Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China
Abstract
:1. Introduction
2. Results & Discussion
2.1. Proximate and Ultimate Analysis
2.2. Solid-State 13C Nuclear Magnetic Resonance (13C NMR) Analysis
2.3. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.4. X-ray Diffraction (XRD) Analysis
2.5. High-Ash Coal Model Construction
2.6. Model Configuration Optimization
2.7. Model Validation
2.7.1. FT-IR Experiment and Simulation Results
2.7.2. Contact Angle Measurement and Simulation Results
3. Method
3.1. Experiment and Methodology
3.1.1. Sample Collection and Acid Treatment
3.1.2. Characterization Analysis
3.2. Model Construction Methods
3.3. Model Validation
3.3.1. FT-IR Simulation
3.3.2. Contact Angle Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yang, Z.; Xia, Y.; Wei, C.; Cao, Y.; Sun, W.; Liu, P.; Cheng, H.; Xing, Y.; Gui, X. New Flotation Flowsheet for Recovering Combustible Matter from Fine Waste Coking Coal. J. Clean. Prod. 2019, 225, 209–219. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Zhang, H. Efficient Separation of High-Ash Fine Coal by the Collaboration of Nanobubbles and Polyaluminum Chloride. Fuel 2020, 260, 116325. [Google Scholar] [CrossRef]
- Li, P.; Zhang, M.; Yao, W.; Xu, Z.; Fan, R. Effective Separation of High-Ash Fine Coal Using Water Containing Positively Charged Nanobubbles and Polyaluminum Chloride. ACS Omega 2022, 7, 2210–2216. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xing, Y.; Wang, D.; Yangchao, X.; Gui, X. A New Process Based on a Combination of Gravity and Flotation for the Recovery of Clean Coal from Flotation Tailings. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 420–426. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, M.; Chang, G.; Xia, Y.; Li, M.; Xing, Y.; Gui, X. Understanding the Difficult Selective Separation Characteristics of High-Ash Fine Coal. Physicochem. Probl. Miner. Process. 2020, 56, 874–883. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, X.; Gui, X.; Cao, Y.; Xu, M. Effect of Kaolinite and Montmorillonite on Fine Coal Flotation. Fuel 2017, 195, 284–289. [Google Scholar] [CrossRef]
- Sahu, P.; Vairakannu, P. CO2 Based Synergistic Reaction Effects with Energy and Exergy (2E) Analysis of High Density Polyethylene with High Ash Bituminous Coal for Syngas Production. Fuel 2022, 311, 122500. [Google Scholar] [CrossRef]
- Kamble, A.D.; Mendhe, V.A.; Chavan, P.D.; Saxena, V.K. Insights of Mineral Catalytic Effects of High Ash Coal on Carbon Conversion in Fluidized Bed Co-Gasification through FTIR, XRD, XRF and FE-SEM. Renew. Energy 2022, 183, 729–751. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Gao, H.; Wang, Q.; Bai, H.; Li, P. Understanding the Molecular Structure of HSW Coal at Atomic Level: A Comprehensive Characterization from Combined Experimental and Computational Study. Green Energy Environ. 2021, 6, 150–159. [Google Scholar] [CrossRef]
- Lian, L.; Qin, Z.; Li, C.; Zhou, J.; Chen, Q.; Yang, X.; Lin, Z. Molecular Model Construction of the Dense Medium Component Scaffold in Coal for Molecular Aggregate Simulation. ACS Omega 2020, 5, 13375–13383. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, Q.; Wei, S.; Yun, T.; Yan, G.; Yan, K. Large Scale Molecular Model Construction of Xishan Bituminous Coal. Energy Fuels 2017, 31, 1310–1317. [Google Scholar] [CrossRef]
- Zhang, J.; Weng, X.; Han, Y.; Li, W.; Cheng, J.; Gan, Z.; Gu, J. The Effect of Supercritical Water on Coal Pyrolysis and Hydrogen Production: A Combined ReaxFF and DFT Study. Fuel 2013, 108, 682–690. [Google Scholar] [CrossRef]
- Zheng, M.; Li, X.; Liu, J.; Wang, Z.; Gong, X.; Guo, L.; Song, W. Pyrolysis of Liulin Coal Simulated by GPU-Based ReaxFF MD with Cheminformatics Analysis. Energy Fuels 2014, 28, 522–534. [Google Scholar] [CrossRef]
- Mathews, J.P.; Chaffee, A.L. The Molecular Representations of Coal—A Review. Fuel 2012, 96, 1–14. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Zi, C.; Zhang, Y.; Hu, X.; Tian, G.; Zhao, W. Structural Characterization and Molecular Simulation of Baoqing Lignite. ACS Omega 2021, 6, 10281–10287. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.J.; Everson, R.C.; Neomagus, H.W.J.P.; Van Niekerk, D.; Mathews, J.P.; Branken, D.J. Influence of Maceral Composition on the Structure, Properties and Behaviour of Chars Derived from South African Coals. Fuel 2015, 142, 9–20. [Google Scholar] [CrossRef]
- Guo, S.; Geng, W.; Yuan, S.; Yi, C.; Dong, Z.; Xu, J. Understanding the Molecular Structure of Datong Coal by Combining Experimental and Computational Study. J. Mol. Struct. 2023, 1279, 135035. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Y.; Yao, W.; Jiang, X.; Jiang, X. Molecular Characterization of Henan Anthracite Coal. Energy Fuels 2019, 33, 6215–6225. [Google Scholar] [CrossRef]
- Lin, H.; Wang, Y.; Gao, S.; Xue, Y.; Yan, C.; Han, S. Chemical Structural Characteristics of High Inertinite Coal. Fuel 2021, 286, 119283. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, R.; Xing, Y.; Gui, X. Improving the Adsorption of Oily Collector on the Surface of Low-Rank Coal during Flotation Using a Cationic Surfactant: An Experimental and Molecular Dynamics Simulation Study. Fuel 2019, 235, 687–695. [Google Scholar] [CrossRef]
- Zheng, M.; Li, X.; Nie, F.; Guo, L. Investigation of Overall Pyrolysis Stages for Liulin Bituminous Coal by Large-Scale ReaxFF Molecular Dynamics. Energy Fuels 2017, 31, 3675–3683. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Y.; Zhang, X.; Lin, W.; Zhao, Y. Study of Coal Hydropyrolysis and Desulfurization by ReaxFF Molecular Dynamics Simulation. Fuel 2015, 145, 241–248. [Google Scholar] [CrossRef]
- Li, G.Y.; Ding, J.X.; Zhang, H.; Hou, C.X.; Wang, F.; Li, Y.Y.; Liang, Y.H. ReaxFF Simulations of Hydrothermal Treatment of Lignite and Its Impact on Chemical Structures. Fuel 2015, 154, 243–251. [Google Scholar] [CrossRef]
- Zheng, M.; Pan, Y.; Wang, Z.; Li, X.; Guo, L. Capturing the Dynamic Profiles of Products in Hailaer Brown Coal Pyrolysis with Reactive Molecular Simulations and Experiments. Fuel 2020, 268, 117290. [Google Scholar] [CrossRef]
- Luo, Q.; Bai, Y.; Wei, J.; Song, X.; Lv, P.; Wang, J.; Su, W.; Lu, G.; Yu, G. Insights into the Oxygen-Containing Groups Transformation during Coal Char Gasification in H2O/CO2 Atmosphere by Using ReaxFF Reactive Force Field. J. Energy Inst. 2023, 109, 101293. [Google Scholar] [CrossRef]
- Hong, D.; Guo, Y.; Wang, C.; Wei, R. Coal/NH3 Interactions during Co-Pyrolysis and Their Effects on the Char Reactivity for NO-Reduction: A ReaxFF MD Study. Fuel 2023, 346, 128415. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Li, H.; Yu, J.; Xie, W.; Wei, H. The Molecular Structure of Inner Mongolia Lignite Utilizing XRD, Solid State 13C NMR, HRTEM and XPS Techniques. Fuel 2017, 203, 764–773. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, W.; Cheng, Y.; Liu, Z.; Zhang, Q.; Zhao, K. Molecular Structure Characterization of Middle-High Rank Coal via XRD, Raman and FTIR Spectroscopy: Implications for Coalification. Fuel 2019, 239, 559–572. [Google Scholar] [CrossRef]
- Solum, M.S.; Grant, D.M.; Pugmire, R.J. 13C Solid-State NMR of Argonne Premium Coals. Energy Fuels 1989, 3, 187–193. [Google Scholar] [CrossRef]
- Wu, D.; Wu, D.; Zhang, H.; Hu, G.; Hu, G.; Zhang, W. Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques. Molecules 2020, 25, 2661. [Google Scholar] [CrossRef]
- Li, Z.K.; Wei, X.Y.; Yan, H.L.; Zong, Z.M. Insight into the Structural Features of Zhaotong Lignite Using Multiple Techniques. Fuel 2015, 153, 176–182. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Afeworki, M.; Gorbaty, M.L.; Kwiatek, P.J.; Solum, M.S.; Hu, J.Z.; Pugmire, R.J. XPS and 15N NMR Study of Nitrogen Forms in Carbonaceous Solids. Energy Fuels 2002, 16, 1507–1515. [Google Scholar] [CrossRef]
- Pan, R.K.; Li, C.; Yu, M.G.; Xiao, Z.J.; Fu, D. Evolution Patterns of Coal Micro-Structure in Environments with Different Temperatures and Oxygen Conditions. Fuel 2020, 261, 116425. [Google Scholar] [CrossRef]
- Feng, B.; Bhatia, S.K.; Barry, J.C. Variation of the Crystalline Structure of Coal Char during Gasification. Energy Fuels 2003, 17, 744–754. [Google Scholar] [CrossRef]
- Everson, R.C.; Okolo, G.N.; Neomagus, H.W.J.P.; dos Santos, J.M. X-Ray Diffraction Parameters and Reaction Rate Modeling for Gasification and Combustion of Chars Derived from Inertinite-Rich Coals. Fuel 2013, 109, 148–156. [Google Scholar] [CrossRef]
- Tong, J.; Jiang, X.; Han, X.; Wang, X. Evaluation of the Macromolecular Structure of Huadian Oil Shale Kerogen Using Molecular Modeling. Fuel 2016, 181, 330–339. [Google Scholar] [CrossRef]
- Chenoweth, K.; van Duin, A.C.T.; Goddard, W.A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, W.; Nakajima, T.; Takanashi, H.; Ohki, A. Analysis of Carboxyl Group in Coal and Coal Aromaticity by Fourier Transform Infrared (FT-IR) Spectrometry. Fuel 2009, 88, 139–144. [Google Scholar] [CrossRef]
- Chen, Y.; Mastalerz, M.; Schimmelmann, A. Characterization of Chemical Functional Groups in Macerals across Different Coal Ranks via Micro-FTIR Spectroscopy. Int. J. Coal Geol. 2012, 104, 22–33. [Google Scholar] [CrossRef]
- Khalkhali, M.; Kazemi, N.; Zhang, H.; Liu, Q. Wetting at the Nanoscale: A Molecular Dynamics Study. J. Chem. Phys. 2017, 146, 114704. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.F.; Caǧin, T. Wetting of Crystalline Polymer Surfaces: A Molecular Dynamics Simulation. J. Chem. Phys. 1995, 103, 9053–9061. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Zhong, R.; Li, S.; Yin, F.; Nie, B. Molecular Model Construction and Study of Gas Adsorption of Zhaozhuang Coal. Energy Fuels 2018, 32, 9727–9737. [Google Scholar] [CrossRef]
- Tong, J.; Han, X.; Wang, S.; Jiang, X. Evaluation of Structural Characteristics of Huadian Oil Shale Kerogen Using Direct Techniques (Solid-State 13C NMR, XPS, FT-IR, and XRD). Energy Fuels 2011, 25, 4006–4013. [Google Scholar] [CrossRef]
- Heinz, H.; Lin, T.J.; Kishore Mishra, R.; Emami, F.S. Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Dong, X.; Fan, Y. Prediction and Characterization of the Microcrystal Structures of Coal with Molecular Simulation. Energy Fuels 2018, 32, 3097–3107. [Google Scholar] [CrossRef]
- Zhang, R.; Xing, Y.; Xia, Y.; Luo, J.; Tan, J.; Rong, G.; Gui, X. New Insight into Surface Wetting of Coal with Varying Coalification Degree: An Experimental and Molecular Dynamics Simulation Study. Appl. Surf. Sci. 2020, 511, 145610. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
Sample | Proximate Analysis (wt %) | |||
---|---|---|---|---|
Mad | Aad | Vad | FCad | |
High-ash coal | 2.69 | 59.67 | 13.31 | 24.33 |
High-ash coal after acid treatment | 2.87 | 0.67 | 38.44 | 58.02 |
Sample | Ultimate Analysis (daf, wt %) | ||||
---|---|---|---|---|---|
C | H | O * | N | S | |
High-ash coal | 60.26 | 2.46 | 33.32 | 3.38 | 0.58 |
Chemical Shifts (ppm) | Structure Attribution | Relative Area (%) |
---|---|---|
0–15 | Aliphatic methyl (R–CH3) | 1.24 |
15–26 | Aromatic methyl (Ar–CH3) | 2.60 |
26–37 | Methene (CH2) | 4.32 |
37–50 | Methine or quaternary carbon (C, CH) | 9.90 |
50–56 | Oxy-methyl/methene (O–CH3, O–CH2) | 4.61 |
60–70 | Oxy-methine | 3.51 |
75–90 | Oxy-quaternary carbon | 1.67 |
95–124 | Protonated and aromatic carbon (Ar–H) | 20.13 |
124–137 | Aromatic bridgehead carbon (C–C) | 23.93 |
137–149 | Aliphatic substituted aromatic carbon (Ar–C) | 12.23 |
149–164 | Oxy-aromatic carbon (Ar–O) | 3.19 |
165–195 | Carboxyl group (COOH) | 2.48 |
195–220 | Carbonyl group (C=O) | 10.19 |
Index | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
High-ash coal | 72.15 | 12.67 | 59.48 | 39.35 | 20.13 | 3.19 | 12.23 | 23.93 | 27.85 | 3.84 | 14.22 | 9.79 |
Element Peak | Binding Energy (eV) | Group Attribution | Percentage (%) |
---|---|---|---|
C 1s | 284.80 | C–C/C–H | 70.08 |
285.70 | C-O | 16.99 | |
287.23 | C=O/O–C–O | 4.27 | |
288.82 | COO- | 8.66 | |
O 1s | 531.08 | C=O/O-C–O | 2.43 |
532.13 | C-O | 74.09 | |
533.41 | COO– | 23.48 | |
N 1s | 398.99 | Pyridine nitrogen | 67.40 |
400.38 | Pyrrolic nitrogen | 32.60 | |
S 2p | 164.27 | Mercaptan thiophenol | 66.16 |
165.57 | Thiophene | 33.84 |
Index | ||||||||
---|---|---|---|---|---|---|---|---|
Sample | 13.93 | 24.09 | 36.39 | 3.69 | 8.54 | 6.97 | 2.31 | 0.68 |
Types | Number |
---|---|
4 | |
3 | |
1 | |
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Dong, X.; Fan, Y.; Ma, X.; Yao, S.; Fu, Y.; Chen, R.; Chang, M. Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China. Molecules 2023, 28, 5593. https://doi.org/10.3390/molecules28145593
Zhu B, Dong X, Fan Y, Ma X, Yao S, Fu Y, Chen R, Chang M. Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China. Molecules. 2023; 28(14):5593. https://doi.org/10.3390/molecules28145593
Chicago/Turabian StyleZhu, Benkang, Xianshu Dong, Yuping Fan, Xiaomin Ma, Suling Yao, Yuanpeng Fu, Ruxia Chen, and Ming Chang. 2023. "Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China" Molecules 28, no. 14: 5593. https://doi.org/10.3390/molecules28145593
APA StyleZhu, B., Dong, X., Fan, Y., Ma, X., Yao, S., Fu, Y., Chen, R., & Chang, M. (2023). Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China. Molecules, 28(14), 5593. https://doi.org/10.3390/molecules28145593