; Gotor, V. Enantioselective Enzymatic Desymmetrizations in Organic Synthesis. Chem. Rev. 2005, 105, 313–354. [Google Scholar] [CrossRef] [PubMed]
- Borissov, A.; Davies, T.Q.; Ellis, S.R.; Fleming, T.A.; Richardson, M.S.W.; Dixon, D.J. Organocatalytic enantioselective desymmetrisation. Chem. Soc. Rev. 2016, 45, 5474–5540. [Google Scholar] [CrossRef] [PubMed]
- Shu, T.; Cossy, J. Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chem. Soc. Rev. 2021, 50, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.Y.; Han, T.; Huang, E.H.; Ye, L.W. Research Progress on Enantioselective Desymmetrization Reactions Involving Metal Carbenes. Chin. J. Org. Chem. 2023, 42, 3295–3301. [Google Scholar] [CrossRef]
- Enríquez-García, Á.; Kündig, E.P. Desymmetrisation of meso-diols mediated by non-enzymatic acyl transfer catalysts. Chem. Soc. Rev. 2012, 41, 7803–7831. [Google Scholar] [CrossRef]
- Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters. Chem. Rev. 2016, 116, 7330–7396. [Google Scholar] [CrossRef]
- Nimmagadda, S.K.; Mallojjala, S.C.; Woztas, L.; Wheeler, S.E.; Antilla, J.C. Enantioselective Synthesis of Chiral Oxime Ethers: Desymmetrization and Dynamic Kinetic Resolution of Substituted Cyclohexanones. Angew. Chem. Int. Ed. 2017, 56, 2454–2458. [Google Scholar] [CrossRef]
- Sietmann, J.; Wahl, J.M. Enantioselective Desymmetrization of Cyclobutanones: A Speedway to Molecular Complexity. Angew. Chem. Int. Ed. 2020, 59, 6964–6974. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, X.; Ji, J.; Zhang, Y.; Hu, X.; Lin, L.; Feng, X. Enantioselective Baeyer–Villiger Oxidation: Desymmetrization of Meso Cyclic Ketones and Kinetic Resolution of Racemic 2-Arylcyclohexanones. J. Am. Chem. Soc. 2012, 134, 17023–17026. [Google Scholar] [CrossRef]
- Ren, L.; Lei, T.; Gong, L.-Z. Brønsted acid-catalyzed enantioselective Friedländer condensations: Achiral amine promoter plays crucial role in the stereocontrol. Chem. Commun. 2011, 47, 11683–11685. [Google Scholar] [CrossRef]
- Müller, S.; Webber, M.J.; List, B. The Catalytic Asymmetric Fischer Indolization. J. Am. Chem. Soc. 2011, 133, 18534–18537. [Google Scholar] [CrossRef]
- Gu, Q.; You, S.-L. Desymmetrization of cyclohexadienones viacinchonine derived thiourea-catalyzed enantioselective aza-Michael reaction and total synthesis of (-)-Mesembrine. Chem. Sci. 2011, 2, 1519–1522. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Chegondi, R. Diastereoselective Desymmetrization of p-Quinamines through Regioselective Ring Opening of Epoxides and Aziridines. Org. Lett. 2020, 21, 10115–10119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Tan, C.; Tang, J.; Zhou, J. Asymmetric Copper(I)-Catalyzed Azide–Alkyne Cycloaddition to Quaternary Oxindoles. J. Am. Chem. Soc. 2013, 135, 10994–10997. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, Y.; Zhang, S.; Cai, Q. Copper-Catalyzed Intramolecular Desymmetric Aryl C-O Coupling for the Enantioselective Construction of Chiral Dihydrobenzofurans and Dihydrobenzopyrans. Angew. Chem. Int. Ed. 2015, 54, 8805–8808. [Google Scholar] [CrossRef]
- Huang, Z.J.; Huang, X.; Li, B.S.; Mou, C.L.; Yang, S.; Song, B.A.; Chi, Y.R. Access to P-Stereogenic Phosphinates via N-Heterocyclic Carbene-Catalyzed Desymmetrization of Bisphenols. J. Am. Chem. Soc. 2016, 138, 7524–7527. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, C.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Dearomatization by a Desymmetrization Strategy. Angew. Chem. Int. Ed. 2017, 56, 15093–15097. [Google Scholar] [CrossRef]
- Delcourt, M.-L.; Felder, S.; Benedetti, E.; Micouin, L. Highly Enantioselective Desymmetrization of Centrosymmetric pseudo-para-Diformyl [2.2]paracyclophane via Asymmetric Transfer Hydrogenation. ACS Catal. 2018, 8, 6612–6616. [Google Scholar] [CrossRef]
- Yang, B.M.; Dai, J.; Luo, Y.; Lau, K.K.; Lan, Y.; Shao, Z.; Zhao, Y. Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. J. Am. Chem. Soc. 2021, 143, 4179–4186. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, M.; Yan, Q.; Lin, X.; Li, X.; Fang, X.; Sung, H.H.Y.; Williams, I.D.; Sun, J.W. Asymmetric Synthesis of Pyrrolidines via Oxetane Desymmetrization. Org. Lett. 2022, 24, 2359–2364. [Google Scholar] [CrossRef]
- Gao, J.; Mai, P.-L.; Ge, Y.; Yuan, W.; Li, Y.; He, C. Copper-Catalyzed Desymmetrization of Prochiral Silanediols to Silicon-Stereogenic Silanols. ACS Catal. 2022, 12, 8476–8483. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhao, K.; Wang, A.; Englert, U.; Raabe, G.; Enders, D. Asymmetric Synthesis of Cyclopentane-Substituted Oxindoles via Organocatalytic Desymmetrization of Cyclopent-4-ene-1,3-diones. Adv. Synth. Catal. 2017, 359, 1867–1871. [Google Scholar] [CrossRef]
- Vetica, F.; Bailey, S.; Chauhan, P.; Turberg, M.; Ghaur, A.; Raabe, G.; Enders, D. Desymmetrization of Cyclopentenediones via Organocatalytic Cross-Dehydrogenative Coupling. Adv. Synth. Catal. 2017, 359, 3729–3734. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, X.; Zheng, L.; Wang, J. Enantioselective Organocatalytic Desymmetrization of Cyclopentene-1,3-diones through Formal C(sp(2))-H Amidation. J. Org. Chem. 2019, 84, 11306–11315. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Zhu, Z.; Fan, Y.; Chen, X.; Song, X. Chiral Phosphoric Acid Catalyzed Desymmetrization of Cyclopentendiones via Friedel-Crafts Conjugate Addition of Indolizines. Org. Lett. 2022, 23, 9548–9553. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-M.; Zhang, J.-Q.; Sun, B.-B.; Chen, J.-B.; Yu, J.-Q.; Yang, X.-P.; Lv, H.-P.; Wang, Z.; Wang, X.-W. Chiral N-Heterocyclic-Carbene-Catalyzed Cascade Asymmetric Desymmetrization of Cyclopentenediones with Enals: Access to Optically Active 1,3-Indandione Derivatives. Org. Lett. 2019, 21, 8582–8586. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Kim, H.Y.; Oh, K. Silver-Catalyzed Asymmetric Desymmetrization of Cyclopentenediones via [3+2] Cycloaddition with alpha-Substituted Isocyanoacetates. Org. Lett. 2018, 20, 2249–2252. [Google Scholar] [CrossRef]
- Zhou, H.-Q.; Gu, X.-W.; Zhou, X.-H.; Li, L.; Ye, F.; Yin, G.-W.; Xu, Z.; Xu, L.-W. Enantioselective palladium-catalyzed C(sp2)–C(sp2) s bond activation of cyclopropenones by merging desymmetrization and (3 + 2) spiroannulation with cyclic 1,3-diketones. Chem. Sci. 2021, 12, 13737–13743. [Google Scholar] [CrossRef]
- Bhajammanavar, V.; Mallik, S.; Choutipalli, V.S.K.; Subramanian, V.; Baidya, M. Diastereoselective access to [4,4]-carbospirocycles: Governance of thermodynamic enolates with an organocatalyst in vinylogous cascade annulation. Chem. Commun. 2022, 58, 2188–2191. [Google Scholar] [CrossRef]
- Liu, H.-C.; Liu, K.; Xue, Z.-Y.; He, Z.-L.; Wang, C.-J. Silver(I)-Catalyzed Enantioselective Desymmetrization of Cyclopentenediones: Access to Highly Functionalized Bicyclic Pyrrolidines. Org. Lett. 2015, 17, 5440–5443. [Google Scholar] [CrossRef]
- Das, T.; Saha, P.; Singh, V.K. Silver(I)−Ferrophox Catalyzed Enantioselective Desymmetrization of Cyclopentenedione: Synthesis of Highly Substituted Bicyclic Pyrrolidines. Org. Lett. 2015, 17, 5088–5091. [Google Scholar] [CrossRef]
- Sahoo, S.C.; Joshi, M.; Pan, S.C. Diastereoselective Desymmetrization of Prochiral Cyclopentenediones via Cycloaddition Reaction with N-Phenacylbenzothiazolium Bromides. J. Org. Chem. 2017, 82, 12763–12770. [Google Scholar] [CrossRef]
- Liu, H.-C.; Wei, L.; Huang, R.; Tao, H.-Y.; Cong, H.; Wang, C.-J. Ag(I)-Catalyzed Kinetic Resolution of Cyclopentene- 1,3-diones. Org. Lett. 2018, 20, 3482–3486. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Kauffman, R.S.; Beaumont, M.; van Heeswijk, R.P.G. Telaprevir: Pharmacokinetics and drug interactions. Antivir. Ther. 2012, 17, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, L.-N.; Leng, Y. Acute and chronic administration of SHR117887, a novel and specific dipeptidyl peptidase-4 inhibitor, improves metabolic control in diabetic rodent models. Acta Pharmacol. Sin. 2012, 33, 1013–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, H.; Hiratate, A.; Takahashi, M.; Saito-Hori, M.; Munetomo, E.; Kitano, K.; Saito, H.; Takaoka, Y.; Yamamoto, K. Synthesis and Structure–Activity Relationships of Potent 1-(2-Substituted-aminoacetyl)-4-fluoro-2-cyanopyrrolidine Dipeptidyl Peptidase IV Inhibitors. Chem. Pharm. Bull. 2008, 56, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Schröder, F.; Sinnwell, V.; Baumann, H.; Kaib, M.; Francke, W. Myrmicarin 663: A New Decacylic Alkaloid from Ants. Angew. Chem. Int. Ed. 1997, 36, 77–80. [Google Scholar] [CrossRef]
- Pietanza, M.C.; Lynch, T.J., Jr.; Lara, P.N., Jr.; Cho, J.; Yanagihara, R.H.; Vrindavanam, N.; Chowhan, N.M.; Gadgeel, S.M.; Pennell, N.A.; Funke, R.; et al. XL647—A multitargeted tyrosine kinase inhibitor: Results of a phase II study in subjects with non-small cell lung cancer who have progressed after responding to treatment with either gefitinib or erlotinib. Thorac. Oncol. 2012, 7, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.-X.; Zhu, Y.-Y.; Sun, Q.-T.; Li, X.-Y.; Su, J.-H.; Zhao, L.; Zhao, Y.-Y.; Qiu, S.; Yan, W.-J.; Wang, K.-R.; et al. The asymmetric synthesis of CF3-containing spiro[pyrrolidin-3,2′-oxindole] through the organocatalytic 1,3-dipolar cycloaddition reaction. Chem. Commun. 2015, 51, 8789–8793. [Google Scholar] [CrossRef] [Green Version]
- Gui, H.-Z.; Wei, Y.; Shi, M. Recent Advances in the Construction of Trifluoromethyl-Containing Spirooxindoles through Cycloaddition Reactions. Chem. Asian J. 2020, 15, 1225–1233. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, C.; Chen, L.; Xie, H.; Liu, B.; Liu, D. Recent Advances in Catalytic Asymmetric Reactions involving Trifluoroethyl Ketimines. Chin. J. Org. Chem. 2020, 40, 1789–1803. [Google Scholar] [CrossRef]
- Zhao, J.-Q.; Zhou, S.; Yang, L.; Du, H.-Y.; You, Y.; Wang, Z.-H.; Zhou, M.-Q.; Yuan, W.-C. Catalytic Asymmetric Dearomative 1,3-Dipolar Cycloaddition of 2-Nitrobenzothiophenes and Isatin-Derived Azomethine Ylides. Org. Lett. 2021, 23, 8600–8605. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Liu, J.-H.; Zhang, Y.-P.; Zhao, J.-Q.; You, Y.; Zhou, M.-Q.; Han, W.-Y.; Yuan, W.-C. Cu-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of N-2,2,2-Trifluoroethylisatin Ketimines Enables the Desymmetrization of N-Arylmaleimides: Access to Enantioenriched F3C-Containing Octahydropyrrolo[3,4-c]pyrroles. Org. Lett. 2022, 24, 4050–4057. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.-C.; Yang, L.; Zhao, J.-Q.; Du, H.-Y.; Wang, Z.-H.; You, Y.; Zhang, Y.-P.; Liu, J.; Zhang, W.; Zhou, M.-Q. Copper-Catalyzed Umpolung of N-2,2,2-Trifluoroethylisatin Ketimines for the Enantioselective 1,3-Dipolar Cycloaddition with Benzo[b]thiophene Sulfones. Org. Lett. 2022, 24, 4603–4608. [Google Scholar] [CrossRef] [PubMed]
- CCDC-2263528 (3aa), -2263529 (5a), -2263530 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center.
- Ryu, H.; Seo, J.; Ko H., M. Synthesis of Spiro[oxindole-3,2′-pyrrolidine] Derivatives from Benzynes and Azomethine Ylides through 1,3-Dipolar Cycloaddition Reactions. J. Org. Chem. 2018, 83, 14102. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhao, K.; Liu, Q.; Wang, A.; Enders, D. Asymmetric synthesis of functionalized trifluoromethyl-substituted pyrrolidines: Via an organocatalytic domino Michael/Mannich [3+2] cycloaddition. Chem. Commun. 2016, 52, 14011. [Google Scholar] [CrossRef]
Entry | Base | Solvent | Time (h) | dr (%) [b] | Yield [c] |
---|---|---|---|---|---|
1 | TMG | DCE | 12 | 81:19 | 73 |
2 | DBU | DCE | 12 | 77:23 | 87 |
3 | DBN | DCE | 12 | 69:31 | 59 |
4 | TBD | DCE | 12 | 77:23 | 66 |
5 | CS2CO3 | DCE | 96 | 71:29 | 30 |
6 | DBU | toluene | 12 | 73:27 | 58 |
9 | DBU | THF | 12 | 74:26 | 42 |
10 | DBU | MeCN | 12 | 70:30 | 79 |
11 | DBU | MeOH | 12 | 64:36 | 73 |
12 | DABCO | DCE | 48 | 84:16 | 90 |
13 [d] | DABCO | DCE | 24 | 84:16 | 90 |
14 [d,e] | DABCO | DCE | 24 | 84:16 | 92 |
15 [d,e,f] | DABCO | DCE | 24 | 85:15 | 96 |
Entry | 2 (R2/R3) | 3 | dr [b] | Yield (%) [c] |
---|---|---|---|---|
1 | 2b (Me/3-MeC6H4) | 3ab | 84:16 | 96 |
2 | 2c (Me/4-MeC6H4) | 3ac | 82:18 | 94 |
3 | 2d (Me/3-MeOC6H4) | 3ad | 85:15 | 94 |
4 | 2e (Me/4-FC6H4) | 3ae | 88:12 | 96 |
5 | 2f (Me/2-ClC6H4) | 3af | 71:29 | 76 |
6 | 2g (Me/4-ClC6H4) | 3ag | 86:14 | 94 |
7 | 2h (Me/3-BrC6H4) | 3ah | 84:16 | 84 |
8 | 2i (Me/4-BrC6H4) | 3ai | 85:15 | 94 |
9 | 2j (Me/1-naphthyl) | 3aj | 89:11 | 98 |
10 | 2k (Me/2-naphthyl) | 3ak | 86:14 | 99 |
11 | 2l (Et/C6H5) | 3al | 88:12 | 69 |
12 | 2m (Et/3-BrC6H4) | 3am | 72:28 | 84 |
13 | 2n (Et/4-BrC6H4) | 3an | 84:16 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.-Q.; Zhao, J.-Q.; Zhang, Y.-P.; You, Y.; Wang, Z.-H.; Ge, Z.-Z.; Zhou, M.-Q.; Yuan, W.-C. Diastereoselective Formal 1,3-Dipolar Cycloaddition of Trifluoroethyl Amine-Derived Ketimines Enables the Desymmetrization of Cyclopentenediones. Molecules 2023, 28, 5372. https://doi.org/10.3390/molecules28145372
Li L-Q, Zhao J-Q, Zhang Y-P, You Y, Wang Z-H, Ge Z-Z, Zhou M-Q, Yuan W-C. Diastereoselective Formal 1,3-Dipolar Cycloaddition of Trifluoroethyl Amine-Derived Ketimines Enables the Desymmetrization of Cyclopentenediones. Molecules. 2023; 28(14):5372. https://doi.org/10.3390/molecules28145372
Chicago/Turabian StyleLi, Lin-Qiang, Jian-Qiang Zhao, Yan-Ping Zhang, Yong You, Zhen-Hua Wang, Zhen-Zhen Ge, Ming-Qiang Zhou, and Wei-Cheng Yuan. 2023. "Diastereoselective Formal 1,3-Dipolar Cycloaddition of Trifluoroethyl Amine-Derived Ketimines Enables the Desymmetrization of Cyclopentenediones" Molecules 28, no. 14: 5372. https://doi.org/10.3390/molecules28145372
APA StyleLi, L. -Q., Zhao, J. -Q., Zhang, Y. -P., You, Y., Wang, Z. -H., Ge, Z. -Z., Zhou, M. -Q., & Yuan, W. -C. (2023). Diastereoselective Formal 1,3-Dipolar Cycloaddition of Trifluoroethyl Amine-Derived Ketimines Enables the Desymmetrization of Cyclopentenediones. Molecules, 28(14), 5372. https://doi.org/10.3390/molecules28145372