Evaluation of Multivariate Filters on Vibrational Spectroscopic Fingerprints for the PLS-DA and SIMCA Classification of Argan Oils from Four Moroccan Regions
Abstract
:1. Introduction
2. Results and Discussion
2.1. NIR and MIR Spectral Characteristics of Argan Oil
2.2. PCA Analysis
2.3. PLS-DA and SIMCA Classification Models after Different Preprocessings
2.3.1. PLS-DA Models on MIR Data
2.3.2. PLS-DA Models on NIR Data
2.3.3. SIMCA Models
3. Material and Methods
3.1. Sample Collection
3.2. Spectroscopic Techniques and Spectrum Acquisition
3.3. Chemometric Tools for Classification
3.3.1. Preprocessing Methods
3.3.2. Unsupervised Pattern Recognition
3.3.3. Supervised Pattern Reconstruction
3.3.4. Software
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Charrouf, Z.; Guillaume, D. Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Skeels. J. Ethnopharmacol. 1999, 67, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Charrouf, Z.; Guillaume, D. Argan oil, functional food, and the sustainable development of the Argan forest. Nat. Prod. Commun. 2008, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Charrouf, Z.; Guillaume, D. Argan oil, the 35-years-of-research product. Eur. J. Lipid Sci. Technol. 2014, 116, 1316–1321. [Google Scholar] [CrossRef]
- Berrougui, H.; de Sotomayor, M.A.; Pérez-Guerrero, C.; Ettaib, A.; Hmamouchi, M.; Marhuenda, E.; Herrera, M.D. Argan (Argania spinosa) oil lowers blood pressure and improves endothelial dysfunction in spontaneously hypertensive rats. Br. J. Nutr. 2004, 92, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Kamal, R.; Kharbach, M.; Vander Heyden, Y.; Zohra, H.; Ghchime, R.; Bouklouze, A.; Cherrah, Y.; Alaoui, K. In vivo anti-inflammatory response and bioactive compounds’ profile of polyphenolic extracts from edible Argan oil (Argania spinosa L.), obtained by two extraction methods. Food Biochem. 2019, 43, e13066. [Google Scholar] [CrossRef]
- Ouchbani, T.; Bennis, M.; Khaili, A.; Zahar, M.; Nakajima, M. Effects of the heating temperature during the press extraction process on the yield and quality of cosmetic Argan oil. Euro-Mediterranean J. Environ. Integr. 2021, 5, 3–9. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Argan oil: Occurrence, composition and impact on human health. Eur. J. Lipid Sci. Technol. 2008, 110, 632–636. [Google Scholar] [CrossRef]
- Bnouham, M.; Bellahcen, S.; Benalla, W.; Legssyer, A. Antidiabetic activity assessment of Argania spinosa oil. Complement. Integr. Med. 2008, 5, 1–12. [Google Scholar] [CrossRef]
- Bakour, M.; Soulo, N.; Hammas, N.; El Fatemi, H.; Aboulghazi, A.; Taroq, A.; Abdellaoui, A.; Al-Waili, N.; Lyoussi, B. The antioxidant content and protective effect of Argan oil and Syzygium aromaticum essential oil in hydrogen peroxide-induced biochemical and histological changes. Int. J. Mol. Sci. 2018, 19, 610. [Google Scholar] [CrossRef] [Green Version]
- Drissi, A.; Girona, J.; Cherki, M.; Godàs, G.; Derouiche, A.; El Messal, M.; Saile, R.; Kettani, A.; Solà, R.; Masana, L.; et al. Evidence of hypolipemiant and antioxidant properties of Argan oil derived from the Argan tree (Argania spinosa). Clin. Nutr. 2004, 23, 1159–1166. [Google Scholar] [CrossRef]
- Zunzunegui, M.; Ain-lhout, F.; Jáuregui, J.; Díaz Barradas, M.C.; Boutaleb, S.; Álvarez-Cansino, L.; Esquivias, M.P. Fruit production under different environmental and management conditions of Argan, Argania spinosa (L.). J. Arid Environ. 2010, 74, 1138–1145. [Google Scholar] [CrossRef]
- Guillaume, D.; Pioch, D.; Charrouf, Z. Argan [Argania spinosa (L.) Skeels] Oil. In Fruit Oils: Chemistry and Functionality; Ramadan, M.F., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 317–352. [Google Scholar]
- Atifi, H.; Bouzoubaâ, Z.; Gharby, S.; Laknifli, A.; Mamouni, R.; Rachid, M. Fruits maturity effect on the Argan oil amount, quality and chemical composition. J. Mater. Environ. Sci. 2017, 8, 512–519. [Google Scholar]
- Harhar, H.; Gharby, S.; Kartah, B.; Pioch, D.; Guillaume, D.; Charrouf, Z. Effect of harvest date of Argania spinosa fruits on Argan oil quality. Ind. Crops Prod. 2014, 56, 156–159. [Google Scholar] [CrossRef]
- Ennoukh, F.E.; Bchitou, R.; Mohammed, F.; Guillaume, D.; Harhar, H.; Bouhaouss, A. Study of the effects of extraction methods on Argan oil quality through its metal content. Ind. Crops Prod. 2017, 109, 182–184. [Google Scholar] [CrossRef]
- Kharbach, M.; Kamal, R.; Marmouzi, I.; Barra, I.; Cherrah, Y.; Alaoui, K.; Vander Heyden, Y.; Bouklouze, A. Fatty-acid profiling vs UV-Visible fingerprints for geographical classification of Moroccan Argan oils. Food Control 2018, 95, 95–105. [Google Scholar] [CrossRef]
- El Maouardi, M.; Kharbach, M.; Cherrah, Y.; De Braekeleer, K.; Bouklouze, A.; Vander Heyden, Y. Quality control and authentication of Argan oils: Application of advanced analytical techniques. Molecules 2023, 28, 1818. [Google Scholar] [CrossRef] [PubMed]
- Benlamaalam, S.; Chigr, M.; Hirri, A.; Auhmani, A.; Mbarki, M. Characterization and discrimination of virgin olive oils from different Moroccan geographical areas using MIR spectroscopy coupled to chemometric methods. Int. J. Sci. Res. 2015, 4, 2443–2448. [Google Scholar] [CrossRef]
- Farres, S.; Srata, L.; Fethi, F.; Kadaoui, A. Argan oil authentication using Visible/Near Infrared spectroscopy combined to chemometrics tools. Vib. Spectrosc. 2019, 102, 79–84. [Google Scholar] [CrossRef]
- Joshi, R.; Cho, B.-K.; Joshi, R.; Lohumi, S.; Faqeerzada, M.A.; Amanah, H.; Lee, J.; Mo, C.; Lee, H. Raman spectroscopic analysis to detect olive oil mixtures in Argan oil. Korean J. Agric. Sci. 2019, 46, 183–194. [Google Scholar] [CrossRef]
- Galtier, O.; Dupuy, N.; Le Dréau, Y.; Ollivier, D.; Pinatel, C.; Kister, J.; Artaud, J. Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Anal. Chim. Acta 2007, 595, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Chen, Y.; He, Y. Identification of geographical origin of olive oil using visible and near-infrared spectroscopy technique combined with chemometrics. Food Bioprocess Technol. 2012, 5, 235–242. [Google Scholar] [CrossRef]
- Tapp, H.S.; Defernez, M.; Kemsley, E.K. FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. J. Agric. Food Chem. 2003, 51, 6110–6115. [Google Scholar] [CrossRef]
- Jamwal, R.; Amit; Kumari, S.; Balan, B.; Dhaulaniya, A.S.; Kelly, S.; Cannavan, A.; Singh, D.K. Attenuated total Reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy coupled with chemometrics for rapid detection of argemone oil adulteration in mustard oil. LWT Food Sci. Technol. 2020, 120, 108945. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Z.; Tan, C. Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models. Vib. Spectrosc. 2018, 99, 178–183. [Google Scholar] [CrossRef]
- Lavine, B.; Workman, J. Chemometrics. Anal. Chem. 2010, 82, 4699–4711. [Google Scholar] [CrossRef]
- Eigenvector Research Advanced Preprocessing: Multivariate Filtering. Available online: https://wiki.eigenvector.com/index.php?title=Advanced_Preprocessing:_Multivariate_Filtering (accessed on 25 February 2023).
- Liu, Y.; Finley, J.; Betz, J.M.; Brown, P.N. FT-NIR characterization with chemometric analyses to differentiate goldenseal from common adulterants. Fitoterapia 2018, 127, 81–88. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167–168, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Nespeca, M.G.; Pavini, W.D.; de Oliveira, J.E. Multivariate filters combined with interval partial least square method: A strategy for optimizing PLS models developed with Near Infrared data of multicomponent solutions. Vib. Spectrosc. 2019, 102, 97–102. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Chen, R.; He, Y.; Liu, Y. Establishment and optimization of temperature compensation model for benzoic acid detection based on terahertz metamaterial. Infrared Phys. Technol. 2022, 123, 104101. [Google Scholar] [CrossRef]
- Pereira, C.G.; Leite, A.I.N.; Andrade, J.; Bell, M.J.V.; Anjos, V. Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses. LWT Food Sci. Technol. 2019, 107, 1–8. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Nache, M.; Waffenschmidt, S.; Hitzmann, B. Characterization of farinographic kneading process for different types of wheat flours using fluorescence spectroscopy and chemometrics. Food Control 2016, 66, 44–52. [Google Scholar] [CrossRef]
- Kharbach, M.; Kamal, R.; Bousrabat, M.; Alaoui Mansouri, M.; Barra, I.; Alaoui, K.; Cherrah, Y.; Vander Heyden, Y.; Bouklouze, A. Characterization and classification of PGI Moroccan Argan oils based on their FTIR fingerprints and chemical composition. Chemom. Intell. Lab. Syst. 2017, 162, 182–190. [Google Scholar] [CrossRef]
- Elgadi, S.; Ouhammou, A.; Zine, H.; Maata, N.; Aitlhaj, A.; El Allali, H.; El Antari, A. Discrimination of Geographical Origin of Unroasted Kernels Argan Oil (Argania spinosa (L.) Skeels) Using Tocopherols and Chemometrics. J. Food Qual. 2021, 2021, 8884860. [Google Scholar] [CrossRef]
- Taous, F.; El Ghali, T.; Marah, H.; Laraki, K.; Islam, M.; Cannavan, A.; Kelly, S. Geographical classification of authentic Moroccan Argan oils and the rapid detection of soya and sunflower oil adulteration with ATR-FTIR spectroscopy and chemometrics. Food Anal. Methods 2022, 15, 3032–3044. [Google Scholar] [CrossRef]
- Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 2014, 28, 213–225. [Google Scholar] [CrossRef]
- Segers, K.; Slosse, A.; Viaene, J.; Bannier, M.A.G.E.; Van de Kant, K.D.G.; Dompeling, E.; Van Eeckhaut, A.; Vercammen, J.; Vander Heyden, Y. Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques. Talanta 2021, 225, 122080. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Nespeca, M.G.; Hatanaka, R.R.; Flumignan, D.L.; Oliveira, J.E. de Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis. J. Anal. Methods Chem. 2018, 2018, 1795624. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Candolfi, A.; De Maesschalck, R.; Jouan-Rimbaud, D.; Hailey, P.A.; Massart, D.L. The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra. J. Pharm. Biomed. Anal. 1999, 21, 115–132. [Google Scholar] [CrossRef]
- Sampaio, P.S.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Identification of rice flour types with Near-Infrared spectroscopy associated with PLS-DA and SVM methods. Eur. Food Res. Technol. 2020, 246, 527–537. [Google Scholar] [CrossRef]
- Wold, S.; Antti, H.; Lindgren, F.; Öhman, J. Orthogonal Signal Correction of Near-Infrared spectra. Chemom. Intell. Lab. Syst. 1998, 44, 175–185. [Google Scholar] [CrossRef]
- Workman, J., Jr. 29- Review of chemometrics applied to spectroscopy: Data preprocessing. Handb. Org. Compd. 2001, 1, 327–337. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Kharbach, M.; Viaene, J.; Yu, H.; Kamal, R.; Marmouzi, I.; Bouklouze, A.; Vander Heyden, Y. Secondary-metabolites fingerprinting of Argania spinosa kernels using liquid chromatography–mass spectrometry and chemometrics, for metabolite identification and quantification as well as for geographic classification. J. Chromatogr. A 2022, 1670, 462972. [Google Scholar] [CrossRef]
- Giraudo, A.; Grassi, S.; Savorani, F.; Gavoci, G.; Casiraghi, E.; Geobaldo, F. Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control 2019, 99, 137–145. [Google Scholar] [CrossRef] [Green Version]
FT-NIR | FT-MIR | ||
---|---|---|---|
Wavenumber (cm−1) | Functional Group | Wavenumber (cm−1) | Functional Group |
4350–4210 | C–O, C–H | 685 | C–C |
4800–4500 | –HC=CH– | 722 | –HC=CH– (cis) |
6000–5500 | –CH2, –CH3 | 968 | –HC=CH– (trans) |
7180–7075 | C–H | 1097 | –C–C |
8300–8200 | C–H | 1118 | –C–O |
1160 | –CH2 | ||
1238 | –CH2 | ||
1377 | =C–H– (cis) | ||
1417 | =C–H– (cis) | ||
1463 | –C–H- (CH2, CH3) | ||
1744 | –C=O | ||
2854 | –C–H (CH2) | ||
2923 | –C–H (CH2) | ||
3008 | –C=C–H (cis) |
Training Set | Test Set | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Preprocessing | Region | LVs | Sens (%) | Spec (%) | Prec (%) | Acc (%) | Sens (%) | Spec (%) | Prec (%) | Acc (%) |
None | AG | 7 | 56.6 | 75.8 | 49.1 | 70.2 | 69.5 | 80.6 | 57.1 | 77.6 |
ES | 51.7 | 86.9 | 65.2 | 75.7 | 62.9 | 89.6 | 73.9 | 81.2 | ||
TA | 48.8 | 95.5 | 78.6 | 82.3 | 50.0 | 96.7 | 85.7 | 83.5 | ||
TZ | 63.6 | 79.9 | 30.4 | 77.9 | 81.8 | 85.1 | 45.0 | 84.7 | ||
Autoscaling | AG | 8 | 66.6 | 93.2 | 78.0 | 86.2 | 66.6 | 93.4 | 80.0 | 85.9 |
ES | 69.0 | 84.5 | 67.8 | 79.5 | 70.4 | 87.9 | 73.1 | 82.4 | ||
TA | 77.3 | 90.6 | 77.3 | 86.7 | 82.6 | 88.8 | 73.0 | 87.1 | ||
TZ | 100.0 | 96.2 | 78.6 | 96.7 | 90.9 | 95.9 | 76.9 | 95.3 | ||
Smoothing + 2nd derivative + Mean centering | AG | 9 | 95.8 | 97.7 | 93.9 | 97.2 | 95.8 | 98.4 | 95.8 | 97.6 |
ES | 94.8 | 98.4 | 96.5 | 97.2 | 96.3 | 98.3 | 96.3 | 97.6 | ||
TA | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
OSC | AG | 5 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
ES | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TA | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
EPO | AG | 3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
ES | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TA | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
GLSW | AG | 3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
ES | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TA | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Training Set | Test Set | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Preprocessing | Region | LVs | Sens (%) | Spec (%) | Prec (%) | Acc (%) | Sens (%) | Spec (%) | Prec (%) | Acc (%) |
None | AG | 10 | 58.3 | 89.7 | 66.7 | 81.5 | 62.5 | 86.9 | 62.5 | 80.6 |
ES | 91.9 | 96.7 | 93.4 | 95.1 | 96.8 | 96.7 | 93.7 | 96.8 | ||
TA | 75.0 | 93.2 | 81.2 | 88.0 | 62.9 | 95.4 | 85.0 | 86.0 | ||
TZ | 72.7 | 89.5 | 48.5 | 87.5 | 54.5 | 86.5 | 35.3 | 82.8 | ||
Autoscaling | AG | 8 | 64.6 | 88.4 | 65.9 | 82.8 | 70.8 | 84.1 | 60.7 | 80.6 |
ES | 96.8 | 99.1 | 98.3 | 98.4 | 100.0 | 96.8 | 93.9 | 97.8 | ||
TA | 77.8 | 91.7 | 79.2 | 87.5 | 66.6 | 92.4 | 78.3 | 84.9 | ||
TZ | 77.3 | 95.1 | 68.0 | 93.0 | 45.4 | 95.1 | 55.6 | 89.2 | ||
MSC + 2nd derivative | AG | 6 | 100.0 | 99.4 | 95.6 | 99.4 | 95.8 | 100.0 | 100.0 | 98.9 |
ES | 99.3 | 100.0 | 96.8 | 99.6 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TA | 98.1 | 100.0 | 100.0 | 99.4 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
OSC | AG | 8 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
ES | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TA | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
EPO | AG | 3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
ES | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TA | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
GLSW | AG | 3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
ES | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TA | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | ||
TZ | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Training Set | Test Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Preprocessing | Region | PCs | Sens (%) | Spec (%) | Prec (%) | Acc (%) | Sens (%) | Spec (%) | Prec (%) | Acc (%) | |
(a) MIR | MSC + 1st derivative | AG | 5 | 92 | 100 | 97 | 87 | 70 | 100 | 95 | 81 |
ES | 4 | 92 | 100 | 97 | 90 | 57 | 100 | 87 | 76 | ||
TA | 4 | 96 | 100 | 99 | 93 | 58 | 100 | 89 | 77 | ||
TZ | 3 | 77 | 100 | 100 | 94 | 45 | 100 | 89 | 84 | ||
EPO | AG | 4 | 100 | 100 | 100 | 100 | 89 | 100 | 100 | 91 | |
ES | 5 | 100 | 100 | 100 | 100 | 96 | 100 | 100 | 94 | ||
TA | 4 | 100 | 100 | 100 | 100 | 83 | 100 | 100 | 94 | ||
TZ | 3 | 100 | 100 | 100 | 100 | 82 | 100 | 100 | 97 | ||
GLSW | AG | 4 | 100 | 100 | 100 | 100 | 85 | 100 | 100 | 92 | |
ES | 6 | 100 | 100 | 100 | 100 | 77 | 100 | 100 | 95 | ||
TA | 5 | 100 | 100 | 100 | 100 | 87 | 100 | 100 | 95 | ||
TZ | 3 | 100 | 100 | 100 | 100 | 82 | 100 | 100 | 97 | ||
(b) NIR | MSC + 2nd derivative | AG | 5 | 91 | 100 | 88 | 85 | 74 | 100 | 88 | 83 |
ES | 3 | 85 | 100 | 94 | 85 | 64 | 100 | 89 | 83 | ||
TA | 3 | 89 | 100 | 93 | 85 | 62 | 100 | 85 | 75 | ||
TZ | 8 | 77 | 100 | 97 | 86 | 54 | 100 | 89 | 85 | ||
EPO | AG | 4 | 100 | 100 | 100 | 100 | 89 | 100 | 100 | 97 | |
ES | 4 | 100 | 100 | 100 | 100 | 81 | 100 | 100 | 97 | ||
TA | 4 | 100 | 100 | 100 | 100 | 92 | 100 | 100 | 95 | ||
TZ | 2 | 100 | 100 | 100 | 100 | 82 | 100 | 100 | 97 | ||
GLSW | AG | 3 | 100 | 100 | 100 | 100 | 89 | 100 | 100 | 98 | |
ES | 3 | 100 | 100 | 100 | 100 | 84 | 100 | 100 | 96 | ||
TA | 4 | 100 | 100 | 100 | 100 | 92 | 100 | 100 | 95 | ||
TZ | 2 | 100 | 100 | 100 | 100 | 91 | 100 | 100 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Maouardi, M.; Alaoui Mansouri, M.; De Braekeleer, K.; Bouklouze, A.; Vander Heyden, Y. Evaluation of Multivariate Filters on Vibrational Spectroscopic Fingerprints for the PLS-DA and SIMCA Classification of Argan Oils from Four Moroccan Regions. Molecules 2023, 28, 5698. https://doi.org/10.3390/molecules28155698
El Maouardi M, Alaoui Mansouri M, De Braekeleer K, Bouklouze A, Vander Heyden Y. Evaluation of Multivariate Filters on Vibrational Spectroscopic Fingerprints for the PLS-DA and SIMCA Classification of Argan Oils from Four Moroccan Regions. Molecules. 2023; 28(15):5698. https://doi.org/10.3390/molecules28155698
Chicago/Turabian StyleEl Maouardi, Meryeme, Mohammed Alaoui Mansouri, Kris De Braekeleer, Abdelaziz Bouklouze, and Yvan Vander Heyden. 2023. "Evaluation of Multivariate Filters on Vibrational Spectroscopic Fingerprints for the PLS-DA and SIMCA Classification of Argan Oils from Four Moroccan Regions" Molecules 28, no. 15: 5698. https://doi.org/10.3390/molecules28155698
APA StyleEl Maouardi, M., Alaoui Mansouri, M., De Braekeleer, K., Bouklouze, A., & Vander Heyden, Y. (2023). Evaluation of Multivariate Filters on Vibrational Spectroscopic Fingerprints for the PLS-DA and SIMCA Classification of Argan Oils from Four Moroccan Regions. Molecules, 28(15), 5698. https://doi.org/10.3390/molecules28155698