Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Biological Assays
- Anti-platelet activity of methoxy resveratrol derivatives.
- Anti-cancer effect of methoxy resveratrol derivatives
2.3. Molecular Calculations
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Synthesis of Methoxyresveratrol Analogs
- 3,5-Dimethoxybenzyl alcohol (2)
- 3,5-Dimethoxybenzyl bromide (3)
- Diethyl (3,5-dimethoxybenzylphosphonate) (4)
- (E)-3,4′,5-trimethoxystilbene or trimethoxyresveratrol (5, TMRESV)
- (E)-5-(4-Hydroxystyryl)benzene-1,3-diol or resveratrol (6)
- Synthesis of acetylated resveratrol compounds 7a–e
- (E)-4-(3,5-dimethoxystyryl)phenyl acetate (8a)
- (E)-3-methoxy-5-(4-methoxystyryl)phenyl acetate (8b)
- (E)-5-(4-methoxystyryl)-1,3-phenylene diacetate (8c)
- (E)-4-(3-acetoxy-5-methoxystyryl)phenyl acetate (8d)
- (E)-4-(3,5-dimethoxystyryl)phenol or 3,5-dimethoxyresveratrol (9a, 3,5-DMRESV)
- (E)-3-methoxy-5-(4-methoxystyryl)phenol or 3,4′-dimethoxyresveratrol (9b, 3,4′-DMRESV)
- (E)-5-(4-methoxystyryl)benzene-1,3-diol or 4′-methoxyresveratrol (9c, 4′-MRESV)
- (E)-3-(4-hydroxystyryl)-5-methoxyphenol or 3-methoxyresveratrol (9d, 3-MRESV)
4.3. Blood Sample Collection
4.4. Platelet Aggregation in Plasma-Rich Platelets (PRP)
4.5. Cell Lines
4.6. MTT Assay
4.7. Molecular Calculations
- Protein Preparation
- Ligand Preparation
- Docking Simulations
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gal, R.; Deres, L.; Toth, K.; Halmosi, R.; Habon, T. The Effect of Resveratrol on the Cardiovascular System from Molecular Mechanisms to Clinical Results. Int. J. Mol. Sci. 2021, 22, 10152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-X.; Li, C.-X.; Kakar, M.U.; Khan, M.S.; Wu, P.-F.; Amir, R.M.; Dai, D.-F.; Naveed, M.; Li, Q.-Y.; Saeed, M.; et al. Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.K.; Luo, J.; Lau, C.W.; Chen, Z.; Tian, X.Y.; Huang, Y. Pharmacological Basis and New Insights of Resveratrol Action in the Cardiovascular System. Br. J. Pharmacol. 2020, 177, 1258–1277. [Google Scholar] [CrossRef] [PubMed]
- Bastianetto, S.; Ménard, C.; Quirion, R. Neuroprotective Action of Resveratrol. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2015, 1852, 1195–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an Anti-Cancer Agent: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Fragopoulou, E.; Kalathara, K.; Nomikos, T.; Karantonis, H.C.; Antonopoulou, S. Antioxidant and Anti-Inflammatory Activity of Red and White Wine Extracts. Food Chem. 2010, 120, 665–672. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Nomikos, T.; Antonopoulou, S.; Mitsopoulou, C.A.; Demopoulos, C.A. Separation of Biologically Active Lipids from Red Wine. J. Agric. Food Chem. 2000, 48, 1234–1238. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Asimakopoulos, D.; Antonopoulou, S.; Demopoulos, C.A.; Fragopoulou, E. Effect of Robola and Cabernet Sauvignon Extracts on Platelet Activating Factor Enzymes Activity on U937 Cells. Food Chem. 2014, 165, 50–59. [Google Scholar] [CrossRef]
- Vlachogianni, I.C.; Fragopoulou, E.; Stamatakis, G.M.; Kostakis, I.K.; Antonopoulou, S. Platelet Activating Factor (PAF) Biosynthesis Is Inhibited by Phenolic Compounds in U-937 Cells under Inflammatory Conditions. Prostaglandins Other Lipid Mediat. 2015, 121, 176–183. [Google Scholar] [CrossRef]
- Tenta, R.; Fragopoulou, E.; Tsoukala, M.; Xanthopoulou, M.; Skyrianou, M.; Pratsinis, H.; Kletsas, D. Antiproliferative Effects of Red and White Wine Extracts in PC-3 Prostate Cancer Cells. Nutr. Cancer 2017, 69, 952–961. [Google Scholar] [CrossRef]
- Demopoulos, C.A.; Karantonis, H.C.; Antonopoulou, S. Platelet Activating Factor—A Molecular Link between Atherosclerosis Theories. Eur. J. Lipid Sci. Technol. 2003, 105, 705–716. [Google Scholar] [CrossRef]
- Ninio, E. Phospholipid Mediators in the Vessel Wall: Involvement in Atherosclerosis. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 123–131. [Google Scholar] [CrossRef]
- Travers, J.B.; Rohan, J.G.; Sahu, R.P. New Insights Into the Pathologic Roles of the Platelet-Activating Factor System. Front. Endocrinol. 2021, 12, 624132. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High Absorption But Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biasutto, L.; Mattarei, A.; Azzolini, M.; La Spina, M.; Sassi, N.; Romio, M.; Paradisi, C.; Zoratti, M. Resveratrol Derivatives as a Pharmacological Tool: Resveratrol Derivatives. Ann. N. Y. Acad. Sci. 2017, 1403, 27–37. [Google Scholar] [CrossRef]
- Gianchecchi, E.; Fierabracci, A. Insights on the Effects of Resveratrol and Some of Its Derivatives in Cancer and Autoimmunity: A Molecule with a Dual Activity. Antioxidants 2020, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, X.; Zhang, L.; An, H.; Zao, Z. Inhibitory Effects of Resveratrol on Platelet Activation Induced by Thromboxane a(2) Receptor Agonist in Human Platelets. Am. J. Chin. Med. 2011, 39, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020, 10, 1111. [Google Scholar] [CrossRef]
- Wang, P.; Sang, S. Metabolism and Pharmacokinetics of Resveratrol and Pterostilbene: Resveratrol and Pterostilbene. BioFactors 2018, 44, 16–25. [Google Scholar] [CrossRef]
- Zhang, W.; Go, M.L. Quinone Reductase Induction Activity of Methoxylated Analogues of Resveratrol. Eur. J. Med. Chem. 2007, 42, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Kapetanovic, I.M.; Muzzio, M.; Huang, Z.; Thompson, T.N.; McCormick, D.L. Pharmacokinetics, Oral Bioavailability, and Metabolic Profile of Resveratrol and Its Dimethylether Analog, Pterostilbene, in Rats. Cancer Chemother. Pharmacol. 2011, 68, 593–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.-S.; Yue, B.-D.; Ho, P.C. Determination of Pterostilbene in Rat Plasma by a Simple HPLC-UV Method and Its Application in Pre-Clinical Pharmacokinetic Study. Biomed. Chromatogr. 2009, 23, 1308–1315. [Google Scholar] [CrossRef]
- Jurk, K.; Kehrel, B.E. Platelets: Physiology and Biochemistry. Semin. Thromb. Hemost. 2005, 31, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Thushara, R.M.; Hemshekhar, M.; Basappa; Kemparaju, K.; Rangappa, K.S.; Girish, K.S. Biologicals, Platelet Apoptosis and Human Diseases: An Outlook. Crit. Rev. Oncol. Hematol. 2015, 93, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Fragopoulou, E.; Nomikos, T.; Karantonis, H.C.; Apostolakis, C.; Pliakis, E.; Samiotaki, M.; Panayotou, G.; Antonopoulou, S. Biological Activity of Acetylated Phenolic Compounds. J. Agric. Food Chem. 2007, 55, 80–89. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Wu, Y.-S.; Kang, Y.-F.; Wang, H.-C.; Tsai, M.-C.; Wu, C.-C. 3,5,2′,4′-Tetramethoxystilbene, a Fully Methylated Resveratrol Analog, Prevents Platelet Aggregation and Thrombus Formation by Targeting the Protease-Activated Receptor 4 Pathway. Chem. Biol. Interact. 2022, 357, 109889. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yagiz, Y.; Marshall, S.; Li, Z.; Simonne, A.; Lu, J.; Marshall, M.R. Application of Muscadine Grape (Vitis Rotundifolia Michx.) Pomace Extract to Reduce Carcinogenic Acrylamide. Food Chem. 2015, 182, 200–208. [Google Scholar] [CrossRef]
- Wojtukiewicz, M.Z.; Hempel, D.; Sierko, E.; Tucker, S.C.; Honn, K.V. Antiplatelet Agents for Cancer Treatment: A Real Perspective or Just an Echo from the Past? Cancer Metastasis Rev. 2017, 36, 305–329. [Google Scholar] [CrossRef]
- Jungong, C.S.; Novikov, A.V. Practical Preparation of Resveratrol 3-O-β-D-Glucuronide. Synth. Commun. 2012, 42, 3589–3597. [Google Scholar] [CrossRef] [Green Version]
- Gaarder, A.; Jonsen, J.; Laland, S.; Hellem, A.; Owren, P.A. Adenosine Diphosphate in Red Cells as a Factor in the Adhesiveness of Human Blood Platelets. Nature 1961, 192, 531–532. [Google Scholar] [CrossRef]
- Puri, R.N.; Colman, R.W.; Liberman, M.A. ADP-Lnduced Platelet Activation. Crit. Rev. Biochem. Mol. Biol. 1997, 32, 437–502. [Google Scholar] [CrossRef] [PubMed]
- von Kügelgen, I. Molecular Pharmacology of P2Y Receptor Subtypes. Biochem. Pharmacol. 2021, 187, 114361. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, D.; Albadawi, D.A.I.; Chaggar, V.; Patra, P.H.; Williams, H.F.; Salamah, M.; Vaiyapuri, R.; Dash, P.R.; Patel, K.; Watson, K.A.; et al. Isorhapontigenin, a Resveratrol Analogue Selectively Inhibits ADP-Stimulated Platelet Activation. Eur. J. Pharmacol. 2019, 862, 172627. [Google Scholar] [CrossRef] [PubMed]
- Savage, B.; Cattaneo, M.; Ruggeri, Z.M. Mechanisms of Platelet Aggregation. Curr. Opin. Hematol. 2001, 8, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Jamasbi, J.; Ayabe, K.; Goto, S.; Nieswandt, B.; Peter, K.; Siess, W. Platelet Receptors as Therapeutic Targets: Past, Present and Future. Thromb. Haemost. 2017, 117, 1249–1257. [Google Scholar] [CrossRef]
- Flaumenhaft, R.; De Ceunynck, K. Targeting PAR1: Now What? Trends Pharmacol. Sci. 2017, 38, 701–716. [Google Scholar] [CrossRef]
- Grau, L.; Soucek, R.; Pujol, M.D. Resveratrol Derivatives: Synthesis and Their Biological Activities. Eur. J. Med. Chem. 2023, 246, 114962. [Google Scholar] [CrossRef]
- Gosslau, A.; Chen, M.; Ho, C.-T.; Chen, K.Y. A Methoxy Derivative of Resveratrol Analogue Selectively Induced Activation of the Mitochondrial Apoptotic Pathway in Transformed Fibroblasts. Br. J. Cancer 2005, 92, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Horvath, Z.; Marihart-Fazekas, S.; Saiko, P.; Grusch, M.; Ozsüy, M.; Harik, M.; Handler, N.; Erker, T.; Jaeger, W.; Fritzer-Szekeres, M.; et al. Novel Resveratrol Derivatives Induce Apoptosis and Cause Cell Cycle Arrest in Prostate Cancer Cell Lines. Anticancer Res. 2007, 27, 3459–3464. [Google Scholar]
- Florio, R.; De Filippis, B.; Veschi, S.; Di Giacomo, V.; Lanuti, P.; Catitti, G.; Brocco, D.; Di Rienzo, A.; Cataldi, A.; Cacciatore, I.; et al. Resveratrol Derivative Exhibits Marked Antiproliferative Actions, Affecting Stemness in Pancreatic Cancer Cells. Int. J. Mol. Sci. 2023, 24, 1977. [Google Scholar] [CrossRef] [PubMed]
- Innets, B.; Thongsom, S.; Petsri, K.; Racha, S.; Yokoya, M.; Moriue, S.; Chaotham, C.; Chanvorachote, P. Akt/MTOR Targeting Activity of Resveratrol Derivatives in Non-Small Lung Cancer. Molecules 2022, 27, 8268. [Google Scholar] [CrossRef] [PubMed]
- Vlachogianni, I.C.; Fragopoulou, E.; Kostakis, I.K.; Antonopoulou, S. In Vitro Assessment of Antioxidant Activity of Tyrosol, Resveratrol and Their Acetylated Derivatives. Food Chem. 2015, 177, 165–173. [Google Scholar] [CrossRef]
- Uzura, S.; Sekine-Suzuki, E.; Nakanishi, I.; Sonoda, M.; Tanimori, S. A Facile and Rapid Access to Resveratrol Derivatives and Their Radioprotective Activity. Bioorg. Med. Chem. Lett. 2016, 26, 3886–3891. [Google Scholar] [CrossRef] [PubMed]
- Gonzaléz, M.J.T.G.; Pinto, M.M.M.; Kijjoa, A.; Anantachoke, C.; Herz, W. Stilbenes and Other Constituents of Knema Austrosiamensis. Phytochemistry 1993, 32, 433–438. [Google Scholar] [CrossRef]
- Chaudhari, M.; Jain, G.K.; Sarin, J.P.; Khanna, N.M. Spasmolytic Principle from Rheum Webbianum Royle. Indian J. Chem 1983, 13, 699645. [Google Scholar]
- Tyukavkina, N.A.; Gromova, A.S.; Lutskii, V.I.; Voronov, V.K. Hydroxystilbenes from the Bark of Pinus Sibirica. Chem. Nat. Compd. 1972, 8, 570–572. [Google Scholar] [CrossRef]
- Gómez-Zorita, S.; Fernández-Quintela, A.; Lasa, A.; Aguirre, L.; Rimando, A.M.; Portillo, M.P. Pterostilbene, a Dimethyl Ether Derivative of Resveratrol, Reduces Fat Accumulation in Rats Fed an Obesogenic Diet. J. Agric. Food Chem. 2014, 62, 8371–8378. [Google Scholar] [CrossRef]
- Houillé, B.; Papon, N.; Boudesocque, L.; Bourdeaud, E.; Besseau, S.; Courdavault, V.; Enguehard-Gueiffier, C.; Delanoue, G.; Guérin, L.; Bouchara, J.-P.; et al. Antifungal Activity of Resveratrol Derivatives against Candida Species. J. Nat. Prod. 2014, 77, 1658–1662. [Google Scholar] [CrossRef]
- Vistica, D.T.; Skehan, P.; Scudiero, D.; Monks, A.; Pittman, A.; Boyd, M.R. Tetrazolium-Based Assays for Cellular Viability: A Critical Examination of Selected Parameters Affecting Formazan Production. Cancer Res. 1991, 51, 2515–2520. [Google Scholar]
Compounds | IC50 ADP (mΜ) | IC50 PAF (mΜ) | IC50 TRAP (mΜ) | |
---|---|---|---|---|
Resveratrol | Amplitude | 0.476 ± 0.18 a | 0.165 ± 0.05 b | 0.224 ± 0.09 b |
AUC | 0.358 ± 0.20 a | 0.083 ± 0.05 b | 0.113 ± 0.04 b | |
3-MRESV | Amplitude | >1 * | 0.334 ± 0.05 | 0.063 ± 0.02 |
AUC | >1 * | 0.090 ± 0.06 | 0.039 ± 0.01 | |
4′-MRESV | Amplitude | 0.899 ± 0.33 a | 0.336 ± 0.19 | 0.009 ± 0.005 |
AUC | 0.352 ± 0.07 | 0.178 ± 0.09 | 0.004 + 0.002 | |
3,4′-DMRESV | Amplitude | 0.663 ± 0.13 b | 0.984 ± 0.20 * | 0.110 ± 0.02 |
AUC | 0.512 ± 0.16 | 0.492 ± 0.29 * | 0.038 ± 0.012 | |
3,5-DMRESV | Amplitude | >1 * | 0.351 ± 0.11 | 0.138 ± 0.05 |
AUC | 0.747 ± 0.15 * | 0.174 ± 0.06 | 0.106 ± 0.04 | |
TMRESV | Amplitude | 0.721 ± 0.33 a | 0.528 ± 0.02 * | >1 * |
AUC | 0.747 ± 0.15 | 0.368 ± 0.04 * | >1 * |
Compounds | PC-3 | HCT116 |
---|---|---|
Resveratrol | 27.8 ± 3.2 | 76 ± 5.7 |
3-MRESV | 20.3 ± 2.0 * | 70.2 ± 5.4 |
4′-MRESV | >100 | >100 |
3,4′-DMRESV | 43.0 ± 0.6 * | 54.8 ± 4.2 * |
3,5-DMRESV | 31.2 ± 1.9 | 84.9 ± 10.2 |
TMRESV | 83.2 ± 5.9 * | 48.6 ± 2.4 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragopoulou, E.; Gkotsi, K.; Petsini, F.; Gioti, K.; Kalampaliki, A.D.; Lambrinidis, G.; Kostakis, I.K.; Tenta, R. Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives. Molecules 2023, 28, 5547. https://doi.org/10.3390/molecules28145547
Fragopoulou E, Gkotsi K, Petsini F, Gioti K, Kalampaliki AD, Lambrinidis G, Kostakis IK, Tenta R. Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives. Molecules. 2023; 28(14):5547. https://doi.org/10.3390/molecules28145547
Chicago/Turabian StyleFragopoulou, Elizabeth, Katerina Gkotsi, Filio Petsini, Katerina Gioti, Amalia D. Kalampaliki, George Lambrinidis, Ioannis K. Kostakis, and Roxane Tenta. 2023. "Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives" Molecules 28, no. 14: 5547. https://doi.org/10.3390/molecules28145547
APA StyleFragopoulou, E., Gkotsi, K., Petsini, F., Gioti, K., Kalampaliki, A. D., Lambrinidis, G., Kostakis, I. K., & Tenta, R. (2023). Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives. Molecules, 28(14), 5547. https://doi.org/10.3390/molecules28145547