Determination of Active Ingredients, Mineral Composition and Antioxidant Properties of Hydroalcoholic Macerates of Vinca minor L. Plant from the Dobrogea Area
Abstract
:1. Introduction
2. Results
2.1. Separation and Determination of Indole Ring Alkaloids in Vinca minor via HPLC
2.2. Mineral Composition of Vinca minor Plant
2.3. Antioxidant Activity of Vinca minor Hydroalcoholic Macerates
2.3.1. DPPH Radical Scavenging Test
2.3.2. Photochemiluminescence Method
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extract Preparation
4.2. Phytochemical Analyses of the Vinca minor Extracts
4.2.1. HPLC Method
4.2.2. Mineral Composition of Vinca minor Plant
4.2.3. Antioxidant Activity Analysis
4.3. Working Equipment
4.3.1. HPLC Method
4.3.2. Mineral Composition of Vinca minor Plant
4.3.3. Antioxidant Activity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordell, G.A.; Quinn-Beattie, M.L.; Farnsworth, N.R. The potential of alkaloids in drug discovery. Phytother. Res. 2001, 15, 183–205. [Google Scholar] [CrossRef]
- Moudi, M.; Go, R.; Yien, C.Y.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med. 2013, 4, 1231–1235. [Google Scholar] [PubMed]
- Van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A.M. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol. 2015, 76, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpus, I.P. Morpho-anatomical studies on Vinca minor L. from the family Apocynaceae. Farmatsevtychnyi Zhurnal 1961, 16, 48–52. [Google Scholar]
- Panneerselvam, C.; Murugan, K.; Kovendan, K.; Kumar, P.M.; Ponarulselvam, S.; Amerasan, D.; Subramaniam, J.; Hwang, J.S. Larvicidal efficacy of Catharanthus roseus Linn. leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston. Asian Pac. J. Trop. Med. 2013, 6, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Khan, S.A.; Mathur, A.K.; Shanker, K.; Lal, R.K. Regulation of vincamine biosynthesis and associated growth promoting effects through abiotic elicitation, cyclooxygenase inhibition, and precursor feeding of bioreactor grown Vinca minor hairy roots. Appl. Biochem. Biotechnol. 2014, 173, 663–672. [Google Scholar]
- Adizov, S.M.; Tashkhodzhaev, B.; Bruskov, V.P.; Talipov, S.A.; Yuldashev, P.K.; Malikov, V.M. On nitrogen coordination in vincadifformine-type alkaloids. Chem. Nat. Compd. 2017, 53, 512. [Google Scholar] [CrossRef]
- Cheng, G.-G.; Zhao, H.-Y.; Liu, L.; Zhao, Y.-L.; Song, C.-W.; Gu, J.; Sun, W.-B.; Liu, Y.-P.; Luo, X.-D. Non-alkaloid constituents of Vinca major. Chin. J. Nat. Med. 2016, 14, 56–60. [Google Scholar]
- Brunke, E.; Hammerschmidt, F.; Schmaus, G. Flower Scent of Some Traditional Medical Plants. Bioactive Volatile Compounds from Plants. Am. Chem. Soc. Symp. Wash. 1993, 525, 282–295. [Google Scholar]
- Istudor, V. Farmacognozie. Fitochimie. Fitoterapie. Vol. I. Bucureşti. Ed. Medicală 1998, 1, 23–29, 76–91, 112–118, 145–204, 187–197. [Google Scholar]
- Tămaş, M. Botanică Farmaceutică; Editura Medicală Universitară Iuliu Haţieganu: Cluj-Napoca, Romania, 1999; p. 98. [Google Scholar]
- Verma, P.; Khan, S.A.; Masood, N.; Manika, N.; Sharma, A.; Verma, N.; Luqman, S.; Mathur, A.K. Differential rubisco content and photosynthetic efficiency of rol gene integrated Vinca minor transgenic plant: Correlating factors associated with morpho-anatomical changes, gene expression and alkaloid productivity. J. Plant Physiol. 2017, 219, 12–21. [Google Scholar] [CrossRef]
- Hasa, D.; Perissutti, B.; Cepek, C.; Bhardwaj, S.; Carlino, E.; Grassi, M.; Invernizzi, S.; Voinovich, D. Drug salt formation via mechanochemistry: The case study of vincamine. Mol. Pharm. 2013, 10, 211–224. [Google Scholar] [CrossRef]
- Pu, H.; Jiang, H.; Chen, R.; Wang, H. Studies on the interaction between vincamine and human serum albumin: A spectroscopic approach. Luminescence 2014, 29, 471–479. [Google Scholar] [CrossRef]
- Fleming. PDR for Herbal Medicines, 3rd ed.; Montvale, N.J., Ed.; Medical Economics Co.: Cranbury, NJ, USA, 2004; pp. 632–663. [Google Scholar]
- Ciorîță, A.; Zăgrean-Tuza, C.; Moț, A.C.; Carpa, R.; Pârvu, M. The Phytochemical Analysis of Vinca L. Species Leaf Extracts Is Correlated with the Antioxidant, Antibacterial, and Antitumor Effects. Molecules 2021, 26, 3040. [Google Scholar] [CrossRef]
- Stanciu, G.; Aonofriesei, F.; Lupsor, S.; Oancea, E.; Mititelu, M. Chemical Composition, Antioxidant Activity, and Antibacterial Activity of Black Poplar Buds’ Hydroalcoholic Macerates from Dobrogea Area. Molecules 2023, 28, 4920. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Pytlakowska, K.; Kita, A.; Janoska, P.; Połowniak, M.; Kozik, V. Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem. 2012, 135, 494–501. [Google Scholar] [CrossRef]
- Mahmood, A.; Rashid, S.; Malik, R.N. Determination of toxic heavy metals in indigenous medicinal plants used in Rawalpindi and Islamabad cities, Pakistan. J. Ethnopharmacol. 2013, 148, 158–164. [Google Scholar] [CrossRef]
- Dumitrescu, A.M.; Stanciu, G.; Sirbu, R.; Busuricu, F. Spectrophotometric Studies of Indolic Compounds from Vinca minor L. Eur. J. Nat. Sci. Med. 2021, 4, 88–98. [Google Scholar]
- Stanciu, G.; Aonofriesei, F.; Lupsor, S.; Popescu, A.; Sirbu, R. Study of Phenolic Compounds and Antimicrobial Activity of Lavandula angustifolia L. Flowers Macerates. Rev. Chim. 2019, 70, 1800–1804. [Google Scholar] [CrossRef]
- Lupsor, S.; Rotariu, R.; Oancea, E.; Oancea, I.-A. Quantitative Analysis of Polyphenols and Antioxidant Activity of Mint Macerate. J. Sci. Arts 2019, 4, 973–982. [Google Scholar]
- Popov, I.; Lewin, G. Methods in Enzymology, 300, Part B. In Oxidants and Antioxidants; Packer, L., Ed.; Academic Press: New York, NY, USA, 1999; p. 437. [Google Scholar]
- Artem, V.; Negreanu–Pirjol, T.; Ranca, A.; Ciobanu, C.; Bratu, M.M.; Popoviciu, D.R.; Moldovan, L.; Vasile, M.; Negreanu-Pirjol, B.-S. Total phenolic content correlated with antioxidant activity of some grape pomace biomass hydroalcoholic extracts, white and red varieties. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2021, 83, 61–72. [Google Scholar]
- Negreanu-Pîrjol, B.S.; Negreanu, T.; Bratu, M.M.; Roncea, F.; Mireşan, H.; Sanda, J.; Paraschiv, G.M.; Popescu, A. Antioxidative activity of indigen bitter cherry fruits extract corellated with polyphenols and minerals content. In Proceedings of the 14th International Multidisciplinary Scientific GeoConferences, Surveying Geology & Mining Ecology Management—SGEM 2014, Albena, Bulgaria, 17–26 June 2014; Volume I, pp. 239–240. [Google Scholar]
- Negreanu-Pîrjol, B.S.; Cadar, E.; Sirbu, R.; Negreanu-Pirjol, T. Antioxidant Activity of Some Fluids Extracts of Indigenous Wild Cherry Fruits. Eur. J. Nat. Sci. Med. 2021, 4, 48–58. [Google Scholar]
Alkaloids | Tr Min. | k’ | Alkaloid Content | ||
---|---|---|---|---|---|
Leaf mg/100 g d.w. | Stem mg/100 g d.w. | ||||
1 | Vincamine | 5.74 | 2.67 | 2.459 ± 0.035 | 0.794 ± 0.030 |
2 | Eburnamonin | 11.7 | 5.71 | 0.803 ± 0.010 | - |
3 | 1,2-dehydroaspidospermidine | 18.8 | 10.06 | 0.898 ± 0.010 | 1.625 ± 0.034 |
4 | Vincaminorein | 25.6 | 19.94 | 1.064 ± 0.040 | 0.285 ± 0.010 |
Metals | Concentration (mg/kg) ± SD | |
---|---|---|
Stem | Leaf | |
Ca | 4896 ± 0.52 | 25,640 ± 3.14 |
Mg | 871.4 ± 0.33 | 1436.2 ± 1.55 |
Na | 1293.2 ± 0.61 | 874.20 ± 1.22 |
Fe | 192.34 ± 0.55 | 620.80 ± 3.27 |
Mn | 92.34 ± 0.74 | 296.00 ± 1.33 |
Cd | <DL | <DL |
Cu | 8.65 ± 0.25 | 1.40 ± 0.11 |
Pb | <DL | <DL |
Ni | <DL | <DL |
Zn | 40.8 ± 0.44 | 64.85 ± 0.14 |
No | Sample | DPPH mg GAE/100 g d.w. |
---|---|---|
1 | F40 | 1123.500 |
2 | F70 | 1186.500 |
3 | F96 | 768.625 |
4 | T40 | 981.750 |
5 | T70 | 994.875 |
6 | T96 | 737.626 |
No | Sample/Dilution/Working Volume | Free Radicals Max. Inhibition | Total Antioxidant Capacity (nM TE/μL) | TEAC Quantity Means (mg TE/100 g d.w.) |
---|---|---|---|---|
1. | 10% stem extract in 40:60 (v:v) ethanol/stock sol./5 μL; T40 | 0.978 | 3.743 | 187.367 |
2. | 10% stem extract in 40:60 (v:v) ethanol/dil. with ethanol 1:10/5 μL; T40 | 0.719 | 3.606 | 180.510 |
3. | 10% stem extract in 40:60 (v:v) ethanol/dil. with ethanol 1:100/5 μL; T40 | 0.363 | 3.174 | 158.884 |
4. | 10% leaf extract in 40:60 (v:v) ethanol/stock sol./5 μL; F40 | 0.995 | 3.750 | 187.717 |
5. | 10% leaf extract in 40:60 (v:v) ethanol/dil. with ethanol 1:100/5 μL; F40 | 0.226 | 2.769 | 138.610 |
6. | 10% stem extract in 70:30 (v:v) ethanol/stock sol./5 μL; T70 | 0.972 | 3.741 | 187.267 |
7. | 10% stem extract in 70:30 (v:v) ethanol/dil. with ethanol 1:100/5 μL; T70 | 0.183 | 2.567 | 128.498 |
8. | 10% leaf extract in 70:30 (v:v) ethanol/stock sol./5 μL; F70 | 0.999 | 3.752 | 187.817 |
9. | 10% leaf extract in 70:30 (v:v) ethanol/dil. with ethanol 1:100/5 μL; F70 | 0.724 | 3.609 | 180.659 |
10. | 10% leaf extract in 70:30 (v:v) ethanol/dil. with ethanol 1:200/5 μL; F70 | 0.107 | 2.014 | 100.81 |
11. | 10% stem extract in 96:4 (v:v) ethanol/stock sol./5 μL; T96 | 0.960 | −3.186 | - |
12. | 10% stem extract in 96:4 (v:v) ethanol/dil. with ethanol 1:100/5 μL; T96 | 0.407 | 1.547 | 77.439 |
13. | 10% leaf extract in 96:4 (v:v) ethanol/stock sol./5 μL; F96 | 0.992 | −2.973 | - |
14. | 10% leaf extract in 96:4 (v:v) ethanol/dil. with ethanol 1:100/5 μL; F96 | 0.515 | 3.380 | 169.196 |
Alkaloids | Regression Equation | Correlation Coefficient | LOD μg/mL | LOQ μg/mL | |
---|---|---|---|---|---|
1 | Vincamine | y = 516.11x − 322.92 | 0.9998 | 0.18 | 0.61 |
2 | Eburnamonin | y = 22,034x + 67,769 | 0.9998 | 0.044 | 0.147 |
3 | 1,2-dehydroaspidospermidine | y = 793.05x − 844.26 | 0.9997 | 0.17 | 0.57 |
4 | Vincaminorein | y = 933.31x − 659.68 | 0.9998 | 0.01 | 0.036 |
Alkaloids | Precision (RSD%) | Accuracy (Standard Deviation %) | Repeatability (R%) | |
---|---|---|---|---|
1 | Vincamine | 0.555 | 3.13 | 1.57 |
2 | Eburnamonin | 0.535 | 3.25 | 1.51 |
3 | 1,2-dehydroaspidospermidine | 0.789 | 4.5 | 2.24 |
4 | Vincaminorein | 0.589 | 3.39 | 1.67 |
Metals | Concentration Range (mg/L) | R2 | LOD (mg/L) | LOQ (mg/L) |
---|---|---|---|---|
Cadmium | 0.050–1.000 | 0.9938 | 0.0099 | 0.0693 |
Calcium | 40.00–200.00 | 0.9990 | 84.13 | 116.1 |
Copper | 0.050–2.000 | 0.9991 | 0.0533 | 0.0586 |
Iron | 0.050–2.000 | 0.9995 | 0.0473 | 0.1183 |
Lead | 0.200–8.000 | 0.9996 | 0.1371 | 1.0280 |
Magnesium | 1.000–5.000 | 0.9932 | 0.6440 | 2.2070 |
Manganese | 0.050–2.000 | 0.9953 | 0.0099 | 0.0597 |
Nickel | 0.100–4.000 | 0.9969 | 0.0233 | 0.1051 |
Sodium | 5.000–25.000 | 0.9966 | 1.282 | 4.669 |
Zinc | 0.050–1.000 | 0.9922 | 0.0430 | 0.1076 |
Reagents Kit | R1 (μL) | R2 (μL) | R3 (μL) | R4 (μL) | Sample (μL) |
---|---|---|---|---|---|
Blank | 2300 µL | 200 µL | 25 µL | 0 µL | 0 µL |
Calibration curve | 2300 | 200 µL | 25 µL | 5 µL | 0 µL |
Measurement Sample | 2300 | 200 µL | 25 µL | 0 µL | 5 µL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neculai, A.-M.; Stanciu, G.; Mititelu, M. Determination of Active Ingredients, Mineral Composition and Antioxidant Properties of Hydroalcoholic Macerates of Vinca minor L. Plant from the Dobrogea Area. Molecules 2023, 28, 5667. https://doi.org/10.3390/molecules28155667
Neculai A-M, Stanciu G, Mititelu M. Determination of Active Ingredients, Mineral Composition and Antioxidant Properties of Hydroalcoholic Macerates of Vinca minor L. Plant from the Dobrogea Area. Molecules. 2023; 28(15):5667. https://doi.org/10.3390/molecules28155667
Chicago/Turabian StyleNeculai, Ana-Maria, Gabriela Stanciu, and Magdalena Mititelu. 2023. "Determination of Active Ingredients, Mineral Composition and Antioxidant Properties of Hydroalcoholic Macerates of Vinca minor L. Plant from the Dobrogea Area" Molecules 28, no. 15: 5667. https://doi.org/10.3390/molecules28155667
APA StyleNeculai, A. -M., Stanciu, G., & Mititelu, M. (2023). Determination of Active Ingredients, Mineral Composition and Antioxidant Properties of Hydroalcoholic Macerates of Vinca minor L. Plant from the Dobrogea Area. Molecules, 28(15), 5667. https://doi.org/10.3390/molecules28155667