Typical Aroma of Merlot Dry Red Wine from Eastern Foothill of Helan Mountain in Ningxia, China
Abstract
:1. Introduction
2. Results and Analysis
2.1. Aroma Characteristics of Merlot Wines
2.2. VOCs in Merlot Wines
Aroma Substance | Concentration (mg·L−1) | LRI | LRI * | Quantitative Method | ||
---|---|---|---|---|---|---|
EFHM | XJ | GS | ||||
Ethyl acetate | 6.94 ± 1.29 b | 9.21 ± 2.19 a | 8.15 ± 1.52 ab | 885 | 886 | Q |
Isoamyl acetate | 6.43 ± 2.43 b | 17.7 ± 4.61 a | 10.52 ± 6.42 b | 1127 | 1112 | Q |
Hexyl acetate | 0.07 ± 0.1 b | 0.93 ± 1.12 a | 0.83 ± 0.6 a | 1261 | 1266 | Q |
Phenyl ethyl acetate | 0.57 ± 0.43 b | 3.11 ± 0.82 a | 1.3 ± 1.25 b | 1821 | 1791 | Q |
Ethyl butyrate | 0.55 ± 0.18 a | 0.8 ± 0.37 a | 0.72 ± 0.19 a | 1032 | 1025 | Q |
Ethyl hexanoate | 18.5 ± 6.51 b | 31.69 ± 9.77 a | 27.47 ± 10.15 ab | 1236 | 1228 | Q |
Ethyl caprylate | 167.78 ± 34.87 b | 286.89 ± 73.34 a | 278.09 ± 134.52 a | 1424 | 1429 | Q |
Ethyl pelanoate | 0.56 ± 0.16 b | 0.97 ± 0.21 a | 0.97 ± 0.22 a | 1520 | 1524 | Q |
Ethyl caprate | 95.37 ± 18.41 b | 153.61 ± 39.98 a | 185.82 ± 89.88 a | 1638 | 1633 | Q |
Diethyl succinate | 8.33 ± 8.89 a | 8.84 ± 5.33 a | 6.14 ± 4.77 a | 1686 | 1666 | Q |
Ethyl-9-decenoate | 1.18 ± 0.37 a | 9.85 ± 11.12 a | 17.82 ± 39.59 a | 1708 | 1680 | Q |
Ethyl laurate | 9.18 ± 9.03 b | 11.26 ± 3.05 b | 20.74 ± 7.83 a | 1835 | 1834 | Q |
Ethyl palmitate | 0.41 ± 0.27 b | 1.01 ± 0.25 a | 1.03 ± 0.59 a | 2243 | 2119 | Q |
Ethyl lactate | 0.79 ± 0.66 b | 1.58 ± 0.28 a | 1.15 ± 0.26 ab | 1334 | 1335 | Q |
Methyl octanoate | 0.66 ± 0.26 a | 0.98 ± 0.25 a | 0.61 ± 0.52 a | 1378 | 1382 | Q |
Methyl Salicylate | 0.11 ± 0.25 a | 0 ± 0 a | 0 ± 0 a | 1775 | 1771 | Q |
n-Decyl alcohol | 0.11 ± 0.25 a | 0.49 ± 0.76 a | 0.26 ± 0.41 a | 1778 | 1760 | Q |
Isopentyl alcohol | 53.99 ± 9.83 ab | 65.38 ± 18.06 a | 44.29 ± 14.91 b | 1200 | 1209 | Q |
2,3-Butanediol | 0 ± 0 b | 0.13 ± 0.2 a | 0 ± 0 b | 1545 | 1568 | Q |
1-Hexanol | 2.15 ± 0.72 b | 3.57 ± 1.39 a | 2.05 ± 1.04 b | 1371 | 1351 | Q |
Benzyl alcohol | 0.41 ± 0.23 b | 0.94 ± 0.22 a | 0.18 ± 0.27 b | 1869 | 1857 | Q |
2-Phenylethanol | 45.79 ± 38.83 b | 129.53 ± 52.97 a | 49.79 ± 20.96 b | 1844 | 1889 | Q |
β-Damascenone | 0.11 ± 0.06 ab | 0.08 ± 0.12 b | 0.24 ± 0.23 a | 1820 | 1820 | Q |
Nonanal | 0 ± 0 b | 0 ± 0 b | 0.41 ± 0.64 a | 1388 | 1385 | Q |
Decanal | 0 ± 0 b | 0 ± 0 b | 0.4 ± 0.33 a | 1494 | 1481 | Q |
Benzaldehyde | 0 ± 0 b | 0 ± 0 b | 0.14 ± 0.22 a | 1507 | 1508 | Q |
Phenylacetaldehyde | 0.01 ± 0.03 a | 0 ± 0 a | 0 ± 0 a | 1630 | 1632 | Q |
Hexanoic acid | 0.47 ± 0.31 b | 1.49 ± 0.8 a | 0.72 ± 0.57 b | 1851 | 1858 | Q |
n-Octanoic acid | 2.84 ± 0.94 b | 7.17 ± 2.43 a | 5.97 ± 3.12 a | 2011 | 1900 | Q |
Styrene | 0.64 ± 0.14 b | 1.11 ± 0.2 a | 0.91 ± 0.77 ab | 1248 | 1243 | Q |
Ethyl myristate | 0.21 ± 0.12 b | 0.72 ± 0.1 a | 0.91 ± 0.45 a | 2057 | 2024 | SQ |
Ethyl-2-hexenoate | 0.18 ± 0.09 a | 0.16 ± 0.14 a | 1.39 ± 2.8 a | 1357 | 1345 | SQ |
Ethyl heptanoate | 0.17 ± 0.05 b | 0.42 ± 0.33 a | 0.19 ± 0.08 b | 1336 | 1327 | SQ |
Methyl hexanoate | 0 ± 0 a | 0 ± 0.01 a | 0.01 ± 0.01 a | 1178 | 1179 | SQ |
Methyl decanoate | 0.44 ± 0.11 b | 0.63 ± 0.11 ab | 0.71 ± 0.39 a | 1593 | 1583 | SQ |
Isobutyl Decanoate | 0 ± 0 b | 0 ± 0 b | 0.1 ± 0.16 a | 1749 | 1747 | SQ |
Dibutyl suberate | 0.05 ± 0.07 ab | 0.15 ± 0.23 a | 0 ± 0b | 1601 | 1553 | SQ |
Isobutyl caprylate | 0.06 ± 0.09 b | 0 ± 0 b | 0.39 ± 0.3 a | 1550 | 1541 | SQ |
Isoamyl Octanoate | 1.06 ± 0.25 b | 2.76 ± 0.77 a | 2.35 ± 1.32 a | 1655 | 1650 | SQ |
Isoamyl Hexanoate | 0.83 ± 0.28 b | 1.56 ± 0.28 a | 1.04 ± 0.6 b | 1469 | 1448 | SQ |
Butyl lactate | 0.03 ± 0.08 a | 0 ± 0 a | 0 ± 0 a | — | 960 | SQ |
Amyl butyrate | 0.01 ± 0.01 a | 0.02 ± 0.03 a | 0 ± 0 a | 1321 | 1259 | SQ |
2-Ethylhexyl Butyrate | 0 ± 0 b | 0.07 ± 0.11 a | 0 ± 0 b | — | 1381 | SQ |
2-Methyl-1-propanol | 1.07 ± 0.21 b | 1.46 ± 0.26 a | 1.47 ± 0.57 a | 1090 | 1089 | SQ |
2,6,8-Trimethyl-4-nonanol | 0.28 ± 0.15 a | 0.33 ± 0.31 a | 0.14 ± 0.11 a | — | 1553 | SQ |
Valeric acid | 0.09 ± 0.21 a | 0 ± 0 a | 0 ± 0 a | 1731 | 1445 | SQ |
Ethyl isoamyl succinic acid | 0.49 ± 0.55 ab | 1.15 ± 0.75 a | 0.38 ± 0.58 b | 1892 | 1836 | SQ |
Capric acid | 0.40 ± 0.27 c | 1.21 ± 0.34 b | 2.15 ± 1.33 a | 2237 | 2050 | SQ |
2,6,8-trimethyl-4-Nonanone | 0.43 ± 0.6 a | 0.32 ± 0.33 a | 0.76 ± 1.18 a | — | 1388 | SQ |
2-Methyl-4-undecanone | 0.76 ± 0.8 ab | 0 ± 0 b | 1.02 ± 0.88 a | — | 1401 | SQ |
2,4-Di-tert-butylphenol | 0.14 ± 0.1 a | 0.18 ± 0.02 a | 0.12 ± 0.1 a | 2321 | 2139 | SQ |
2.3. Aroma Markers of EFHM Merlot Wines
2.3.1. Perceivable VOCs in GC-O/MS Analysis
2.3.2. VOCs above Olfactory Threshold
2.3.3. Reconstruction of Aroma of Merlot Wine
2.3.4. Omission Tests for Geraniol Isovalerate
2.3.5. Addition Experiments for Geraniol Isovalerate
3. Materials and Methods
3.1. Wine Sample Collection
3.2. Conventional Analysis
3.3. Sensory Analysis
3.4. Volatile Organic Compounds Analysis
3.4.1. GC-MS Analysis
3.4.2. GC-O/MS Analysis
3.4.3. Qualitative and Quantitative Analysis
3.5. Aroma Reconstruction Experiments
3.6. Aroma Omission Experiments
3.7. Aroma Addition Experiments
3.8. Measurement of Odor Threshold
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Z.; Li, H.; Xue, J.; Zhang, J.X. Aroma characteristics of aged ‘Cabernet Sauvignon’ dry red wine from eastern foothill of Helan mountain. Food Sci. 2019, 40, 203–209. (In Chinese) [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma precursors in grapes and wine: Flavor release during wine production and consumption. J. Agric. Food Chem. 2018, 66, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, C.; Cirlini, M.; Morini, E. Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. J. Chromatogr. A 2011, 1218, 7557–7565. [Google Scholar] [CrossRef] [PubMed]
- Carlin, S.; Piergiovanni, M.; Pittari, E.; Lisanti, M.T.; Moio, L.; Piombino, P.; Marangon, M.; Curioni, A.; Rolle, L.; Río Segade, S.; et al. The contribution of varietal thiols in the diverse aroma of Italian monovarietal white wines. Food Res. Int. 2022, 157, 111404. [Google Scholar] [CrossRef] [PubMed]
- Tetik, M.A.; Sevindik, O.; Kelebek, H.; Selli, S. Screening of key odorants and anthocyanin compounds of cv. Okuzgozu (Vitis vinifera L.) red wines with a free run and pressed pomace using GC-MS-Olfactometry and LC-1-MS-1-MS. J. Mass Spectrom. 2018, 53, 444–454. [Google Scholar] [CrossRef]
- Polaskova, P.; Herszage, J.; Ebeler, S.E. Wine flavor: Chemistry in a glass. Chem. Soc. Rev. 2008, 37, 2478–2489. [Google Scholar] [CrossRef]
- Javier, R.; Florian, K.; Ignacio, B.; Daniela, F.; Domingo, M.; Eva, N.; Fernando, C.; Angel, B.; Doris, R.; Antonio, S.; et al. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- Tian, T.T.; Sun, J.Y.; Wu, D.H.; Xiao, J.B.; Lu, J. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles. Food Chem. 2021, 340, 128–179. [Google Scholar] [CrossRef] [PubMed]
- Marcq, P.; Schieberle, P. Characterization of the key aroma compounds in a commercial Fino and a commercial Pedro Ximenez Sherry wine by application of the sensomics approach. J. Agric. Food Chem. 2021, 69, 5125–5133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Ai, L.Z.; Mu, Z.Y.; Liu, H.D.; Yan, X.; Ni, L.; Zhang, H.; Xia, Y.J. Flavor compounds with high odor activity values (OAV > 1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chem. 2022, 383, 132370. [Google Scholar] [CrossRef]
- Delgado, J.A.; Sánchez-Palomo, E.; Osorio Alises, M.; González Viñas, M.A. Chemical and sensory aroma typicity of La Mancha Petit Verdot wines. Lwt 2022, 162, 113418. [Google Scholar] [CrossRef]
- Mayr, C.M.; Geue, J.P.; Holt, H.E.; Pearson, W.P.; Jeffery, D.W.; Francis, I.L. Characterization of the key aroma compounds in Shiraz wine by quantitation, aroma reconstitution, and omission studies. J. Agric. Food Chem. 2014, 62, 4528–4536. [Google Scholar] [CrossRef]
- Herderich, M.J.; Siebert, T.E.; Parker, M.; Capone, D.L.; Francis, I.L. Spice up your life: Analysis of key aroma compounds in Shiraz. Acs Symp. 2012, 1104, 3–13. [Google Scholar] [CrossRef]
- Zhao, P.T.; Gao, F.F.; Qian, M.; Li, H. Characterization of the key aroma compounds in Chinese Syrah wine by Gas Chromatog-raphy-Olfactometry-Mass spectrometry and aroma reconstitution studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.Q.; Chai, R.X.; Xiang, X.F.; Li, J.; Zhou, P.H.; Shi, Y.; Duan, C.Q.; Lan, Y.B. Characterization of key odor-active compounds in Chinese Dornfelder wine and its regional variations by application of molecular sensory science approaches. Food Chem. X 2023, 17, 100598. [Google Scholar] [CrossRef]
- Lyu, J.H.; Ma, Y.; Xu, Y.; Nie, Y.; Tang, K. Characterization of the key aroma compounds in Marselan wine by Gas-Chromatography-Olfactometry, quantitative measurements, aroma recombination, and omission tests. Molecules 2019, 24, 2978. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.B.; Guo, J.X.; Qian, X.; Zhu, B.Q.; Duan, C.Q. Characterization of key odor active compounds in sweet Petit Manseng (Vitis vinifera L.) wine by gas chromatography–olfactometry, aroma reconstitution, and omission tests. J. Food Sci. 2021, 86, 1258–1272. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Yang, H.; Sun, L.; Xia, H.; Sun, W.; Wang, Z.; Zhang, J. Bacterial communities related to aroma formation during spontaneous fermentation of ‘Cabernet Sauvignon’ wine in Ningxia, China. Foods 2022, 11, 2775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.Y.; Zhang, X.K.; Lan, Y.B.; Duan, C.Q.; Zhu, B.Q.; Li, D.M. Sub-regional variation and characteristics of Cabernet Sauvignon wines in the Eastern Foothills of the Helan Mountain: A perspective from phenolics, visual properties and mouthfeel. Foods 2023, 12, 1081. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Wang, L.; Sun, L.J.; Zheng, Y.L.; Xia, H.C.; Zhang, J.X. Quality characteristics of natural ‘Merlot’ dry red wine from eastern foothill of Helan mountain. Food Sci. 2022, 43, 204–212. (In Chinese) [Google Scholar]
- Jeffery, D.W. Spotlight on varietal thiols and precursors in grapes and wines. Aust. J. Chem. 2016, 69, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- De-La-Fuente-Blanco, A.; Sáenz-Navajas, M.-P.; Valentin, D.; Ferreira, V. Fourteen ethyl esters of wine can be replaced by simpler ester vectors without compromising quality but at the expense of increasing aroma concentration. Food Chem. 2020, 307, 125553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lytra, G.; Tempere, S.; Marchand, S.; De Revel, G.; Barbe, J.C. How do esters and dimethyl sulphide concentrations affect fruity aroma perception of red wine? Demonstration by dynamic sensory profile evaluation. Food Chem. 2016, 194, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Xiao, D. Review in metabolic modulation of higher alcohols in top-fermenting yeast. In Advances in Applied Biotechnology, Proceedings of the 3rd International Conference on Applied Biotechnology (ICAB2016), Tianjin, China, 25–27 November 2016; Springer: Singapore, 2018; pp. 767–773. [Google Scholar]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Moreira, N.; Araújo, A.M.; Rogerson, F.; Vasconcelos, I.; Freitas, V.D.; Pinho, P.G. Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port wines. Food Chem. 2019, 270, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Wedler, H.B.; Pemberton, R.P.; Tantillo, D.J. Carbocations and the complex flavor and bouquet of wine: Mechanistic aspects of terpene biosynthesis in wine grapes. Molecules 2015, 20, 10781–10792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelen, H.H.; Gaca, A.; Marcinkowska, M. Use of sorbent-based vacuum extraction for determination of volatile phenols in beer. Food Anal. Method 2018, 11, 3089–3094. [Google Scholar] [CrossRef] [Green Version]
- McKay, M.; Bauer, F.F.; Panzeri, V.; Mokwena, L.; Buica, A. Profiling potentially smoke tainted red wines: Volatile phenols and aroma attributes. S. Afr. J. Enol. Vitic. 2019, 40, 1. [Google Scholar]
- Radonjic, S.; Prosen, H.; Maras, V.; Demsar, L.; Kosmerl, T. Incidence of volatile phenols in Montenegrin red wines: Vranac, Kratošija and Cabernet Sauvignon. Chem. Ind. Chem. Eng. Q. 2020, 26, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Zellner, B.D.A.; Bicchi, C.; Dugo, P.; Rubiolo, P.; Dugo, G.; Mondello, L. Linear retention indices in gas chromatographic analysis: A review. Flavour Fragr. J. 2008, 23, 297–314. [Google Scholar] [CrossRef]
- Longo, R.; Carew, A.; Sawyer, S.; Kemp, B.; Kerslake, F. A review on the aroma composition of Vitis vinifera L. Pinot Noir wines: Origins and influencing factors. Crit. Rev. Food Sci. 2020, 20, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine R. 2010, 11, 114–126. [Google Scholar] [CrossRef]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Ma, N.; Wang, X.C.; Kong, C.L.; Tao, Y.S. Effect of mixed culture fermentation with Rhodotorula mucilaginosa and Saccharomyces cerevisiae on the aroma and color of red wine. Food Sci. 2021, 42, 8. [Google Scholar] [CrossRef]
- Nurgel, C.; Pickering, G.J.; Inglis, D.L. Sensory and chemical characteristics of Canadian ice wines. J. Sci. Food Agric. 2004, 84, 1675–1684. [Google Scholar] [CrossRef]
- Xia, H.C.; Zhang, Z.; Sun, L.J.; Zhang, Q.C.; Zhang, J.X. Effects of mixed fermentation on the aroma compounds of ‘Italian Riesling’ dry white wine in eastern foothill of Helan Mountain. Fermentation 2023, 9, 303. [Google Scholar] [CrossRef]
- Tian, H.X.; Xu, X.L.; Sun, X.F.; Chen, C.; Yu, H.Y. Evaluation of the perceptual interaction among key aroma compounds in milk fan by gas chromatography olfactometry, odor threshold, and sensory analyses. J. Dairy Sci. 2020, 103, 5863–5873. [Google Scholar] [CrossRef]
- Nakamura, S.E.; Crowell, E.A.; Ough, C.S.; Totsuka, A. Quantitative analysis of γ-Nonalactone in wines and its threshold determination. J. Food Sci. 2010, 53, 1243–1244. [Google Scholar] [CrossRef]
- Cadot, Y.; Caillé, S.; Samson, A.; Barbeau, G.; Cheynier, V. Sensory dimension of wine typicality related to a terroir by quantitative descriptive analysis, just about right analysis and typicality assessment. Anal. Chim. Acta 2010, 660, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Cardoso, R.M.; Soares, P.M.M.; Cancela, J.J.; Pinto, J.G.; Santos, J.A. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions. PLoS ONE 2014, 9e, 108078. [Google Scholar] [CrossRef] [PubMed]
- Rasool, F.; Sharma, D.; Anand, P.S.; Magani, S.; Tantravahi, S. Evaluation of the anticancer properties of geranyl isovalerate, an active ingredient of Argyreia nervosa extract in colorectal cancer cells. Front. Pharmacol. 2021, 12, 698375. [Google Scholar] [CrossRef] [PubMed]
Compound Name | Aroma Description | Aroma Intensity | Average Value | Qualitative Method | LRI | LRI * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
EFHM 1 | EFHM 2 | EFHM 3 | EFHM 4 | EFHM 5 | EFHM 6 | ||||||
N-propanol | Alcohol | 3.7 | 2.0 | 3.7 | 2.3 | 3.7 | 2.3 | 2.9 | LRI, MS, O | 1038 | 1041 |
Ethyl isovalerate | Fruity | 2.3 | 3.7 | 2.0 | 2.3 | 2.7 | 4.0 | 2.8 | LRI, MS, O | 1072 | 1058 |
1,3-Diacetoxy-2-propyllaurate | Sweet | 0.0 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | LRI, MS, O | —— | 1702 |
3,7,11-Trimethyl-1-dodecanol | Caramel | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.2 | LRI, MS, O | —— | 1576 |
4-Octadecylal | Chocolate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | LRI, MS, O | 1700 | 1702 |
Isobutanol | Fusel oil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | LRI, MS, O | 1090 | 1089 |
Isoamyl acetate | Fruity, banana | 3.0 | 2.0 | 2.7 | 3.3 | 3.3 | 3.7 | 3.0 | LRI, MS, O | 1127 | 1112 |
N-Butanol | Fusel oil | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.0 | 0.2 | LRI, MS, O | 1147 | 1147 |
3,4-Dimethyl-2-hexanol | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | LRI, MS, O | —— | 1890 | |
3-Benzyl-2-heptanone | Fruity | 3.7 | 1.3 | 2.0 | 2.3 | 2.2 | 2.1 | 2.3 | LRI, MS, O | —— | 1437 |
Isoamyl alcohol | Fruity, bitter almonds | 0.0 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | LRI, MS, O | 1200 | 1209 |
Ethyl -3-methylvalerate | Fruity | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | LRI, MS, O | 1182 | 1180 |
Ethyl hexanoate | Fruity | 2.7 | 2.7 | 3.0 | 3.7 | 3.7 | 2.0 | 2.9 | LRI, MS, O | 1236 | 1228 |
Acetoin | Butter, cream | 4.0 | 2.3 | 3.7 | 4.0 | 3.7 | 3.3 | 3.5 | LRI, MS, O | 1304 | 1302 |
Trans-2-undecienol | Floral, rose, fruity | 0.0 | 0.7 | 0.0 | 1.3 | 0.7 | 1.0 | 0.6 | LRI, MS, O | 1895 | 1899 |
2-Tridecanol | Leather, spices | 0.0 | 0.7 | 0.0 | 0.0 | 1.0 | 0.0 | 0.3 | LRI, MS, O | 2312 | 2310 |
Ethyl lactate | Fruit, cream | 1.0 | 0.0 | 0.0 | 1.3 | 1.0 | 1.0 | 0.7 | LRI, MS, O | 1334 | 1335 |
N-Hexanol | Herbaceous plant | 3.7 | 0.0 | 2.3 | 1.3 | 1.0 | 2.0 | 1.7 | LRI, MS, O | 1371 | 1351 |
Ethyl caprylate | Fruity, creamy | 3.3 | 1.0 | 0.0 | 1.0 | 0.0 | 0.7 | 1.0 | LRI, MS, O | 1424 | 1429 |
Acetic acid | Vinegar | 4.0 | 4.0 | 4.0 | 4.0 | 3.7 | 4.0 | 3.9 | LRI, MS, O | 1451 | 1445 |
N-octanol | Citrus | 3.7 | 3.7 | 2.0 | 4.0 | 2.7 | 3.7 | 3.3 | LRI, MS, O | 1559 | 1559 |
2,3-Butanediol | Creamy, fruity | 2.0 | 1.0 | 1.7 | 2.0 | 0.0 | 0.0 | 1.1 | LRI, MS, O | 1544 | 1568 |
3-Methyl-2-butanol | Apple | 1.0 | 0.0 | 0.0 | 1.7 | 0.7 | 0.0 | 0.6 | LRI, MS, O | 1089 | 1078 |
4-Hydroxybutyrate lactone | Floral, pollen | 2.0 | 1.4 | 2.1 | 2.6 | 3.0 | 2.6 | 2.3 | LRI, MS, O | 1665 | 1665 |
Diethyl succinate | Floral, apple | 1.7 | 0.7 | 4.0 | 3.7 | 4.0 | 3.3 | 2.9 | LRI, MS, O | 1686 | 1666 |
3- Methyl thiopropanol | Baked potatoes, onions | 3.7 | 3.7 | 4.0 | 4.0 | 4.0 | 4.0 | 3.9 | LRI, MS, O | 1721 | 1699 |
Hexanoic acid | Sweat, cheese | 3.3 | 2.3 | 3.7 | 3.7 | 3.7 | 2.7 | 3.2 | LRI, MS, O | 1842 | 1836 |
Benzyl alcohol | Flowers | 0.0 | 0.0 | 0.7 | 0.7 | 1.0 | 1.0 | 0.6 | LRI, MS, O | 1869 | 1857 |
Phenethyl alcohol | Roses, floral | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | LRI, MS, O | 1898 | 1889 |
2-Oxocycloheptanecarboxylic acid | Spices | 2.0 | 2.0 | 3.7 | 1.0 | 2.3 | 2.0 | 2.2 | LRI, MS, O | —— | 1826 |
Diethyl malate | Caramel, jam | 4.0 | 4.0 | 4.0 | 3.3 | 4.0 | 3.7 | 3.8 | LRI, MS, O | 2035 | 2030 |
Octanoic acid | Fat, cream | 4.0 | 3.3 | 2.7 | 4.0 | 4.0 | 3.7 | 3.6 | LRI, MS, O | 2092 | 2050 |
Isopropyl palmitate | Caramel | 1.3 | 1.0 | 0.0 | 3.3 | 0.0 | 1.0 | 1.1 | LRI, MS, O | —— | 2023 |
1-Methyl-4-hydroxystearate | Bitterness | 0.0 | 0.0 | 1.0 | 2.3 | 2.3 | 1.3 | 1.2 | LRI, MS, O | —— | 2239 |
Docosalidene enanthate | Bitterness | 1.7 | 0.0 | 0.0 | 1.3 | 0.0 | 3.0 | 1.0 | LRI, MS, O | —— | 1604 |
Geranyl isovalerate | Herbal incense, herbs | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | LRI, MS, O | 1925 | 1923 |
Carboxybutylide | Caramel | 1.3 | 2.7 | 1.3 | 0.0 | 1.3 | 0.0 | 1.1 | LRI, MS, O | —— | 1950 |
β- Violet alcohol | Sweet | 1.0 | 0.0 | 1.3 | 0.0 | 1.3 | 1.0 | 0.8 | LRI, MS, O | —— | 1975 |
4-Hydroxyphenethyl alcohol | Fruity, sweet | 2.3 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.6 | LRI, MS, O | —— | 1998 |
2,4-Di-tert-butylphenol | Phenol | 1.0 | 3.3 | 1.3 | 3.7 | 1.3 | 2.0 | 2.1 | LRI, MS, O | 2321 | 2139 |
Monoethyl succinate | Smoky | 0.7 | 2.3 | 0.7 | 1.3 | 2.3 | 1.0 | 1.4 | LRI, MS, O | —— | 2350 |
(13Z)-13-Eicosaenoic acid | Roast | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | LRI, MS, O | —— | 2365 |
Ethyl linoleate | Fat | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | LRI, MS, O | 2515 | 2520 |
(5E)-5-Octadexacarbonyl | Burnt paste | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | LRI, MS, O | —— | 2593 |
Erucic acid | Scorched | 0.7 | 0.0 | 1.0 | 0.0 | 1.0 | 1.0 | 0.6 | LRI, MS, O | —— | 2546 |
Octadecanedioic acid | Smoky | 0.0 | 0.0 | 0.7 | 1.0 | 0.7 | 1.0 | 0.6 | LRI, MS, O | —— | 2523 |
Ethyl vanillarate | Smoky | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.3 | LRI, MS, O | 2676 | 2674 |
Ethyl hydroxycinnamate | Smoky | 0.7 | 1.0 | 0.0 | 1.0 | 1.0 | 2.7 | 1.1 | LRI, MS, O | —— | 2658 |
1,3-Glyceryl distearate | Burnt, baked | 0.0 | 1.0 | 1.0 | 2.3 | 1.0 | 2.3 | 1.3 | LRI, MS, O | —— | 2643 |
2-Hydroxyarmyric acid | Smoky | 1.7 | 1.0 | 1.0 | 2.3 | 1.0 | 1.0 | 1.3 | LRI, MS, O | —— | 2764 |
Palmitic acid | Fat | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | LRI, MS, O | 2876 | 2878 |
Unknown compound 1 | Mushroom | 4 | 3.3 | 3.7 | 3.2 | 2.4 | 2.2 | 3.1 | O | —— | —— |
Unknown compound 2 | Coal tar | 3.2 | 2.3 | 2.7 | 2.1 | 3.8 | 3.4 | 2.9 | O | —— | —— |
Unknown compound 3 | Baked potatoes | 3.3 | 2.4 | 2.2 | 1.3 | 1.8 | 1.0 | 2.0 | O | —— | —— |
Unknown compound 4 | Jujube, floral | 3.1 | 2.3 | 2.0 | 3.2 | 2.1 | 3.2 | 2.7 | O | —— | —— |
Unknown compound 5 | Sweet | 2.9 | 3.1 | 2.1 | 3.2 | 3.0 | 1.0 | 2.6 | O | —— | —— |
Unknown compound 6 | Caramel | 3.5 | 2.3 | 3.5 | 3.3 | 2.1 | 3.0 | 3.0 | O | —— | —— |
Unknown compound 7 | Green peppers, eucalyptus leaves | 3.3 | 2.5 | 3.0 | 3.6 | 3.2 | 3.4 | 3.2 | O | —— | —— |
Unknown compound 8 | Sweet | 3.6 | 3.3 | 3.4 | 3.7 | 3.0 | 4.0 | 3.5 | O | —— | —— |
Number | VOCs | Threshold/(μg·L−1) [33,34,35,36] | Average Concentration/(μg·L−1) | OAV |
---|---|---|---|---|
1 | Ethyl butyrate | 549 | 663.72 | 1.21 |
2 | Isoamyl acetate | 30 | 6149.58 | 204.99 |
3 | Ethyl hexanoate | 593 | 20,928.10 | 35.29 |
4 | Methyl octanoate | 200 | 724.21 | 3.62 |
5 | Ethyl caprylate | 874 | 202,743.98 | 231.97 |
6 | Ethyl caprate | 200 | 129,081.35 | 645.41 |
7 | Ethyl laurate | 1500 | 13,988.99 | 9.33 |
8 | Phenyl ethyl acetate | 73 | 532.89 | 7.30 |
9 | Isoamyl alcohol | 30,000 | 52,191.95 | 1.74 |
10 | Phenethyl alcohol | 10,000 | 62,285.16 | 6.23 |
11 | β-Damascenone | 0.05 | 120.81 | 2416.22 |
12 | Hexanoic acid | 420 | 581.67 | 1.38 |
13 | Octanoic acid | 500 | 4490.18 | 8.98 |
14 | Styrene | 730 | 795.33 | 1.09 |
Serial Number | Aromatic Substances | Content/(mg·L−1) |
---|---|---|
1 | Ethyl butyrate | 1.32 |
2 | Isoamyl acetate | 4.47 |
3 | Ethyl hexanoate | 35.50 |
4 | Methyl octanoate | 1.23 |
5 | Ethyl caprylate | 412.51 |
6 | Ethyl caprate | 331.36 |
7 | Ethyl laurate | 42.85 |
8 | Phenyl ethyl acetate | 0.30 |
9 | Isopentyl alcohol | 41.44 |
10 | Phenethyl alcohol | 39.25 |
11 | β-Damascenone | 0.21 |
12 | Hexanoic acid | 1.27 |
13 | Octanoic acid | 14.38 |
14 | Styrene | 1.76 |
15 | Acetoin | 2.33 |
16 | N-octanol | 1.63 |
17 | 3-Methyl thiopropanol | 0.97 |
18 | Diethyl malate | 0.60 |
19 | Geranyl isovalerate | 0.56 |
Aroma Characteristic | Compound | Correct Number in All | Significance |
---|---|---|---|
herbal odors | geraniol isovalerate | 14/20 | * |
Sample Name | Region | Brand | Bottle | Vintage |
---|---|---|---|---|
HL1 | EFHM | Imperial Horse | 6 | 2020 |
HL2 | EFHM | Silver Heights | 6 | 2020 |
HL3 | EFHM | Hongfeng Winery | 6 | 2020 |
HL4 | EFHM | Xinhuibin winery | 6 | 2020 |
HL5 | EFHM | Yuanshi Vineyard | 6 | 2020 |
HL6 | EFHM | Chateau Yunmo Greatwall | 6 | 2020 |
XJ1 | XJ | Silk Road Vineyards | 6 | 2020 |
XJ2 | XJ | Manasi winery | 6 | 2020 |
XJ3 | XJ | Tiansai Winery | 6 | 2020 |
GS1 | GS | Guofeng Winery | 6 | 2020 |
GS2 | GS | Mogao Winery | 6 | 2020 |
GS3 | GS | Zixuan Winery | 6 | 2020 |
Sample Name | Region | Alcohol (%, v/v) | Dry Matter (g·L−1) | Titratable Acid (g·L−1) | Residual Sugar (g·L−1) | Volatile Acidity (g·L−1) | pH |
---|---|---|---|---|---|---|---|
HL1 | EFHM | 15.15 ± 0.18 bc | 33.50 ± 0.57 c | 7.16 ± 0.26 a | 3.83 ± 0.01 a | 0.50 ± 0.01 a | 3.63 ± 0.00 j |
HL2 | EFHM | 15.27 ± 0.02 b | 29.95 ± 0.78 e | 4.59 ± 0.25 de | 3.25 ± 0.01 b | 0.29 ± 0.01 e | 3.78 ± 0.01 ef |
HL3 | EFHM | 14.45 ± 0.01 d | 28.95 ± 0.35 e | 4.59 ± 0.25 de | 3.13 ± 0.04 bc | 0.33 ± 0.02 d | 3.77 ± 0.00 f |
HL4 | EFHM | 15.59 ± 0.00 a | 33.75 ± 2.76 c | 4.77 ± 0.00 de | 3.74 ± 0.06 a | 0.22 ± 0.01 f | 3.74 ± 0.01 g |
HL5 | EFHM | 14.62 ± 0.19 d | 30.45 ± 0.35 de | 6.43 ± 0.26 b | 3.75 ± 0.07 a | 0.34 ± 0.01 d | 3.70 ± 0.00 i |
HL6 | EFHM | 14.94 ± 0.19 c | 39.20 ± 0.57 a | 6.61 ± 0.00 b | 3.00 ± 0.07 c | 0.21 ± 0.01 f | 3.72 ± 0.01 h |
XJ1 | XJ | 14.60 ± 0.04 d | 33.10 ± 0.00 c | 5.33 ± 0.26 c | 3.38 ± 0.06 b | 0.34 ± 0.01 d | 3.83 ± 0.00 c |
XJ2 | XJ | 12.83 ± 0.00 g | 36.50 ± 0.00 b | 4.59 ± 0.25 de | 1.63 ± 0.04 e | 0.42 ± 0.03 b | 3.81 ± 0.01 d |
XJ3 | XJ | 13.33 ± 0.01 f | 29.20 ± 0.00 e | 4.59 ± 0.25 de | 3.30 ± 0.00 b | 0.45 ± 0.01 b | 3.78 ± 0.00 e |
GS1 | GS | 13.66 ± 0.17 e | 32.15 ± 0.21 cd | 4.41 ± 0.00 b | 2.13 ± 0.18 d | 0.22 ± 0.02 f | 3.89 ± 0.00 b |
GS2 | GS | 12.28 ± 0.01 h | 26.30 ± 0.00 f | 4.22 ± 0.26 e | 1.63 ± 0.18 e | 0.35 ± 0.01 cd | 3.80 ± 0.00 d |
GS3 | GS | 15.24 ± 0.00 b | 32.30 ± 0.00 cd | 5.51 ± 0.00 c | 3.05 ± 0.07 c | 0.37 ± 0.03 cd | 3.91 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Zhang, Z.; Xia, H.; Zhang, Q.; Zhang, J. Typical Aroma of Merlot Dry Red Wine from Eastern Foothill of Helan Mountain in Ningxia, China. Molecules 2023, 28, 5682. https://doi.org/10.3390/molecules28155682
Sun L, Zhang Z, Xia H, Zhang Q, Zhang J. Typical Aroma of Merlot Dry Red Wine from Eastern Foothill of Helan Mountain in Ningxia, China. Molecules. 2023; 28(15):5682. https://doi.org/10.3390/molecules28155682
Chicago/Turabian StyleSun, Lijun, Zhong Zhang, Hongchuan Xia, Qingchen Zhang, and Junxiang Zhang. 2023. "Typical Aroma of Merlot Dry Red Wine from Eastern Foothill of Helan Mountain in Ningxia, China" Molecules 28, no. 15: 5682. https://doi.org/10.3390/molecules28155682
APA StyleSun, L., Zhang, Z., Xia, H., Zhang, Q., & Zhang, J. (2023). Typical Aroma of Merlot Dry Red Wine from Eastern Foothill of Helan Mountain in Ningxia, China. Molecules, 28(15), 5682. https://doi.org/10.3390/molecules28155682