Soil Organic Matter Composition and pH as Factors Affecting Retention of Carbaryl, Carbofuran and Metolachlor in Soil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sorption Isotherms and Their Mathematical Approximations
2.2. Influence of Fractional SOM Composition on Carbaryl, Carbofuran and Metolachlor Retention in Studied Soils
2.3. pH-Dependent Sorption of Carbamates and Metolachlor on L and C Soils
3. Materials and Methods
3.1. Chemicals
3.2. Arable Soils under Study
3.2.1. Chemical Fractionation of the Humic Material
3.2.2. Preparation of L and C Soils of Various pH Levels
3.3. Batch Equilibrium Sorption Studies
3.4. Mathematical Modeling of Sorption Isotherms
3.4.1. Langmuir Model
3.4.2. Freundlich Model
3.4.3. Temkin Model
3.4.4. Dubinin–Radushkievich Model
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Copaja, S.V.; Gatica, P. Effects of clay content in soil on pesticides sorption process. J. Chil. Chem. Soc. 2021, 66, 5086–5092. [Google Scholar] [CrossRef]
- Kah, M.; Brown, C.D. Adsorption of Ionisable Pesticides in Soils. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware, G.W., Whitacre, D.M., Albert, L.A., de Voogt, P., Gerba, C.P., Hutzinger, O., Knaak, J.B., Mayer, F.L., Morgan, D.P., Park, D.L., et al., Eds.; Springer: New York, NY, USA, 2006; pp. 149–217. ISBN 978-0-387-32964-2. [Google Scholar]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Spark, K.M.; Swift, R.S. Effect of soil composition and dissolved organic matter on pesticide sorption. Sci. Total Environ. 2002, 298, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Barchańska, H.; Czaplicka, M.; Kyzioł-Komosińska, J. Interaction of selected pesticides with mineral and organic soil components. Arch. Environ. Prot. 2020, 46, 80–91. [Google Scholar] [CrossRef]
- Ćwieląg-Piasecka, I.; Jamroz, E.; Medyńska-Juraszek, A.; Bednik, M.; Kosyk, B.; Polláková, N. Deashed Wheat-Straw Biochar as a Potential Superabsorbent for Pesticides. Materials 2023, 16, 2185. [Google Scholar] [CrossRef]
- Haberhauer, G.; Pfeiffer, L.; Gerzabek, M.H.; Kirchmann, H.; Aquino, A.J.A.; Tunega, D.; Lischka, H. Response of sorption processes of MCPA to the amount and origin of organic matter in a long-term field experiment. Eur. J. Soil Sci. 2001, 52, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Cox, L.; Celis, R.; Hermosín, M.C.; Cornejo, J.; Zsolnay, A.; Zeller, K. Effect of Organic Amendments on Herbicide Sorption as Related to the Nature of the Dissolved Organic Matter. Environ. Sci. Technol. 2000, 34, 4600–4605. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; He, X.; Rong, X.; Chen, W.; Cai, P.; Liang, W.; Li, S.; Huang, Q. Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Appl. Clay Sci. 2009, 46, 102–108. [Google Scholar] [CrossRef]
- Ćwieląg-Piasecka, I.; Debicka, M.; Medyńska-Juraszek, A. Effectiveness of Carbaryl, Carbofuran and Metolachlor Retention in Soils under the Influence of Different Colloid. Minerals 2021, 11, 924. [Google Scholar] [CrossRef]
- Ozbay, B.; Akyol, N.H.; Akyol, G.; Ozbay, I. Sorption and desorption behaviours of 2,4-D and glyphosate in calcareous soil from Antalya, Turkey. Water Environ. J. 2018, 32, 141–148. [Google Scholar] [CrossRef]
- Hsieh, T.-L.; Kao, M.-M. Adsorption of carbofuran on lateritic soils. J. Hazard. Mater. 1998, 58, 275–284. [Google Scholar] [CrossRef]
- Wu, D.; Ren, C.; Wu, C.; Li, Y.; Deng, X.; Li, Q. Mechanisms by which different polar fractions of dissolved organic matter affect sorption of the herbicide MCPA in ferralsol. J. Hazard. Mater. 2021, 416, 125774. [Google Scholar] [CrossRef] [PubMed]
- Sadegh-Zadeh, F.; Abd Wahid, S.; Jalili, B. Sorption, degradation and leaching of pesticides in soils amended with organic matter: A review. Adv. Environ. Technol. 2017, 3, 119–132. [Google Scholar] [CrossRef]
- Li, Y.-L.; He, W.; Liu, W.-X.; Kong, X.-Z.; Yang, B.; Yang, C.; Xu, F.-L. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks. Environ. Pollut. 2015, 206, 461–468. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Bejger, R.; Smreczak, B.; Podlasiński, M. Sorption of Organic Contaminants by Stable Organic Matter Fraction in Soil. Molecules 2023, 28, 429. [Google Scholar] [CrossRef]
- Vischetti, C.; Monaci, E.; Casucci, C.; De Bernardi, A.; Cardinali, A. Adsorption and Degradation of Three Pesticides in a Vineyard Soil and in an Organic Biomix. Environments 2020, 7, 113. [Google Scholar] [CrossRef]
- Senesi, N. Binding mechanisms of pesticides to soil humic substances. Behav. Pestic. Soil Environ. 1992, 123–124, 63–76. [Google Scholar] [CrossRef]
- Murphy, E.M.; Zachara, J.M.; Smith, S.C.; Phillips, J.L.; Wietsma, T.W. Interaction of Hydrophobic Organic Compounds with Mineral-Bound Humic Substances. Environ. Sci. Technol. 1994, 28, 1291–1299. [Google Scholar] [CrossRef] [Green Version]
- Becher, M.; Tołoczko, W.; Godlewska, A.; Pakuła, K.; Żukowski, E. Fractional Composition of Organic Matter and Properties of Humic Acids in the Soils of Drained Bogs of the Siedlce Heights in Eastern Poland. J. Ecol. Eng. 2022, 23, 208–222. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Lozano, Z.; Delgado, M.; Dumon, M.; Van Ranst, E.; Lobo, D.; Gabriels, D.; Cornelis, W.M. Using soil organic matter fractions as indicators of soil physical quality. Soil Use Manag. 2018, 34, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Simpson, A.J.; Hayes, M.H.B. Compositional changes in the humin fraction resulting from the long-term cultivation of an Irish grassland soil: Evidence from FTIR and multi-NMR spectroscopies. Sci. Total Environ. 2023, 880, 163280. [Google Scholar] [CrossRef] [PubMed]
- Novotny, E.H.; Turetta, A.P.D.; Resende, M.F.; Rebello, C.M. The quality of soil organic matter, accessed by 13C solid state nuclear magnetic resonance, is just as important as its content concerning pesticide sorption. Environ. Pollut. 2020, 266, 115298. [Google Scholar] [CrossRef] [PubMed]
- Ahangar, A.G.; Smernik, R.J.; Kookana, R.S.; Chittleborough, D.J. Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron. Chemosphere 2008, 70, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Chefetz, B.; Xing, B. Relative Role of Aliphatic and Aromatic Moieties as Sorption Domains for Organic Compounds: A Review. Environ. Sci. Technol. 2009, 43, 1680–1688. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, M.J. High Affinity Sorption Domains in Soil Are Blocked by Polar Soil Organic Matter Components. Environ. Sci. Technol. 2013, 47, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Raturi, S.; Islam, K.R.; Caroll, M.J.; Hill, R.L. Carbaryl, 2,4-D, and Triclopyr Adsorption in Thatch-Soil Ecosystems. J. Environ. Sci. Health Part B 2005, 40, 697–710. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, S.; Srivastava, G. Adsorption Thermodynamics of Carbaryl onto Four Texturally Different Indian Soils. Adsorpt. Sci. Technol. 2011, 29, 277–288. [Google Scholar] [CrossRef]
- Singh, R.P.; Srivastava, G. Adsorption and Movement of Carbofuran in Four Different Soils Varying in Physical and Chemical Properties. Adsorpt. Sci. Technol. 2009, 27, 193–203. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B.; Siebielec, G. Assessment of Pesticide Residue Content in Polish Agricultural Soils. Molecules 2020, 25, 587. [Google Scholar] [CrossRef] [Green Version]
- Kouame, K.B.-J.; Savin, M.C.; Willett, C.D.; Bertucci, M.B.; Butts, T.R.; Grantz, E.; Roma-Burgos, N. S-metolachlor persistence in soil as influenced by within-season and inter-annual herbicide use. Environ. Adv. 2022, 9, 100318. [Google Scholar] [CrossRef]
- Singh, N.; Kloeppel, H.; Klein, W. Sorption behavior of metolachlor, isoproturon, and terbuthylazine in soils. J. Environ. Sci. Health Part B 2001, 36, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Mathias, F.T.; Romano, R.M.; Sleiman, H.K.; de Oliveira, C.A.; Romano, M.A. Herbicide Metolachlor Causes Changes in Reproductive Endocrinology of Male Wistar Rats. ISRN Toxicol. 2012, 2012, 130846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrigawitch, T.; Hons, F.M.; Abernathy, J.R.; Gipson, J.R. Adsorption, Desorption, and Mobility of Metolachlor in Soils. Weed Sci. 1981, 29, 332–336. [Google Scholar] [CrossRef]
- Rama Krishna, K.; Philip, L. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J. Hazard. Mater. 2008, 160, 559–567. [Google Scholar] [CrossRef]
- Spongberg, A.L.; Ganliang, L. Adsorption of atrazine and metolachlor in three soils from Blue Creek wetlands, Waterville, Ohio. Sci. Soils 2000, 5, 1–9. [Google Scholar] [CrossRef]
- Mondal, N.K.; Chattoraj, S.; Sadhukhan, B.; Das, B. Evaluation of carbaryl sorption in alluvial soil. Songklanakarin J. Sci. Technol. 2013, 35, 727–738. [Google Scholar]
- Zhang, P.; Sun, H.; Yu, L.; Sun, T. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J. Hazard. Mater. 2013, 244–245, 217–224. [Google Scholar] [CrossRef]
- Getzin, L.W. Persistence and Degradation of Carbofuran in Soil1. Environ. Entomol. 1973, 2, 461–468. [Google Scholar] [CrossRef]
- Trotter, D.M.; Kent, R.A.; Wong, M.P. Aquatic fate and effect of Carbofuran. Crit. Rev. Environ. Control 1991, 21, 137–176. [Google Scholar] [CrossRef]
- Ćwieląg-Piasecka, I.; Medyńska-Juraszek, A.; Jerzykiewicz, M.; Dębicka, M.; Bekier, J.; Jamroz, E.; Kawałko, D. Humic acid and biochar as specific sorbents of pesticides. J. Soils Sediments 2018, 18, 2692–2702. [Google Scholar] [CrossRef] [Green Version]
- Brahmaprakash, G.P.; Sethunathan, N. Metabolism of carbaryl and carbofuran in soil planted to rice. Agric. Ecosyst. Environ. 1985, 13, 33–42. [Google Scholar] [CrossRef]
- Farrell, J.; Reinhard, M. Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 1. Isotherms. Environ. Sci. Technol. 1994, 28, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Chiou, C. Fundamentals of the Adsorption Theory. In Partition and Adsorption of Organic Contaminants in Environmental Systems; Wiley Online Library: New Jersey, NJ, USA, 2003; pp. 39–52. ISBN 978-0-471-23325-1. [Google Scholar]
- Hammond, K.D.; Conner, W.C. Chapter One—Analysis of Catalyst Surface Structure by Physical Sorption. In Advances in Catalysis; Gates, B.C., Jentoft, F.C., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 56, pp. 1–101. ISBN 0360-0564. [Google Scholar]
- Nakhli, A.; Khalfaoui, M.; Aguir, C.; Manel, B.; M’henni, M.; Ben Lamine, A. Statistical Physics Studies of Multilayer Adsorption on Solid Surface: Adsorption of Basic Blue 41 Dye onto Functionalized Posidonia Biomass. Sep. Sci. Technol. 2014, 49, 2525–2533. [Google Scholar] [CrossRef]
- Koskinen, W.C.; Harper, S.S. The Retention Process: Mechanisms. In Pesticides in the Soil Environment: Processes, Impacts and Modeling; SSSA Book Series; Soil Science Society of America: Madison WI, USA, 1990; pp. 51–77. ISBN 978-0-89118-861-2. [Google Scholar]
- Lyubchik, S.; Lyubchik, A.; Lygina, O.; Lyubchik, S.; Fonseca, I. Comparison of the Thermodynamic Parameters Estimation for the Adsorption Process of the Metals from Liquid Phase on Activated Carbons. In Thermodynamics; Moreno-Pirajan, J.C., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 4. [Google Scholar]
- Zanella, O.; Tessaro, I.C.; Féris, L.A. Study of CaCl2 as an agent that modifies the surface of activated carbon used in sorption/treatment cycles for nitrate removal. Braz. J. Chem. Eng. 2014, 31. [Google Scholar] [CrossRef] [Green Version]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Movement and Fate of 2,4-D in Urban Soils: A Potential Environmental Health Concern. ACS Omega 2020, 5, 13287–13295. [Google Scholar] [CrossRef] [PubMed]
- Franus, M.; Bandura, L.; Madej, J. Mono and Poly-Cationic Adsorption of Heavy Metals Using Natural Glauconite. Minerals 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Ugrina, M.; Jurić, A.; Nuić, I.; Trgo, M. Modeling, Simulation, Optimization, and Experimental Verification of Mercury Removal onto Natural and Sulfur-Impregnated Zeolite Clinoptilolite—Assessment of Feasibility for Remediation of Mercury-Contaminated Soil. Processes 2023, 11, 606. [Google Scholar] [CrossRef]
- Olawale, S.A.; Okafor, C. Comparing the Different Methods Used in the Determination of Thermodynamic Parameters Using Adsorption of Pb(II) on to Chicken Feather as an Example. J. Mater. Sci. Res. Rev. 2020, 6, 1–11. [Google Scholar]
- Masini, J.C.; Abate, G. Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. Minerals 2021, 11, 1282. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Marbawi, H.; Othman, A.R.; Halmi, M.I.E.; Gansau, J.A.; Sabullah, K.; Yasid, N.A. Re-evaluation of Thermodynamic Parameters using Dimensionless Langmuir Constants from Published Data on Glyphosate Adsorption onto Activated Carbon Loaded with Manganese and Iron. J. Environ. Bioremed. Toxicol. 2020, 3, 6–10. [Google Scholar] [CrossRef]
- Vaikosen, E.N.; Davidson, C.M.; Olu-Owolabi, B.I.; Gibson, L.T.; Agunbiade, F.O.; Kashimawo, A.J.; Adebowale, K.O. Kinetic and isotherm studies on the adsorption–desorption of technical-grade endosulfan in loamy soils under Theobroma cacao L cultivation, Southwestern Nigeria. Environ. Sci. Adv. 2023, 2, 257–277. [Google Scholar] [CrossRef]
- Gustafson, D.I. Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 1989, 8, 339–357. [Google Scholar] [CrossRef]
- Shan, Z.J.; Zhu, Z.L.; Hua, X.M. Investigation of effect of herbicide-suola on groundwater. Acta Sci. Circumstantine 1994, 14, 72–78. [Google Scholar]
- Assessing Soil Contamination A Reference Manual; FAO Pesticide Disposal Series 8; Editorial Group FAO Information Division: Rome, Italy, 2000.
- Augustijn-Beckers, P.W.M.; Hornsby, A.G.; Wauchope, R.D. The SCS/ARS/CES Pesticide Properties Database for Environmental Decision-Making. II. Additional Compounds. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware, G.W., Ed.; Springer: New York, NY, USA, 1994; pp. 1–82. ISBN 978-1-4612-2662-8. [Google Scholar]
- Test, No. 106: Adsorption—Desorption Using a Batch Equilibrium Method; OECD Guidelines for the Testing of Chemicals, Section 1; OECD: Paris, France, 2000; ISBN 978-92-64-06960-2.
- Leenheer, J.A.; Ahlrichs, J.L. A Kinetic and Equilibrium Study of the Adsorption of Carbaryl and Parathion upon Soil Organic Matter Surfaces. Soil Sci. Soc. Am. J. 1971, 35, 700–705. [Google Scholar] [CrossRef]
- Ding, G. Soil Organic Matter and Metolachlor Sorption Characteristics as Affected by Soil Management. Ph. D. Thesis, University of Massachusetts Amherst Community, Amherst, MA, USA, 2002. [Google Scholar]
- Xing, B.; Pignatello, J.J. Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly(Vinyl Chloride) and Soil Organic Matter. Environ. Sci. Technol. 1997, 31, 792–799. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, D.; Yu, H. Sorption of Aromatic Compounds to Clay Mineral and Model Humic Substance–Clay Complex: Effects of Solute Structure and Exchangeable Cation. J. Environ. Qual. 2008, 37, 817–823. [Google Scholar] [CrossRef]
- Murthy, N.B.K.; Raghu, K. Fate of14C-carbaryl in soils as a function of pH. Bull. Environ. Contam. Toxicol. 1991, 46, 374–379. [Google Scholar] [CrossRef]
- Benicha, M.; Mrabet, R.; Azmani, A. Characterization of carbofuran bound residues and the effect of ageing on their distribution and bioavailability in the soil of a sugar beet field in north-western Morocco. Eur. J. Environ. Sci. 2016, 6, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Kumari, K.; Singh, D. Influence of different factors on the adsorption of carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methyl carbamate) on soils. Ecotoxicol. Environ. Saf. 1994, 29, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Isak, N.; Xhaxhiu, K. A Review on the Adsorption of Diuron, Carbaryl, and Alachlor Using Natural and Activated Clays. Remediat. J. 2023, 1–15. [Google Scholar] [CrossRef]
- Dorado, J.; Almendros, G. Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree. Agronomy 2021, 11, 869–886. [Google Scholar] [CrossRef]
- Weber, J.B.; McKinnon, E.J.; Swain, L.R. Sorption and Mobility of 14C-Labeled Imazaquin and Metolachlor in Four Soils As Influenced by Soil Properties. J. Agric. Food Chem. 2003, 51, 5752–5759. [Google Scholar] [CrossRef] [PubMed]
- Jayasundera, S.; Schmidt, W.F.; Hapeman, C.J.; Torrents, A. Influence of the Chemical Environment on Metolachlor Conformations. J. Agric. Food Chem. 1999, 47, 4435–4442. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Jamroz, E.; Kocowicz, A.; Debicka, M.; Bekier, J.; Ćwieląg-Piasecka, I.; Ukalska-Jaruga, A.; Mielnik, L.; Bejger, R.; Jerzykiewicz, M. Optimized isolation method of humin fraction from mineral soil material. Environ. Geochem. Health 2022, 44, 1289–1298. [Google Scholar] [CrossRef]
- Kozak, J.; Weber, J.B.; Sheets, T.J. Adsorption of prometryn and metolachlor by selected soil organic matter fractions. Soil Sci. 1983, 136, 94–101. [Google Scholar] [CrossRef]
- Hayes, M.H.B.; Mylotte, R.; Swift, R.S. Chapter Two—Humin: Its Composition and Importance in Soil Organic Matter. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 143, pp. 47–138. ISBN 0065-2113. [Google Scholar]
- Song, G.; Novotny, E.H.; Simpson, A.J.; Clapp, C.E.; Hayes, M.H.B. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Eur. J. Soil Sci. 2008, 59, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Nennemann, A.; Mishael, Y.; Nir, S.; Rubin, B.; Polubesova, T.; Bergaya, F.; van Damme, H.; Lagaly, G. Clay-Based Formulations of Metolachlor with Reduced Leaching. Appl. Clay Sci. 2001, 18, 265–275. [Google Scholar] [CrossRef]
- Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y. Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalination Water Treat. 2016, 57, 13645–13677. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Fan, B.; Luan, Z. Sorption of endrin to montmorillonite and kaolinite clays. J. Hazard. Mater. 2009, 168, 210–214. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Suhas; Saini, V.K. Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes. J. Colloid Interface Sci. 2006, 299, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Weiping, L.; Pusino, A.; Gessa, C. Contribution of organic matter to metolachlor adsorption on some soils. J. Environ. Sci. 1995, 7, 121–125. [Google Scholar]
- Kabała, C.; Bekier, J.; Binczycki, T.; Bogacz, A.; Bojko, O.; Ćwieląg-Piasecka, I.; Debicka, M.; Cuske, M.; Gałka, B.; Gersztyn, L.; et al. Soils of Lower Silesia: Origins, Diversity and Protection; PTG, PTSH: Wrocław, Poland, 2015; ISBN 978-83-934096-4-8. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Swift, R.S. Organic matter characterization (chap 35). In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Sci. Soc. Am. Book Series: 5; Soil Science Society of America Journal: Madison, WI, USA, 1996; pp. 1018–1020. [Google Scholar]
- Bekier, J.; Jamroz, E.; Walenczak-Bekier, K.; Uściła, M. Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland. Sustainability 2023, 15, 2277. [Google Scholar] [CrossRef]
- Jamroz, E.; Jerzykiewicz, M. Humic fractions as indicators of soil organic matter responses to clear-cutting in mountain and lowland conditions of southwestern Poland. Land Degrad. Dev. 2022, 33, 368–378. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B.; Klimkowicz-Pawlas, A. Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. J. Soils Sediments 2019, 19, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Mielnik, L.; Hewelke, E.; Weber, J.; Oktaba, L.; Jonczak, J.; Podlasiński, M. Changes in the soil hydrophobicity and structure of humic substances in sandy soil taken out of cultivation. Agric. Ecosyst. Environ. 2021, 319, 107554. [Google Scholar] [CrossRef]
- Senesi, N. Composted materials as organic fertilizers. Adv. Humic Subst. Res. 1989, 81–82, 521–542. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Adekola, F.A.; Olatunji, G.A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind. 2016, 15, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Kyzas, G.Z.; Matis, K.A. Nanoadsorbents for pollutants removal: A review. J. Mol. Liq. 2015, 203, 159–168. [Google Scholar] [CrossRef]
- Piekarski, J.; Ignatowicz, K.; Dąbrowski, T. Application of an Adsorption Process on Selected Materials, Including Waste, as a Barrier to the Pesticide Penetration into the Environment. Materials 2022, 15, 4680. [Google Scholar] [CrossRef] [PubMed]
- Ogunmodede, O.T.; Ojo, A.A.; Adewole, E.; Adebayo, O.L. Adsorptive Removal of Anionic Dye from Aqueous Solutions by Algerian Kaolin: Characteristics, Isotherm, Kinetic and Thermodynamic Studies. Iranica J. Energy Environ. 2015, 6, 147–153. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Shu, X.; Fang, H.; Sun, X.; Pan, Y.; Ma, L. Equilibrium, kinetic and thermodynamic studies on the adsorption of atrazine in soils of the water fluctuation zone in the Three-Gorges Reservoir. Environ. Sci. Eur. 2020, 32, 27. [Google Scholar] [CrossRef]
- Shikuku, V.O.; Kowenje, C.O.; Kengara, F.O. Errors in Parameters Estimation Using Linearized Adsorption Isotherms: Sulfadimethoxine Adsorption onto Kaolinite Clay. Chem. Sci. Int. J. 2018, 23, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kodešová, R.; Kočárek, M.; Kodeš, V.; Drábek, O.; Kozák, J.; Hejtmánková, K. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. J. Hazard. Mater. 2011, 186, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Liu, J.; Zhang, N.; Yang, H. Adsorption, mobility, biotic and abiotic metabolism and degradation of pesticide exianliumi in three types of farmland. Chemosphere 2020, 254, 126741. [Google Scholar] [CrossRef] [PubMed]
- Chattoraj, S.; Mondal, N.K.; Das, B.; Roy, P.; Sadhukhan, B. Biosorption of carbaryl from aqueous solution onto Pistia stratiotes biomass. Appl. Water Sci. 2014, 4, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Da, T.; Ma, Y. Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J. Mol. Liq. 2021, 322, 114980. [Google Scholar] [CrossRef]
- Liu, Y. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data 2009, 54, 1981–1985. [Google Scholar] [CrossRef]
- Tran, H.N. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient KD (qe/Ce) or Freundlich Constant (KF): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions. Adsorpt. Sci. Technol. 2022, 2022, 5553212. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X. The unit problem in the thermodynamic calculation of adsorption using the langmuir equation. Chem. Eng. Commun. 2014, 201, 1459–1467. [Google Scholar] [CrossRef]
- Wauchope, R.D.; Yeh, S.; Linders, J.B.H.J.; Kloskowski, R.; Tanaka, K.; Rubin, B.; Katayama, A.; Kördel, W.; Gerstl, Z.; Lane, M.; et al. Pesticide soil sorption parameters: Theory, measurement, uses, limitations and reliability. Pest Manag. Sci. 2002, 58, 419–445. [Google Scholar] [CrossRef] [PubMed]
- Travis, C.C.; Etnier, E.L. A Survey of Sorption Relationships for Reactive Solutes in Soil. J. Environ. Qual. 1981, 10, 8–17. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
Soil | Pesticide | Langmuir | Freundlich | Temkin | Dubinin–Radushkevich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qe = (Qmax KLCe/1 + KLCe) | Qe = Kf Cenf | Qe = (RT/bT)ln Ce + (RT/bT) lnA | Qe = Qm exp(−βɛ2) | ||||||||||
Qmax | KL | R2 | Kf | nf | R2 | bT | A | R2 | Qm | Ea | R2 | ||
L | Carbaryl | 15.25 | 0.06 | 0.988 | 1.27 | 0.611 | 0.994 | 0.784 | 0.70 | 0.978 | 7.82 | 0.500 | 0.841 |
Carbofuran | 27.93 | 0.04 | 0.992 | 2.66 | 0.496 | 0.959 | 0.390 | 0.40 | 0.973 | 18.43 | 0.236 | 0.861 | |
Metolachlor | 32.47 | 0.10 | 0.964 | 3.29 | 0.602 | 0.989 | 0.322 | 0.74 | 0.994 | 20.72 | 0.500 | 0.909 | |
C | Carbaryl | 32.57 | 0.20 | 0.997 | 11.42 | 0.248 | 0.951 | 0.467 | 5.37 | 0.977 | 27.67 | 0.707 | 0.937 |
Carbofuran | 61.35 | 0.04 | 0.978 | 5.28 | 0.515 | 0.956 | 0.194 | 0.46 | 0.977 | 36.31 | 0.289 | 0.883 | |
Metolachlor | 33.78 | 0.11 | 0.954 | 3.75 | 0.609 | 0.995 | 0.313 | 0.91 | 0.983 | 20.54 | 0.707 | 0.880 |
Soil/Pesticide | Carbaryl | ΔG° [kJ·mol−1] Carbofuran | Metolachlor |
---|---|---|---|
loamy sand | −8.33 | −14.10 | −20.95 |
loam | −35.02 | −23.97 | −19.90 |
Pesticide | L Soil | C Soil | ||||||
---|---|---|---|---|---|---|---|---|
Kf | Koc | log Koc | GUS * | Kf | Koc | log Koc | GUS * | |
carbaryl | 1.27 | 134.15 | 2.13 | 1.87 | 11.42 | 761.51 | 2.88 | 1.12 |
carbofuran | 2.66 | 280.00 | 2.45 | 2.64 | 5.28 | 351.87 | 2.55 | 2.47 |
metolachlor | 3.29 | 346.32 | 2.54 | 1.46 | 3.75 | 250.00 | 2.40 | 1.60 |
Soil | TOC | CAC | TEC | CHA | CFA | CR |
---|---|---|---|---|---|---|
g 100 g−1 | % of TOC | |||||
L | 0.95 | 6.87 | 61.76 | 40.07 | 21.69 | 31.37 |
C | 1.50 | 4.64 | 35.65 | 20.17 | 15.47 | 59.71 |
Desorption at: | Carbaryl | Carbofuran | Metolachlor | |||
---|---|---|---|---|---|---|
Soil L | Soil C | Soil L | Soil C | Soil L | Soil C | |
pH 3 | 47.23 a ± 1.85 | 7.26 b ± 0.7 | 26.36 a ± 1.61 | 10.23 b ± 0.20 | 20.75 a ± 1.75 | 1.40 b ± 0.05 |
pH 4 | 51.98 c ± 1.08 | 21.92 e ± 0.67 | 55.86 c ± 0.29 | 12.29 d ± 0.24 | 49.77 c ± 2.76 | 1.62 b ± 0.57 |
pH 5 | 59.08 d ± 2.79 | 23.56 e ± 1.67 | 85.11 e ± 1.05 | 24.07 f ± 1.17 | 56.35 d ± 2.37 | 5.03 b ± 0.49 |
pH 7 | 56.03 d ± 0.38 | 25.34 e ± 1.35 | 98.01 g ± 1.90 | 33.05 h ± 0.49 | 61.67 d ± 6.73 | 18.84 e ± 0.14 |
Property/pesticide | Carbaryl | Carbofuran | Metolachlor |
---|---|---|---|
Chemical structure | |||
Water solubility (mg L−1) at 20 °C | 9.1 | 322 | 530 |
Octanol-water partition coefficient, Log P | 2.36 | 1.8 | 3.4 |
Soil | pH | Ctot | Corg | N | Corg:N | CEC | Sand | Silt | Clay | Soil Texture |
---|---|---|---|---|---|---|---|---|---|---|
(KCl) | % | cmolc·kg−1 | % | |||||||
L | 7.2 | 1.3 | 0.95 | 0.1 | 7.1 | 26.4 | 76 | 17 | 7 | Sandy Loam |
C | 7.4 | 1.6 | 1.5 | 0.2 | 8.4 | 42.3 | 47 | 34 | 19 | Loam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćwieląg-Piasecka, I. Soil Organic Matter Composition and pH as Factors Affecting Retention of Carbaryl, Carbofuran and Metolachlor in Soil. Molecules 2023, 28, 5552. https://doi.org/10.3390/molecules28145552
Ćwieląg-Piasecka I. Soil Organic Matter Composition and pH as Factors Affecting Retention of Carbaryl, Carbofuran and Metolachlor in Soil. Molecules. 2023; 28(14):5552. https://doi.org/10.3390/molecules28145552
Chicago/Turabian StyleĆwieląg-Piasecka, Irmina. 2023. "Soil Organic Matter Composition and pH as Factors Affecting Retention of Carbaryl, Carbofuran and Metolachlor in Soil" Molecules 28, no. 14: 5552. https://doi.org/10.3390/molecules28145552
APA StyleĆwieląg-Piasecka, I. (2023). Soil Organic Matter Composition and pH as Factors Affecting Retention of Carbaryl, Carbofuran and Metolachlor in Soil. Molecules, 28(14), 5552. https://doi.org/10.3390/molecules28145552