In Vitro Effect on Plasmodium falciparum and In Vivo Effect on Plasmodium berghei of Annomaal, an Oily Fraction Obtained from the Seeds of Annona squamosa
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Phyto-Constituents
2.2. In Vitro Erythrocyte Toxicity Test
2.3. In Vivo Acute Oral Toxicity Studies
2.4. In Vitro Anti-Plasmodial Efficacy Testing in P. falciparum-Infected RBCs
2.5. In Vivo Antimalarial Activity in P. berghei Infected Mice
2.6. Dose and Dosage Regimen Determination Study
2.7. GC-MS Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of the Plant Materials
4.3. Animals
4.4. Treatment of Blood
4.5. Parasite Culture
4.6. Evaluation of Phyto-Constituents
4.7. Preparation of Crude Extracts [52]
- Preparation of crude seed extract (CSE): First, the seed powder was extracted with petroleum ether, and the petroleum ether layer was removed. The remaining solid mass was extracted using a 50:50 mix of water and alcohol in the Soxhlet extractor for a period of 24 h. The hydroalcoholic extract was collected and evaporated to remove the solvent. The dried crude seed extract (CSE) thus obtained was used for further investigations.
- Preparation of alkaloid-rich fraction (F1): The seed powder was extracted with petroleum ether to remove the fat. Defatted powder mass was filled in the percolator, and the ammonia solution (10%) was passed for 24 h. The powder mass was then refluxed with methanol as an extraction solvent. The methanol layer was then removed by filtration and heated to obtain the concentrated alkaloid-rich fraction (F1). The extract was evaluated for phytochemical tests to confirm the presence of alkaloids.
- Preparation of oily fraction (F2): Seed powder was extracted with petroleum ether in a Soxhlet extractor for 24 h. The petroleum ether layer was collected and heated carefully to evaporate the solvent and acquire the oil-rich fraction, which was labelled Annomaal (F2).
- Preparation of saponin-rich (F3) and tannin-rich (F4) fractions: The seed powder was first extracted with petroleum ether to defat, and the defatted powder mass was then extracted with distilled water. The water layer was kept aside, and the plant material was further extracted with n-butanol. The N-butanol layer was separated by filtration and evaporated to obtain the saponin-rich fraction (F3), while the water layer was heated to dryness to acquire the tannin-rich fraction (F4).
- Preparation of protein fraction (F5): The seed powder was defatted by extracting it with petroleum ether. Defatted powder mass was percolated with tris buffer saline in cold conditions (4 ± 2 °C) for a period of 24 h. The tris buffer saline layer was collected, and 90% ammonium sulphate was added to precipitate the proteins. The second precipitation was carried out with 50% ammonium sulphate. The precipitates were pooled and filled in a dialysis bag (150 kDa molecular weight cut-off) and dialyzed for 24 h with cold distilled water maintained at 4 ± 2 °C to remove any impurities.
4.8. GC–MS Analysis of the Oily Fraction—Annomaal
4.9. In Vitro Erythrocyte Toxicity Test
4.10. In Vivo Acute Oral Toxicity Study
4.11. In Vitro Anti-Plasmodial Efficacy Testing in P. falciparum Infected RBCs
4.12. In Vivo Determination of Antimalarial Activity
4.13. Dose and Dosage Regimen Determination Study
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cox, F.E.G. History of the discovery of the malaria parasites and their vectors. Parasites Vectors 2010, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Guidelines for Malaria; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (accessed on 18 February 2023).
- Lobo, E.; De Sousa, B.; Rosa, S.; Figueiredo, P.; Lobo, L.; Pateira, S.; Fernandes, N.; Nogueira, F. Prevalence of pfmdr1 alleles associated with artemether-lumefantrine tolerance/resistance in Maputo before and after the implementation of artemisinin-based combination therapy. Malar. J. 2014, 13, 300. [Google Scholar] [CrossRef] [Green Version]
- Ouji, M.; Augereau, J.M.; Paloque, L.; Benoit-Vical, F. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination. Parasite 2018, 25, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.-C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; et al. A molecular marker of arteminin-resistant Plasmodium falciparum malaria. Nature 2016, 505, 23–30. [Google Scholar] [CrossRef]
- Uwimana, A.; Umulisa, N.; Venkatesan, M.; Svigel, S.S.; Zhou, Z.; Munyaneza, T.; Habimana, R.M.; Rucogoza, A.; Moriarty, L.F.; Sandford, R.; et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 2021, 21, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Pant, N.; Jain, D.C.; Bhakuni, R.S. Antimalarial agents from plant sources. Curr. Sci. 2003, 85, 1314–1329. [Google Scholar]
- Asasea, A.; Akweteya, G.A.; Achelb, D.G. Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. J. Ethnopharmacol. 2010, 129, 367. [Google Scholar] [CrossRef]
- Karunamoorthi, K.; Tsehaye, E. Ethnomedicinal knowledge, belief and self-reported practice of local inhabitants on traditional antimalarial plants and Phytotherapy. J. Ethnopharmacol. 2012, 141, 143–150. [Google Scholar] [CrossRef]
- Tsabang, N.; Fokou, P.V.T.; Tchokouaha, L.R.Y.; Noguem, B.; Bakarnga-Via, I.; Nguepi, M.S.D.; Nkongmeneck, B.A.; Boyom, F.F. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. J. Ethnopharmacol. 2012, 139, 171–180. [Google Scholar]
- Singh, N.; Kaushik, N.K.; Mohanakrishnan, D.; Tiwari, S.K.; Sahal, D. Antiplasmodial activity of medicinal plants from Chhotanagpur plateau, Jharkhand, India. J. Ethnopharmacol. 2015, 165, 152–162. [Google Scholar]
- Asolkar, L.V.; Kakkar, K.K.; Chakre, O.J. Glossary of Indian Medicinal Plants with Active Principles; Publications and Information Directorate: New Delhi, India, 1992; pp. 72–73. [Google Scholar]
- Vohora, S.B.; Kumar, I.; Naqvi, S. Phytochemical, pharmacological, antibacterial and anti-ovulatory studies on Annona squamosa. Planta Med. 1975, 28, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Nonfon, M.; Lieb, F.; Moeschler, H.; Wendish, D. Four anonins from Annona squamosa. Phytochemistry 1990, 29, 1951–1954. [Google Scholar] [CrossRef]
- Cheema, P.S.; Dixit, R.S.; Koshi, T.; Perti, S.L. Insecticidal properties of the seed oil of Annona squamosa L. J. Sci. Ind. Res. 1985, 17, 132. [Google Scholar]
- Kotkar, H.M.; Mendki, P.S.; Sadan, S.V.; Jha, S.R.; Upasani, S.M.; Maheshwari, V.V. Antimicrobial and pesticidal activity of partially purifed flavonoids of Annona Squamosa. Pest Manag. Sci. 2002, 58, 33–37. [Google Scholar] [CrossRef]
- Jaswanth, A.; Ramanathan, P.; Ruckmani, K. Evaluation of mosquitocidal activity of Annona squamosa leaves against filarial vector mosquito Culex quinquefasciatus Say. Indian J. Exp. Biol. 2002, 40, 363–365. [Google Scholar]
- Gupta, R.K.; Kesari, A.N.; Murthy, P.S.; Chandra, R.; Tandon, V.; Watal, G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J. Ethnopharmacol. 2005, 99, 75–81. [Google Scholar] [CrossRef]
- Seetharaman, T.R. Flavonoids from the leaves of Annona squamosa and Polyalthia longifolia. Fitoterapia 1986, 57, 189–198. [Google Scholar]
- Wagner, H.; Reiter, M.; Ferst, W. Neue Herzwirksame Drogen L: Zur Chemie und Pharmakologie des herzwirksamen Prinzips von Annona squamosa. Planta Med. 1980, 40, 77–85. [Google Scholar] [CrossRef]
- Gupta, R.K.; Kesari, A.N.; Diwakar, S.; Tyagi, A.; Tandon, V.; Chandra, R.; Watal, G. In vivo evaluation of anti-oxidant and anti-lipidimic potential of Annona squamosa aqueous extract in Type 2 diabetic models. J. Ethnopharmacol. 2008, 118, 21–25. [Google Scholar]
- Chen, Y.; Xu, S.; Chen, J.W.; Wang, Y.; Xu, H.; Fan, N.B.; Xiang, L. Anti-tumor activity of Annona squamosa seeds extract containing annonaceous acetogenin compounds. J. Ethnopharmacol. 2012, 142, 462–466. [Google Scholar] [CrossRef]
- Bhakuni, D.S.; Dhar, M.L.; Dhar, M.M.; Dhawan, B.N.; Mehrotra, B.B. Screening of Indian plants for biological activity: Part-II. Indian J. Exptl. Bio. 1969, 7, 250–262. [Google Scholar]
- Grover, P.; Singh, S.P.; Prabhakar, P.V.; Reddy, U.A.; Balasubramanyam, A.; Mahboob, M.; Rahman, M.F.; Misra, S. In vivo assessment of genotoxic effects of Annona squamosa seed extract in rats. Food Chem. Toxicol. 2009, 47, 1964–1971. [Google Scholar] [CrossRef]
- Mishra, M.B.; Tewari, J.P.; Mishra, S.S. Studies in indigenous uterotonic drugs. Indian J. Physiol. Pharmacol. 1966, 10, 59–60. [Google Scholar]
- Singh, K.K.; Parmar, S.; Tatke, P.A. Contraceptive efficacy and safety of HerbOshield™ vaginal gel in rats. Contraception 2012, 85, 122–127. [Google Scholar] [CrossRef]
- Mishra, A.; Dogra, J.V.V.; Singh, J.N.; Jha, O.P. Post-coital antifertility activity of Annona squamosa and Ipomea fistulosa. Planta Med. 1979, 35, 283–285. [Google Scholar] [PubMed]
- Tahir, A.E.; Satti, G.M.H.; Khalid, S.A. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J. Ethnopharmacol. 1999, 64, 227–233. [Google Scholar] [CrossRef]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef]
- Peters, W.; Portus, J.H.; Robinson, B.L. The chemotherapy of rodent malaria XXII. The value of drug resistant strains of Plasmodium berghei in screening for blood schizontocidal activity. Ann. Trop. Med. Parasitol. 1975, 69, 155–171. [Google Scholar] [CrossRef]
- Patel, D.J.; Kumar, V. Annona squamosa L.: Phytochemical analysis and Antimicrobial Screening. J. Pharm. Res. 2008, 1, 34–38. [Google Scholar]
- Linskens, H.F.; Paech, K.; Sanwal, B.D.; Tracey, M.V. Modern Methods of Plant Analysis; Springer: Berlin/Heidelberg, Germany; Volume 4, pp. 317–402.
- Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121–1131. [Google Scholar] [CrossRef]
- Hartmann, R.C.; Jenkins, D.E., Jr.; Arnold, A.B. Diagnostic specificity of sucrose hemolysis test for paroxysmal nocturnal hemoglobinuria. Blood 1970, 35, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Memvanga, P.B.; Tona, G.L.; Mesia, G.K.; Lusakibanza, M.M.; Cimanga, R.K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. J. Ethnopharmacol. 2015, 69, 76–98. [Google Scholar] [CrossRef]
- Ferreira da Cruz, M.F.; Adami, Y.L.; Espinola-Mendes, E.C.; Figueiredo, M.R.; Daniel-Ribeiro, C.T. The intraperitoneal Plasmodium berghei-Pasteur of Swiss mice is not a system that is able to detect the antiplasmodial activity in the Pothomorphe plant extracts that are used as antimalarials in Brazilian endemic areas. Exptl. Parasitol. 2000, 94, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Janse, C.J.; Waters, A.P. Plasmodium berghei: The application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol. Today 1995, 11, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Ziegler, H.L.; Stark, D.; Christensen, J.; Hviid, L.; Hagerstrand, H.; Jaroszewsk, Z.W. In vitro P. falciparum drug sensitivity assay: Inhibition of parasite growth by incorporation of stomato cytogenic amphiphiles into the erythrocyte membrane. Antimicrob. Agents Chemother. 2002, 46, 1441–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotti, S.R.; Hebbal, O.D. Biodiesel Production Process Optimization from Sugar Apple Seed Oil (Annona squamosa) and Its Characterization. J. Renew. Energy 2015, 2015, 148587. [Google Scholar] [CrossRef] [Green Version]
- Bhoir, S.S.; Vishwapathi, V.; Singh, K.K. Antipsoriatic potential of Annona squamosa seed oil: An in vitro and in vivo evaluation. Phytomedicine 2019, 54, 265–277. [Google Scholar] [CrossRef]
- Vial, H.J.; Ancelin, M.L.; Philippot, J.R.; Thuet, M.J. Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. Blood Cells 1990, 16, 531–555. [Google Scholar]
- Tasdemir, D. Type II fatty acid biosynthesis, a new approach in antimalarial natural product discovery. Phytochem Rev. 2006, 5, 99–108. [Google Scholar] [CrossRef]
- Carballeira, N.M. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 2008, 47, 50–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaratilake, L.M.; Robinson, B.S.; Ferrante, A.; Poulos, A. Antimalarial properties of n-3 and n-6 polyunsaturated fatty acids: In vitro effects on Plasmodium falciparum and in vivo effects on P. berghei. J. Clin. Investig. 1992, 89, 961. [Google Scholar] [CrossRef] [Green Version]
- Krugliak, M.; Deharo, E.; Shalmiev, G.; Sauvain, M.; Moretti, C.; Ginsgerg, H. Antimalarial effects of C18 fatty acids on Plasmodium falciparum in culture and on Plasmodium vinckei petteri and Plasmodium Yoeliii Niger. Vivo Exptl. Parasitol. 1995, 81, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Melariri, P.; Campbell, W.; Etusim, P.; Smith, P. In Vitro and in Vivo Antimalarial Activity of Linolenic and Linoleic Acids and their Methyl Esters. Adv. Stud. Biol. 2012, 4, 333–349. [Google Scholar]
- Suksamrarn, A.; Buaprom, M.; Udtip, S.; Nuntawong, N.; Haritakun, R.; Kanokmedhakul, S. Antimycobacterial and antiplasmodial unsaturated carboxylic acid from the twigs of Scleropyrum wallichianum. Chem. Pharm. Bull. 2005, 53, 1327–1329. [Google Scholar] [CrossRef] [Green Version]
- Kumaratilake, L.M.; Ferrante, A.; Robinson, B.S.; Jaeger, T.; Poulos, A. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: Importance of fatty acid structure. Infect. Immun. 1997, 65, 4152–4157. [Google Scholar] [CrossRef] [Green Version]
- Ginsgerg, H.; Krugliak, M.; Eidelman, O.; Cabantchik, Z.I. New permeability pathways induced in membranes of Plasmodim falciparum infected erythrocytes. Mol. Biochem. Parasitol. 1983, 8, 177–190. [Google Scholar]
- Khandelwal, K.R. Techniques and Experiments, Practical Pharmacognosy, 11th ed.; Nirali Prakashan: Pune, India, 2004; pp. 149–156. [Google Scholar]
- Trease, G.E.; Evans, W.C. A Text Book of Pharmacognosy, 16th ed.; Bailliere Tindall: London, UK, 2009; pp. 174–393. [Google Scholar]
- Botineștean, C.; Hădărugă, N.G.; Hădărugă, D.I.; Jianu, I. Fatty Acids Composition by Gas Chromatography–Mass Spectrometry (GC-MS) and most important physical-chemicals parameters of Tomato Seed Oil. J. Agroaliment. Process. Technol. 2012, 18, 89–94. [Google Scholar]
- Sidhaye, A.A.; Bhuran, K.C.; Zambare, S.; Abubaker, M.; Nirmalan, N.; Singh, K.K. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine 2016, 11, 2809–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organization for Economic Cooperation and Development. OECD guidelines for the testing of chemicals. In Test guideline 423, Acute Oral Toxicity–Acute Toxic Class Method; OECD: Paris, France, 1996. [Google Scholar]
- Gessler, M.C.; Tanner, M.; Chollet, J.; Nkunya, M.H.H.; Heinrick, M. Tanzanian Medicinal plants used traditionally for the treatment of malaria: In vivo antimalarial and in vitro cytotoxic activities. Phytother. Res. 1995, 9, 504–508. [Google Scholar] [CrossRef]
Test | Result | References |
---|---|---|
Test for Carbohydrates | [32] | |
1. Molisch test | + | |
2. Fehling’s test | + | |
3. Benedict’s test | + | |
4. Barfoed’s test | - | |
5. Bial’s test | - | |
6. Selwinoff’s test | - | |
Test for Proteins | [32] | |
1. Biuret test | + | |
2. Million’s test | + | |
3. Precipitation test | + | |
4. Test for proteins containing Sulphur | - | |
5. Xanthoprotein test | - | |
Test for Fats and Oils | [32] | |
1. Solubility test | + | |
2. Filter paper test | + | |
3. Saponification test | + | |
4. Salkowski test for steroids | + | |
Test for Flavonoids | [32] | |
1. Shinoda test | + | |
2. Lead acetate test | + | |
Test for Alkaloids | [32] | |
1. Dragendorff’s test | + | |
2. Mayer’s test | + | |
3. Hager’s test | + | |
4. Wagner’s test | + | |
5. Murexide test for purine alkaloids | - | |
Test for Saponins | [32] | |
1. Foam test | + | |
Test for Tannins and Phenolic compounds | [32] | |
1. 5% FeCl3 test | + | |
2. Dilute Iodine test | + | |
5. Acetic acid test | + |
Phytoconstituent | Appearance | Yield (% w/w) |
---|---|---|
Crude Seed Extract | Brown sticky extract | 75.29–79.93 |
Alkaloids | Brown powder | 72.55–76.00 |
Oils and Fats | Light yellow oil | 17.96–20.98 |
Saponins | Brown sticky mass | 5.49–5.50 |
Tannins | Brown sticky mass | 2.26–3.00 |
Proteins | Light buff powder | 6.20–6.50 |
Fraction | Test Substance | Percent Hemolysis (Mean ± SD) |
---|---|---|
Crude Seed extract (CSE) | 4.89 ± 0.29 | |
F1 | Alkaloid fraction | 11.57 ± 0.85 |
F2 | Oil fraction | 2.25 ± 0.19 |
F3 | Saponin fraction | 8.22± 0.39 |
F4 | Tannin fraction | 3.27± 0.23 |
F5 | Protein fraction | 1.73 ± 0.15 |
Weight of Animals (g) ± SEM | |||
---|---|---|---|
Test Substance | Day 0 | Day 7 | Day 14 |
Crude seed extract (CSE) | 156.7 ± 1.3 | 159.7 ± 4.4 | 161.24 ± 1.39 |
Alkaloid fraction | 153.5 ± 0.27 | 129.6 ± 1.26 | 130.72 ± 1.93 |
Saponin fraction | 154.02 ± 1.58 | 155.2 ± 0.32 | 157.5 ± 2.13 |
Oil fraction | 153.2 ± 2.67 | 154.9 ± 1.04 | 156.5 ± 2.47 |
Tannin fraction | 153.27 ± 1.05 | 154.94 ± 1.5 | 156.83 ± 1.79 |
Protein fraction | 162.49 ± 1.21 | 163.5 ± 1.24 | 164.19 ± 2.48 |
Observation | Crude Seed Extract | Alkaloid Fraction | Saponin Fraction | Oily Fraction | Protein Fraction | Tannin Fraction |
---|---|---|---|---|---|---|
Changes in fur | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Eyes and mucous membranes | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Respiratory abnormality | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Circulatory | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Autonomic | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Somatomotor Activity | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Behaviour abnormality | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Locomotion | 0/6 | 3/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Inactivity | 0/6 | 3/6 | 0/6 | 0/6 | 0/6 | 0/6 |
Fraction | Test Substance | IC50 (μg/mL) ± SEM |
---|---|---|
Crude Seed extract (CSE) | 5.65 ± 0.279 | |
F1 | Alkaloid fraction | 14.96 ± 0.352 |
F2 | Oil fraction | 1.25 ± 0.183 |
F3 | Saponin fraction | 128.74± 0.239 |
F4 | Tannin fraction | 110.49± 0.173 |
F5 | Protein fraction | - |
Group | Phytoconstituent Fraction | Mean (X ± SEM) Parasite Density on Day 0 (%) (% Parasitemia) | Mean (X ± SEM) Parasite Density on Day 7 (%) (% Parasitemia) | Mean (X ± SEM) Parasite Density on Day 14 (%) (% Parasitemia) | Mean (X ± SEM) Chemosuppression on Day 14 (%) | Mice Survival by Day 14 (%) |
---|---|---|---|---|---|---|
I | Crude extract (CSE) | 53.38 ± 0.67 | 47.94 ± 1.59 | 40.46 ± 2.29 | 58.47 ± 1.36 | 80 |
II | Oil fraction, Annomaal | 53.79 ± 1.05 | 49.16 ± 1.46 | 37.89 ± 1.52 | 61.11 ± 2.59 | 90 |
III | Alkaloid fraction | 54.98 ± 1.95 | 59.34 ± 2.63 | 62.25 ± 3.40 | 36.10 ± 2.94 | 30 |
IV | Protein fraction | 53.17 ± 1.02 | 61.59 ± 2.95 | 80.37 ± 4.78 | 17.51 ± 2.48 | 20 |
V | Saponin fraction | 54.26 ± 0.93 | 71.45 ± 1.30 | 92.29 ± 2.96 | 5.27 ± 3.19 | 0 |
VI | Tannins fraction | 54.96 ± 1.60 | 68.28 ± 2.73 | 90.10 ± 1.18 | 3.70 ± 2.46 | 0 |
VII | Std ARM | 55.18 ± 0.92 | 49.67 ± 1.05 | 32.39 ± 2.30 | 66.75 ± 1.69 | 100 |
VIII | Infected Control | 54.18 ± 0.40 | 97.43 ± 1.64 | - | 0 | 0 |
Dose (mg/kg/day) | 150 | 200 | 250 | 150 | 200 | 250 |
---|---|---|---|---|---|---|
Dosing Period (Days) | Survival Time (Days) | Time Required (Days) for 90% Reduction in Parasitemia | ||||
7 | 18 | 40 | 40 | NC | 28 | 20 |
5 | 15 | 40 | 40 | NC | 32 | 26 |
3 | 5 | 30 | 40 | NC | NC | 32 |
Peak No. | Retention Time (min.) | Peak Area (%) | Constituent Present | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 12.11 | 17.08 | Palmitic acid methyl ester | C14H34O2 | 270.5 |
2 | 12.94 | 24.53 | Oleic acid methyl ester | C19H36O2 | 296.5 |
3 | 13.12 | 38.86 | Linoleic Acid methyl ester | C19H34O2 | 294.5 |
4 | 14.96 | 11.27 | Palmitoleic acid methyl ester | C17H32O2 | 268.4 |
5 | 15.22 | 2.36 | Myristic acid methyl ester | C15H30O2 | 242.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawant, S.S.; Gabhe, S.Y.; Singh, K.K. In Vitro Effect on Plasmodium falciparum and In Vivo Effect on Plasmodium berghei of Annomaal, an Oily Fraction Obtained from the Seeds of Annona squamosa. Molecules 2023, 28, 5472. https://doi.org/10.3390/molecules28145472
Sawant SS, Gabhe SY, Singh KK. In Vitro Effect on Plasmodium falciparum and In Vivo Effect on Plasmodium berghei of Annomaal, an Oily Fraction Obtained from the Seeds of Annona squamosa. Molecules. 2023; 28(14):5472. https://doi.org/10.3390/molecules28145472
Chicago/Turabian StyleSawant, Sampada S., Satish Y. Gabhe, and Kamalinder K. Singh. 2023. "In Vitro Effect on Plasmodium falciparum and In Vivo Effect on Plasmodium berghei of Annomaal, an Oily Fraction Obtained from the Seeds of Annona squamosa" Molecules 28, no. 14: 5472. https://doi.org/10.3390/molecules28145472
APA StyleSawant, S. S., Gabhe, S. Y., & Singh, K. K. (2023). In Vitro Effect on Plasmodium falciparum and In Vivo Effect on Plasmodium berghei of Annomaal, an Oily Fraction Obtained from the Seeds of Annona squamosa. Molecules, 28(14), 5472. https://doi.org/10.3390/molecules28145472