Potentiality Assessment of the Acetylcholinesterase-Inhibitory Activity of Olive Oil with an Additive Edible Insect Powder
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acid Composition and Lipid Nutritional Indices of an Edible Insect
2.2. Total Phenolic Compounds of an Edible Insect
2.3. Antioxidant Activity of an Edible Insect
2.4. The content of the Vitamins of an Edible Insect
2.5. Isothermal Titration Calorimetry of an Edible Insect
2.6. The Effect of the Addition of Edible Insects on the Nutritional Value of Olive Oil
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Analysis of the Fat Acid via GC–MS
3.3. Analysis of the Nutritional Quality of Lipids
3.4. Total Phenolics Content (TPC)
3.5. DPPH•
3.6. Vitamins B, C, and E Profile According to LC-ESI-MS
3.7. Isothermal Titration Calorimetry (ITC) Measurements
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bohnen, N.I.; Grothe, M.J.; Ray, N.J.; Müller, M.L.T.; Teipel, S.J. Recent Advances in Cholinergic Imaging and Cognitive Decline—Revisiting the Cholinergic Hypothesis of Dementia. Curr. Geriatr. Rep. 2018, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011, 221, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Cloete, S.J.; Petzer, A.; Petzer, J.P. Interactions of dye compounds that are structurally related to methylene blue with acetylcholinesterase and butyrylcholinesterase. Chem. Biol. Drug Des. 2020, 97, 854–864. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2020, 190, 108352. [Google Scholar] [CrossRef] [PubMed]
- Dizdar, M.; Vidic, D.; Požgan, F.; Štefane, B.; Maksimović, M. Acetylcholinesterase Inhibition and Antioxidant Activity of N-trans-Caffeoyldopamine and N-trans-Feruloyldopamine. Sci. Pharm. 2018, 86, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Román, G.C.; Jackson, R.E.; Reis, J.; Román, A.N.; Toledo, J.B.; Toledo, E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev. Neurol. 2019, 175, 705–723. [Google Scholar] [CrossRef]
- Schmidt, L.; Prestes, O.D.; Augusti, P.R.; Moreira, J.C.F. Phenolic compounds and contaminants in olive oil and pomace—A narrative review of their biological and toxic effects. Food Biosci. 2023, 53, 102626. [Google Scholar] [CrossRef]
- Halloran, A.; Vantomme, P.; Hanboonsong, Y.; Ekesi, S. Regulating edible insects: The challenge of addressing food security, nature conservation, and the erosion of traditional food culture. Food Secur. 2015, 7, 739–746. [Google Scholar] [CrossRef]
- van Huis, A. Edible insects are the future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef]
- Patel, S.; Suleria, H.A.R.; Rauf, A. Edible insects as innovative foods: Nutritional and functional assessments. Trends Food Sci. Technol. 2019, 86, 352–359. [Google Scholar] [CrossRef]
- Derrien, C.; Boccuni, A. Current Status of the Insect Producing Industry in Europe. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 471–479. [Google Scholar] [CrossRef]
- IPIFF. Edible insects on the European market. In Factsheet; IPIFF: Brussels, Belgium, 2020. [Google Scholar]
- Jo, Y.H.; Lee, J.W. Insect feed for animals under the Hazard Analysis and Critical Control Points (HACCP) regulations. Èntomol. Res. 2016, 46, 2–4. [Google Scholar] [CrossRef]
- Dicke, M. Insects as feed and the Sustainable Development Goals. J. Insects Food Feed 2018, 4, 147–156. [Google Scholar] [CrossRef]
- Tang, C.; Yang, D.; Liao, H.; Sun, H.; Liu, C.; Wei, L.; Li, F. Edible insects as a food source: A review. Food Prod. Process. Nutr. 2019, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Oonincx, D.G.A.B.; Laurent, S.; Veenenbos, M.E.; van Loon, J.J. Dietary enrichment of edible insects with omega 3 fatty acids. Insect Sci. 2020, 27, 500–509. [Google Scholar] [CrossRef] [Green Version]
- da Silva Lucas, A.J.; De Oliveira, L.M.; Da Rocha, M.; Prentice, C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2019, 311, 126022. [Google Scholar] [CrossRef] [PubMed]
- Udomsil, N.; Imsoonthornruksa, S.; Gosalawit, C.; Ketudat-Cairns, M. Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Sci. Technol. Res. 2019, 25, 597–605. [Google Scholar] [CrossRef]
- Bophimai, P.; Siri, S. Fatty acid composition of some edible dung beetles in Thailand. Int. Food Res. J. 2010, 17, 1025–1030. [Google Scholar] [CrossRef]
- Thomas, J.; Thomas, C.J.; Radcliffe, J.; Itsiopoulos, C. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease. BioMed Res. Int. 2015, 2015, 172801. [Google Scholar] [CrossRef] [Green Version]
- Power, R.; Nolan, J.M.; Prado-Cabrero, A.; Roche, W.; Coen, R.; Power, T.; Mulcahy, R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin. Nutr. 2022, 41, 405–414. [Google Scholar] [CrossRef]
- Nolan, J.M.; Mulcahy, R.; Power, R.; Moran, R.; Howard, A.N. Nutritional Intervention to Prevent Alzheimer’s Disease: Potential Benefits of Xanthophyll Carotenoids and Omega-3 Fatty Acids Combined. J. Alzheimers Dis. 2018, 64, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Cole, G.M.; Lim, G.P.; Yang, F.; Teter, B.; Begum, A.; Ma, Q.; Harris-White, M.E.; Frautschy, S.A. Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic antioxidant interventions. Neurobiol. Aging 2005, 26, 133–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, G.M.; Ma, Q.-L.; Frautschy, S.A. Omega-3 fatty acids and dementia. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, M.A.; Vachon, A.; Chouinard-Watkins, R.; Vandal, M.; Calon, F.; Plourde, M. Investigating the plasma-liver-brain axis of omega-3 fatty acid metabolism in mouse knock-in for the human apolipoprotein E epsilon 4 allele. J. Nutr. Biochem. 2022, 111, 109181. [Google Scholar] [CrossRef]
- Bradbury, J. Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients 2011, 5, 529–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.S.; Miller, M.; Tighe, A.P.; Davidson, M.H.; Schaefer, E.J. Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis 2008, 197, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Jicha, G.A.; Markesbery, W.R. Omega-3 fatty acids: Potential role in the management of early Alzheimer’s disease. Clin. Interv. Aging 2010, 5, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Lowry, J.R.; Marshall, N.; Wenzel, T.J.; Murray, T.E.; Klegeris, A. The dietary fatty acids α-linolenic acid (ALA) and linoleic acid (LA) selectively inhibit microglial nitric oxide production. Mol. Cell. Neurosci. 2020, 109, 103569. [Google Scholar] [CrossRef]
- Lee, E.; Eom, J.-E.; Kim, H.-L.; Baek, K.H.; Jun, K.-Y.; Kim, H.-J.; Lee, M.; Mook-Jung, I.; Kwon, Y. Effect of conjugated linoleic acid, μ-calpain inhibitor, on pathogenesis of Alzheimer’s disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2019, 1831, 709–717. [Google Scholar] [CrossRef]
- Youn, K.; Yun, E.-Y.; Lee, J.; Kim, J.-Y.; Hwang, J.-S.; Jeong, W.-S.; Jun, M. Oleic Acid and Linoleic Acid from Tenebrio molitor Larvae Inhibit BACE1 Activity In Vitro: Molecular Docking Studies. J. Med. Food 2014, 17, 284–289. [Google Scholar] [CrossRef]
- Horman, T.; Fernandes, M.F.; Tache, M.C.; Hucik, B.; Mutch, D.M.; Leri, F. Dietary n-6/n-3 Ratio Influences Brain Fatty Acid Composition in Adult Rats. Nutrients 2020, 12, 1847. [Google Scholar] [CrossRef]
- Loef, M.; Walach, H. The Omega-6/Omega-3 Ratio and Dementia or Cognitive Decline: A Systematic Review on Human Studies and Biological Evidence. J. Nutr. Gerontol. Geriatr. 2013, 32, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.; Muhlhausler, B.; Motley, C.; Crump, A.; Bray, H.; Ankeny, R. Australian Consumers’ Awareness and Acceptance of Insects as Food. Insects 2018, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodgate, S.L.; Van der Veen, J.T. Fats and oils—Animal based. In Food Processing: Principles and Applications, 2nd ed.; Clark, S., Jung, S., Lamsal, B., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 481–499. [Google Scholar]
- Orkusz, A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Kulma, M.; Kouřimská, L.; Homolková, D.; Božik, M.; Plachý, V.; Vrabec, V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J. Food Compos. Anal. 2020, 92, 103570. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Nino, M.C.; Reddivari, L.; Osorio, C.; Kaplan, I.; Liceaga, A.M. Insects as a source of phenolic compounds and potential health benefits. J. Insects Food Feed 2021, 7, 1077–1087. [Google Scholar] [CrossRef]
- del Hierro, J.N.; Docio, A.G.; Otero, P.; Reglero, G.; Martin, D. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020, 309, 125742. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Machì, M.; Cianciosi, D.; Navarro-Hortal, M.D.; Battino, M. Edible insects: A novel nutritious, functional, and safe food alternative. Food Front. 2022, 3, 358–365. [Google Scholar] [CrossRef]
- Andersen, S.O. Insect cuticular sclerotization: A review. Insect Biochem. Mol. Biol. 2010, 40, 166–178. [Google Scholar] [CrossRef]
- Musundire, R.; Zvidzai, C.J.; Chidewe, C.; Samende, B.K.; Manditsera, F.A. Nutrient and anti-nutrient composition of Henicus whellani (Orthoptera: Stenopelmatidae), an edible ground cricket, in south-eastern Zimbabwe. Int. J. Trop. Insect Sci. 2014, 34, 223–231. [Google Scholar] [CrossRef]
- Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Yang, Q. Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chem. 2012, 134, 1885–1891. [Google Scholar] [CrossRef] [PubMed]
- Nino, M.C.; Reddivari, L.; Ferruzzi, M.G.; Liceaga, A.M. Targeted Phenolic Characterization and Antioxidant Bioactivity of Extracts from Edible Acheta domesticus. Foods 2021, 10, 2295. [Google Scholar] [CrossRef] [PubMed]
- Colizzi, C. The protective effects of polyphenols on Alzheimer’s disease: A systematic review. Alzheimer’s Dementia: Transl. Res. Clin. Interv. 2019, 5, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Hassaan, Y.; Handoussa, H.; El-Khatib, A.H.; Linscheid, M.W.; El Sayed, N.; Ayoub, N. Evaluation of Plant Phenolic Metabolites as a Source of Alzheimer’s Drug Leads. BioMed. Res. Int. 2014, 2014, 843263. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic Compounds Prevent Alzheimer’s Pathology through Different Effects on the Amyloid-β Aggregation Pathway. Am. J. Pathol. 2009, 175, 2557–2565. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Avila, J.A.; Salazar-López, N.J.; Montiel-Herrera, M.; Martínez-Martínez, A.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Phenolic compounds can induce systemic and central immunomodulation, which result in a neuroprotective effect. J. Food Biochem. 2022, 46, e14260. [Google Scholar] [CrossRef]
- Bukhari, S.N.A. Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight. Antioxidants 2022, 11, 554. [Google Scholar] [CrossRef]
- Wang, W.; de Mejia, E.G. A New Frontier in Soy Bioactive Peptides that May Prevent Age-related Chronic Diseases. Compr. Rev. Food Sci. Food Saf. 2005, 4, 63–78. [Google Scholar] [CrossRef]
- Vercruysse, L.; Smagghe, G.; Beckers, T.; Van Camp, J. Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodoptera littoralis. Food Chem. 2009, 114, 38–43. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, S.; Liu, J.; Zou, Y.; Liao, S. Antioxidant Activity and Stability Study of Peptides from Enzymatically Hydrolyzed Male Silkmoth. J. Food Process. Preserv. 2016, 41, e13081. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, K.S.; Yu, B.J. Optimization of Antioxidant and Skin-Whitening Compounds Extraction Condition from Tenebrio molitor Larvae (Mealworm). Molecules 2018, 23, 2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, M.; Kim, M.A.; Kwon, Y.S.; Hwang, J.S.; Goo, T.W.; Jun, M.; Yun, E.Y. Effects of processing methods on nutritional composition and antioxidant activity of mealworm (Tenebrio molitor) larvae. Èntomol. Res. 2019, 49, 284–293. [Google Scholar] [CrossRef]
- Ugur, A.E.; Bolat, B.; Oztop, M.H.; Alpas, H. Effects of High Hydrostatic Pressure (HHP) Processing and Temperature on Physicochemical Characterization of Insect Oils Extracted from Acheta domesticus (House Cricket) and Tenebrio molitor (Yellow Mealworm). Waste Biomass Valorization 2020, 12, 4277–4286. [Google Scholar] [CrossRef]
- Chatsuwan, N.; Nalinanon, S.; Puechkamut, Y.; Lamsal, B.P.; Pinsirodom, P. Characteristics, Functional Properties, and Antioxidant Activities of Water-Soluble Proteins Extracted from Grasshoppers, Patanga succincta and Chondracris roseapbrunner. J. Chem. 2018, 2018, 6528312. [Google Scholar] [CrossRef] [Green Version]
- Sinyor, B.; Mineo, J.; Ochner, C. Alzheimer’s Disease, Inflammation, and the Role of Antioxidants. J. Alzheimer’s Dis. Rep. 2020, 4, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, X. Antioxidant Therapies for Alzheimer’s Disease. Oxidative Med. Cell. Longev. 2012, 2012, 472932. [Google Scholar] [CrossRef] [Green Version]
- Pritam, P.; Deka, R.; Bhardwaj, A.; Srivastava, R.; Kumar, D.; Jha, A.K.; Jha, N.K.; Villa, C.; Jha, S.K. Antioxidants in Alzheimer’s Disease: Current Therapeutic Significance and Future Prospects. Biology 2022, 11, 212. [Google Scholar] [CrossRef]
- Chrzastek, Z.; Guligowska, A.; Sobczuk, P.; Kostka, T. Dietary factors, risk of developing depression, and severity of its symptoms in older adults—A narrative review of current knowledge. Nutrition 2022, 106, 111892. [Google Scholar] [CrossRef]
- Bortolus, R.; Filippini, F.; Cipriani, S.; Trevisanuto, D.; Cavallin, F.; Zanconato, G.; Somigliana, E.; Cesari, E.; Mastroiacovo, P.; Parazzini, F. Efficacy of 4.0 mg versus 0.4 mg Folic Acid Supplementation on the Reproductive Outcomes: A Randomized Controlled Trial. Nutrients 2021, 13, 4422. [Google Scholar] [CrossRef]
- Mielech, A.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. Vitamins in Alzheimer’s Disease—Review of the Latest Reports. Nutrients 2020, 12, 3458. [Google Scholar] [CrossRef]
- Morris, M.C.; Schneider, J.A.; Tangney, C.C. Thoughts on B-vitamins and dementia. J. Alzheimer’s Dis. 2006, 9, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Ji, L.; Wu, T.; Ji, Y.; Zhou, Y.; Zheng, M.; Zhang, M.; Xu, W.; Huang, G. Folic Acid Supplementation Mitigates Alzheimer’s Disease by Reducing Inflammation: A Randomized Controlled Trial. Mediat. Inflamm. 2016, 2016, 5912146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur. J. Clin. Nutr. 2016, 70, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Mantilla, S.M.O.; Alagappan, S.; Chaliha, M.; Sultanbawa, Y.; Smyth, H.; Cozzolino, D. A Practical Approach on the Combination of GC-MS and Chemometric Tools to Study Australian Edible Green Ants. Food Anal. Methods 2020, 13, 1475–1481. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Front. Nutr. 2019, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, E.; Karaś, M.; Jakubczyk, A. Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int. J. Food Sci. Technol. 2017, 52, 306–312. [Google Scholar] [CrossRef]
- Sun, W.; Li, S.; Chen, C.; Lu, Z.; Zhang, D. Dietary fiber intake is positively related with cognitive function in US older adults. J. Funct. Foods 2022, 90, 104986. [Google Scholar] [CrossRef]
- Budryn, G.; Majak, I.; Grzelczyk, J.; Szwajgier, D.; Rodríguez-Martínez, A.; Pérez-Sánchez, H. Hydroxybenzoic Acids as Acetylcholinesterase Inhibitors: Calorimetric and Docking Simulation Studies. Nutrients 2022, 14, 2476. [Google Scholar] [CrossRef]
Buffalo Worms | House Crickets | Mealworms | Grasshoppers | |
---|---|---|---|---|
C4:0 | 0.05 ± 0.01 a | 0.003 ± 0.00 b | 0.001 ± 0.00 b | 0.04 ± 0.00 a |
C6:0 | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.001 ± 0.00 b | 0.02 ± 0.00 a |
C8:0 | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.002 ± 0.00 b | 0.19 ± 0.00 c |
C10:0 | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a | 0.03 ± 0.00 a |
C12:0 | 0.03 ± 0.01 a | 0.03 ± 0.00 b | 0.35 ± 0.01 c | 0.04 ± 0.00 a |
C13:0 | 0.01 ± 0.01 a | 0.002 ± 0.00 b | 0.15 ± 0.04 c | 0.01 ± 0.00 a |
C14:0 | 0.60 ± 0.09 c | 0.11 ± 0.01 c | 4.11 ± 0.02 d | 0.19 ± 0.01 c |
C15:0 | 0.12 ± 0.02 c | 0.01 ± 0.00 a | 0.14 ± 0.00 c | 0.63 ± 0.03 c |
C16:0 | 5.85 ± 0.09 k,f | 4.84 ± 0.15 e | 5.45 ± 0.32 k,f | 3.46 ± 0.45 k |
C17:0 | 0.09 ± 0.01 a | 0.08 ± 0.00 a | 0.19 ± 0.00 c | 0.49 ± 0.05 c |
C18:0 | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.004 ± 0.00 b |
C20:0 | 0.42 ± 0.01 c | 0.14 ± 0.02 c | 0.19 ± 0.01 c | 0.02 ± 0.00 a |
C21:0 | 0.08 ± 0. 00 a | 0.004 ± 0.00 b | nd | 3.69 ± 0.05 d |
C22:0 | nd | 0.07 ± 0.00 a | 0.03 ± 0.00 a | 1.99 ± 0.09 d |
C23:0 | 0.23 ± 0.02 c | nd | nd | 0.11 ± 0.01 c |
C24:0 | nd | 0.03 ± 0.00 a | nd | nd |
C16:1 | 10.44 ± 0.39 k | 0.16 ± 0.02 a | 1.49 ± 0.15 a | 22.02 ± 0.05 l |
C17:1 | 0.35 ± 0.02 a | 0.02 ± 0.00 a | 0.03 ± 0.00 a | 0.05 ± 0.00 a |
C18:1 | 33.13 ± 2.45 g | 3.94 ± 0.39 d | 37.36 ± 1.10 h | 30.00 ± 0.09 h |
C20:1 | 0.43 ± 0.02 c | 0.03 ± 0.00 a | 0.15 ± 0.00 c,i | 0.15 ± 0.00 c,i |
C22:1 | nd | 0.15 ± 0.01 c,i | nd | nd |
C18:2 | 4.64 ± 0.02 d | 1.18 ± 0.05 d | 30.22 ± 2.22 h | 5.02 ± 0.15 e |
C18:3 | 0.29 ± 0.01 c | 0.12 ± 0.00 c | 1.64 ± 0.45 c | 0.19 ± 0.00 c |
C20:2 | nd | 0.20 ± 0.01 c | 0.12 ± 0.01 a | 0.31 ± 0.01 c,j |
C20:3 | nd | 0.45 ± 0.01 c | 0.01 ± 0.00 a | 0.33 ± 0.01 c,j |
C20:4 | nd | nd | 0.10 ± 0.00 c | 0.77 ± 0.02 c |
C20:5 | nd | 0.06 ± 0.00 a | 0.02 ± 0.00 a | nd |
C22:6 | nd | nd | 0.08 ± 0.00 a | nd |
SFA | 9.34 ± 0.15 l | 7.18 ± 1.15 d | 13.94 ± 0.49 l | 27.63 ± 1.09 h |
PUFA | 4.95 ± 0.02 d | 1.61 ± 0.09 n | 32,78 ± 0.35 h | 9.91 ± 0.02 e |
MUFA | 44.35 ± 1.05 m | 4.16 ± 0.45 d | 39.03 ± 0.25 h | 52.22 ± 0.02 g |
PUFA/SFA | 0.53 ± 0.02 c | 0.22 ± 0.0 c | 2.35 ± 0.15 n | 0.36 ± 0.01 a |
PUFA n-3 | 0.31 ± 0.02 c | 0.44 ± 0.02 c | 2.45 ± 0.25 d | 3.79 ± 0.02 d |
PUFA n-6 | 4.64 ± 0.09 d | 1.18 ± 0.03 n | 30.33 ± 0.33 h | 6.12 ± 0.45 a |
PUFA n-6/PUFA n-3 | 14.97 ± 0.25 k | 2.69 ± 0.02 n,d | 12.38 ± 0.02 k | 1.62 ± 0.01 n |
AI | 0.16 ± 0.02 c | 0.92 ± 0.02 n | 0.31 ± 0.02 c | 0.07 ± 0.01 c |
TI | 0.32 ± 0.02 c | 1.56 ± 0.02 n | 0.31 ± 0.01 c | 0.49 ± 0.01 c |
HH | 5.83 ± 0.09 d | 1.05 ± 0.02 c | 6.84 ± 0.02 n,d | 8.50 ± 0.02 n,d |
Vitamin | Buffalo Worms | House Crickets | Mealworms | Grasshoppers | Olive Oil | Olive Oil with Grasshoppers | Olive Oil with Mealworms |
---|---|---|---|---|---|---|---|
B1 mg/100 g | 0.01 ± 0.00 a | 0.05 ± 0.00 a | 0.23 ± 0.02 b | 0.52 ± 0.01 c | nd | 0.22 ± 0.01 c | 0.09 ± 0.0 b |
B2 mg/100 g | 0.22 ± 0.01 a | 3.65 ± 0.29 b | 1.44 ± 0.09 b | 0.69 ± 0.01 c | nd | 0.36 ± 0.01 c | 0.74 ± 0.03 e |
B3 mg/100 g | 1.18 ± 0.15 a | 3.19 ± 0.13 b | 4.08 ± 0.59 c | 3.08 ± 0.19 b | nd | 1.15 ± 0.02 a | 1.89 ± 0.05 b |
B6 mg/100 g | 0.08 ± 0.01 a | 0.21 ± 0.01 a | 0.79 ± 0.02 b | 0.19 ± 0.00 a | nd | nd | 0.39 ± 0.00 b |
B9 mg/100 g | 0.02 ± 0.00 a | 0.17 ± 0.02 a | 0.23 ± 0.01 b | 0.79 ± 0.09 c | nd | 0.31 ± 0.00 c | 0.05 ± 0.00 b |
The total content of B vitamins | 1.51 ± 0.03 a | 7.27 ± 0.15 b | 6.77 ± 0.23 b | 5.27 ± 0.03 c | nd | 2.04 ± 0.01 a | 3.16 ± 0.10 a |
Vitamin C mg/100 g | 0.96 ± 0.01 a | 2.18 ± 0.02 b | 2.25 ± 0.03 b | 8.15 ± 0.15 c | nd | 3.12 ± 0.03 c | 0.65 ± 0.00 b |
E (IU) | 0.01 ± 0.00 a | 0.79 ± 0.01 b | 0.98 ± 0.02 b | 0.29 ± 0.00 a | 14.21 ± 0.01 | 14.35 ± 0.00 c | 14.81 ± 0.09 d |
Compound | KA × 103 (L/mol) | ΔH (kJ/mol) | ΔG (kJ/mol) | % Inhibition | IC50 (μmol/μmol AChE) |
---|---|---|---|---|---|
Buffalo worms | 1.02 ± 0.45 a | −11.22 ± 1.32 a | −17.22 ± 3.05 a | 13.59 ± 0.13 a | 45.79 ± 1.18 a |
House crickets | 8.19 ± 0.39 b | −63.61 ± 4.35 b | −31.16 ± 2.05 b | 83.02 ± 2.95 b | 5.35 ± 0.39 b |
Mealworms | 9.33 ± 0.10 b | −93.98 ± 4.18 c | −40.75 ± 2.45 c | 94.45 ± 2.54 b | 1.98 ± 0.45 c |
Grasshoppers | 7.25 ± 0.02 b | −85.11 ± 5.12 c | −33.69 ± 3.39 b | 81.65 ± 1.29 b | 5.01 ± 0.15 b |
Olive oil | 5.79 ± 0.05 a | −55.18 ± 1.05 b | −28.28 ± 2.11 b | 78.95 ± 0.45 b | 7.55 ± 0.02 b |
Olive oil with grasshoppers | 10.28 ± 0.03 b | −94.95 ± 3.55 b | −45.24 ± 1.15 c | 115.12 ± 1.35 c | 1.87 ± 0.01 b |
Olive oil with mealworms | 33.60 ± 0.15 d | −115.45 ± 4.45 c | −48.33 ± 2.69 c | 125.29 ± 1.45 c | 1.95 ± 0.03 c |
Olive Oil | Olive Oil with Grasshoppers | Olive Oil with Mealworms | |
---|---|---|---|
C14:0 [%] | 0.01 ± 0.00 a | 0.03 ± 0.00 a | 0.22 ± 0.01 b |
C16:0 [%] | 12.45 ± 0.05 a | 13.33 ± 0.15 a | 14.23 ± 0.10 b |
C16:1 n-7 [%] | 0.95 ± 0.01 a | 6.34 ± 0.03 b | 0.98 ± 0.00 a |
C18:0 [%] | 2.55 ± 0.02 a | 2.55 ± 0.01 a | 2.55 ± 0.00 a |
C18:1 n-9 [%] | 72.85 ± 0.15 a | 81.94 ± 0.39 b | 85.06 ± 0.45 b |
C18:2 n-6 [%] | 9.88 ± 0.01 a | 11.06 ± 0.15 b | 17.35 ± 0.39 c |
C18:3 n-3 [%] | 0.85 ± 0.00 a | 0.89 ± 0.01 a | 1.14 ± 0.15 b |
C20:0 [%] | 0.46 ± 0.00 a | 0.46 ± 0.00 a | 0.52 ± 0.01 b |
ΣMUFA (n-9, n-7) [%] | 73.80 ± 0.03 a | 88.28 ± 0.15 b | 86.04 ± 0.68 b |
ΣPUFA (n-3, n-6) [%] | 10.73 ± 0.05 a | 11.95 ± 0.10 a | 18.49 ± 0.15 b |
ΣUFA [%] | 84.53 ± 0.15 a | 100.23 ± 0.59 b | 104.53 ± 0.98 b |
ΣSFA [%] | 15.47 ± 0.30 a | 16.37 ± 0.15 a | 17.52 ± 0.09 b |
TPC [g GAE/100 g] | 0.67 ± 0.01 a | 2.56 ± 0.09 b | 1.18 ± 0.09 b |
DPPH [mmolTE/100 g] | 0.85 ± 0.01 a | 0.84 ± 0.00 a | 0.84 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzelczyk, J.; Gałązka-Czarnecka, I.; Oracz, J. Potentiality Assessment of the Acetylcholinesterase-Inhibitory Activity of Olive Oil with an Additive Edible Insect Powder. Molecules 2023, 28, 5535. https://doi.org/10.3390/molecules28145535
Grzelczyk J, Gałązka-Czarnecka I, Oracz J. Potentiality Assessment of the Acetylcholinesterase-Inhibitory Activity of Olive Oil with an Additive Edible Insect Powder. Molecules. 2023; 28(14):5535. https://doi.org/10.3390/molecules28145535
Chicago/Turabian StyleGrzelczyk, Joanna, Ilona Gałązka-Czarnecka, and Joanna Oracz. 2023. "Potentiality Assessment of the Acetylcholinesterase-Inhibitory Activity of Olive Oil with an Additive Edible Insect Powder" Molecules 28, no. 14: 5535. https://doi.org/10.3390/molecules28145535
APA StyleGrzelczyk, J., Gałązka-Czarnecka, I., & Oracz, J. (2023). Potentiality Assessment of the Acetylcholinesterase-Inhibitory Activity of Olive Oil with an Additive Edible Insect Powder. Molecules, 28(14), 5535. https://doi.org/10.3390/molecules28145535