Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of GS441 Cyclic Carbonate Prodrug
2.2. Investigation of the Stability of NGP-1 in Artificial Digestive Juices
2.3. Pharmacokinetic Study
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Animals
3.3. Synthesis and Confirmation of NGP-1
3.4. Purity Analysis of NGP-1
3.5. Stability of NGP-1 in Artificial Digestive Juices
3.6. Pharmacokinetic Study of NGP-1 in Rats
3.6.1. Pharmacokinetic Process
3.6.2. LC-MS/MS Determination
3.6.3. Pharmacokinetic Fitting
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, F.; Liu, Y.; Mo, M.; Chen, J.; Wang, C.; Yang, Y.; Wu, J. Current treatment strategies for COVID-19 (Review). Mol. Med. Rep. 2021, 24, 858. [Google Scholar] [CrossRef]
- Vitiello, A.; Ferrara, F.; Auti, A.M.; Di Domenico, M.; Boccellino, M. Advances in the Omicron variant development. J. Intern. Med. 2022, 292, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Przybyciński, J.; Lorzadeh, S.; Kotfis, K.; Ghavami, S.; Łos, M.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist. Updates 2021, 59, 100794. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, Q.; Inchakalody, V.P.; Merhi, M.; Mestiri, S.; Taib, N.; Moustafa Abo El-Ella, D.; Bedhiafi, T.; Raza, A.; Al-Zaidan, L.; Mohsen, M.O.; et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann. Med. 2022, 54, 524–540. [Google Scholar] [CrossRef] [PubMed]
- Winger, A.; Caspari, T. The spike of concern-the novel variants of SARS-CoV-2. Viruses 2021, 13, 1002. [Google Scholar] [CrossRef]
- Li, Y.; Yang, B.; Quan, Y.; Li, Z. Advancement of prodrug approaches for nucleotide antiviral agents. Curr. Top. Med. Chem. 2021, 21, 2909–2927. [Google Scholar] [CrossRef]
- Amirian, E.S.; Levy, J.K. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020, 9, 100128. [Google Scholar] [CrossRef]
- Tempestilli, M.; Caputi, P.; Avataneo, V.; Notari, S.; Forini, O.; Scorzolini, L.; Marchioni, L.; Ascoli Bartoli, T.; Castilletti, C.; Lalle, E.; et al. Pharmacokinetics of in two critically ill patients who recovered from COVID-19. J. Antimicrob. Chemother. 2020, 75, 2977–2980. [Google Scholar] [CrossRef]
- Rasmussen, H.B.; Thomsen, R.; Hansen, P.R. Nucleoside analog GS-441524: Pharmacokinetics in different species, safety, and potential effectiveness against COVID-19. Pharmacol. Res. Perspect. 2022, 10, e00945. [Google Scholar] [CrossRef]
- Beaumont, K.; Webster, R.; Gardner, I.; Dack, K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist. Curr. Drug Metab. 2003, 4, 461–485. [Google Scholar] [CrossRef]
- Pitts, J.; Li, J.; Perry, J.K.; Du Pont, V.; Riola, N.; Rodriguez, L.; Lu, X.; Kurhade, C.; Xie, X.; Camus, G.; et al. Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants. Antimicrob. Agents Chemother. 2022, 66, e0022222. [Google Scholar] [CrossRef] [PubMed]
- Avataneo, V.; de Nicolò, A.; Cusato, J.; Antonucci, M.; Manca, A.; Palermiti, A.; Waitt, C.; Walimbwa, S.; Lamorde, M.; di Perri, G.; et al. Development and validation of a UHPLC-MS/MS method for quantification of the prodrug remdesivir and its metabolite GS-441524: A tool for clinical pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola virus disease. J. Antimicrob. Chemother. 2020, 75, 1772–1777. [Google Scholar] [CrossRef]
- De Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA 2020, 117, 6771–6776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schooley, R.T.; Carlin, A.F.; Beadle, J.R.; Valiaeva, N.; Zhang, X.Q.; Clark, A.E.; McMillan, R.E.; Leibel, S.L.; McVicar, R.N.; Xie, J.; et al. Rethinking remdesivir: Synthesis, antiviral activity, and pharmacokinetics of oral lipid prodrugs. Antimicrob. Agents Chemother. 2021, 65, e0115521. [Google Scholar] [CrossRef]
- Lo, M.K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A.L.; Flint, M.; McMullan, L.K.; Siegel, D.; Clarke, M.O.; et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7, 43395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonis, A.; Theobald, S.J.; Fätkenheuer, G.; Rybniker, J.; Malin, J.J. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2. EMBO Mol. Med. 2021, 13, e13105. [Google Scholar] [CrossRef]
- Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends 2020, 14, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Liederer, B.M.; Borchardt, R.T. Enzymes involved in the bioconversion of ester-based prodrugs. J. Pharm. Sci. 2006, 95, 1177–1195. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, X.; Yang, Y.Q.; Hu, Q.; Huang, J.H. Enantioselective total synthesis of (+)-brefeldin A and 7-epi-brefeldin A. J. Org. Chem. 2004, 69, 3857–3865. [Google Scholar] [CrossRef]
- Matsukizono, H.; Endo, T. Reworkable polyhydroxyurethane films with reversible acetal networks obtained from multifunctional six-membered cyclic carbonates. J. Am. Chem. Soc. 2018, 140, 884–887. [Google Scholar] [CrossRef]
- Kongkathip, B.; Akkarasamiyo, S.; Hasitapan, K.; Sittikul, P.; Boonyalai, N.; Kongkathip, N. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation. Eur. J. Med. Chem. 2013, 60, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Berry, L.M.; Wollenberg, L.; Zhao, Z. Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab. 2009, 3, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, M.A.; Weshahy, S.A.; Wadie, M.; Rezk, M.R. Novel HPTLC densitometric methods for determination of tamsulosin HCl and tadalafil in their newly formulated dosage form: Comparative study and green profile assessment. Biomed. Chromatogr. 2020, 34, e4850. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moety, E.M.; Elragehy, N.A.; Hassan, N.Y.; Rezk, M.R. Selective determination of ertapenem and imipenem in the presence of their degradants. J. Chromatogr. Sci. 2010, 48, 624–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, H.B.; Jürgens, G.; Thomsen, R.; Taboureau, O.; Zeth, K.; Hansen, P.E.; Hansen, P.R. Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for its effectiveness against COVID-19. Viruses 2021, 13, 1369. [Google Scholar] [CrossRef]
- Lee, H.J.; You, Z.; Ko, D.H.; McLean, H.M. Recent advances in prodrugs and antedrugs. Curr. Opin. Drug Discov. Devel. 1998, 1, 235–244. [Google Scholar] [PubMed]
- Larsen, E.M.; Johnson, R.J. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev. Res. 2019, 80, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Fattore, E.; Lanno, A.; Danieli, A.; Stefano, S.; Passoni, A.; Roncaglioni, A.; Bagnati, R.; Davoli, E. Toxicology of 3-monochloropropane-1,2-diol and its esters: A narrative review. Arch. Toxicol. 2023, 97, 1247–1265. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hao, L.; Li, P.; Zhou, P. The Synthesis and Application of Nucleoside Compounds with Cyclic Carbonate Ester. CN 114437159B, 28 June 2022. [Google Scholar]
- Rezk, M.R.; Basalious, E.B.; Badr, K.A. Novel determination of sofosbuvir and velpatasvir in human plasma by UPLC-MS/MS method: Application to a bioequivalence study. Biomed. Chromatogr. 2018, 32, e4347. [Google Scholar] [CrossRef]
- Hu, J.; Liu, W.; Wang, Y.; Chen, X.; Guo, Y.; Peng, Q.; Guo, J.; Zhang, H.; Zhang, S.; Deng, G. Pharmacokinetic study of deufruquintinibs in rats by HPLC-MS/MS after oral administration. Biomed. Chromatogr. 2022, 36, e5459. [Google Scholar] [CrossRef] [PubMed]
Parameters | GS441 | Converted GS441 from NGP-1 |
---|---|---|
T1/2/h | 1.53 ± 0.32 | 2.65 ± 0.23 |
Tmax/h | 1.0 | 0.5 |
ka/h−1 | 3.57 ± 1.36 | 21.24 ± 3.52 |
Cmax/ng·mL−1 | 831.6 ± 308.4 | 2470.3 ± 308.8 |
AUC0–t/h·ng·mL−1 | 2316.7 ± 429.1 | 8431.5 ± 734.9 |
AUC0–∞/h·ng·mL−1 | 2389.2 ± 860.3 | 9716.3 ± 1223.7 |
MRT/h | 2.48 ± 0.76 | 6.15 ± 1.78 |
Purity | Stability | Pharmacokinetics | |
---|---|---|---|
Column parameters | 250 mm × 4.6 mm, 5 µm | 250 mm × 4.6 mm, 5 µm | 100 mm × 4.6 mm, 2.6 µm |
Chromatography equipment | HPLC-DAD | HPLC-DAD | LC-MS/MS |
Detected wavelength/nm | 240 | 240 | - * |
Column temperature/°C | 30 | 30 | 40 |
Injection volume/µL | 10 | 10 | 5 |
Aqueous phase (A) | water | water (with 0.1% of H3PO4) | water (with 0.05% of formic acid) |
Organic phase (B) | ACN | ACN | ACN (with 0.05% of formic acid) |
Elution mode | isocratic | gradient | gradient |
Flow rate/mL·min−1 | 1 | 1 | 0.6 |
Detection time/min | 10 | 10 | 5 |
Monitoring peak | NGP-1 | NGP-1 and GS441 | GS441 and QX (IS) |
Quantitative method | area normalization | external standard method | internal standard method |
GS441 | QX (IS) | |
---|---|---|
Parent Ion/m/z | 292.0 | 313.1 |
Product Ion/m/z | 202.0 | 246.1 |
Declustering Potential/V | 70 | 90 |
Entrance Potential/V | 10 | 10 |
Collision Energy/V | 20 | 46 |
Collision Cell Exit Potential/V | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Liu, B.; Zhou, F.; Zheng, Q.; Dai, C.; Wei, W.; Liao, G.; Sun, Y. Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography. Molecules 2023, 28, 5634. https://doi.org/10.3390/molecules28155634
Sun C, Liu B, Zhou F, Zheng Q, Dai C, Wei W, Liao G, Sun Y. Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography. Molecules. 2023; 28(15):5634. https://doi.org/10.3390/molecules28155634
Chicago/Turabian StyleSun, Chen, Bo Liu, Fengzhi Zhou, Qianqian Zheng, Chunmei Dai, Wei Wei, Guochao Liao, and Yuqi Sun. 2023. "Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography" Molecules 28, no. 15: 5634. https://doi.org/10.3390/molecules28155634
APA StyleSun, C., Liu, B., Zhou, F., Zheng, Q., Dai, C., Wei, W., Liao, G., & Sun, Y. (2023). Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography. Molecules, 28(15), 5634. https://doi.org/10.3390/molecules28155634