Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels
Abstract
:1. Introduction
2. Results
2.1. Coupling of Calcium Binding and pH in Bestrophin 1
2.2. Conformational Relaxation and pH Dependence of Calmodulin and Calbindin D9k
2.3. pH Dependence of the Calcium-Activated Chloride Channel TMEM16A
2.4. Buried Histidine-Mediated pH Dependence in ClC-2
2.5. Predicted pH-Sensing Residues Couple to Ligand Binding in the GABAA Receptor
2.6. Sites of pH Sensitivity and Electrostatic Frustration are Readily Apparent in Glycine Receptors
3. Discussion
4. Materials and Methods
pKa Calculations and Visualisation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, H.; Tsunenari, T.; Yau, K.W.; Nathans, J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl. Acad. Sci. USA 2002, 99, 4008–4013. [Google Scholar] [CrossRef]
- Marmorstein, A.D.; Marmorstein, L.Y.; Rayborn, M.; Wang, X.; Hollyfield, J.G.; Petrukhin, K. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc. Natl. Acad. Sci. USA 2000, 97, 12758–12763. [Google Scholar] [CrossRef]
- Yang, T.; Liu, Q.; Kloss, B.; Bruni, R.; Kalathur, R.C.; Guo, Y.; Kloppmann, E.; Rost, B.; Colecraft, H.M.; Hendrickson, W.A. Structure and selectivity in bestrophin ion channels. Science 2014, 346, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Kittredge, A.; Hopiavuori, A.; Ward, N.; Chen, S.; Fukuda, Y.; Zhang, Y.; Yang, T. Dual Ca2+-dependent gates in human Bestrophin1 underlie disease-causing mechanisms of gain-of-function mutations. Commun. Biol. 2019, 2, 240. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Xu, Y.; Kittredge, A.; Ward, N.; Chen, S.; Tsang, S.H.; Yang, T. Patient-specific mutations impair BESTROPHIN1’s essential role in mediating Ca2+-dependent Cl− currents in human RPE. eLife 2017, 6, e29914. [Google Scholar] [CrossRef]
- Dickson, V.K.; Pedi, L.; Long, S.B. Structure and insights into the function of a Ca2+-activated Cl− channel. Nature 2014, 516, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Vaisey, G.; Miller, A.N.; Long, S.B. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel. Proc. Natl. Acad. Sci. USA 2016, 113, E7399–E7408. [Google Scholar] [CrossRef]
- Vaisey, G.; Long, S.B. An allosteric mechanism of inactivation in the calcium-dependent chloride channel BEST1. J. Gen. Physiol. 2018, 150, 1484–1497. [Google Scholar] [CrossRef]
- Miller, A.N.; Vaisey, G.; Long, S.B. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin. eLife 2019, 8, e43231. [Google Scholar] [CrossRef]
- Owji, A.P.; Zhao, Q.; Ji, C.; Kittredge, A.; Hopiavuori, A.; Fu, Z.; Ward, N.; Clarke, O.B.; Shen, Y.; Zhang, Y.; et al. Structural and functional characterization of the bestrophin-2 anion channel. Nat. Struct. Mol. Biol. 2020, 27, 382–391. [Google Scholar] [CrossRef]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Evans, K.; Hayden, M.; Heywood, S.; Hussain, M.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 2017, 136, 665–677. [Google Scholar] [CrossRef] [Green Version]
- Nachtigal, A.L.; Milenkovic, A.; Brandl, C.; Schulz, H.L.; Duerr, L.M.J.; Lang, G.E.; Reiff, C.; Herrmann, P.; Kellner, U.; Weber, B.H.F. Mutation-Dependent Pathomechanisms Determine the Phenotype in the Bestrophinopathies. Int. J. Mol. Sci. 2020, 21, 1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesvatera, T.; Jönsson, B.; Telling, A.; Tõugu, V.; Vija, H.; Thulin, E.; Linse, S. Calbindin D9k: A Protein Optimized for Calcium Binding at Neutral pH. Biochemistry 2001, 40, 15334–15340. [Google Scholar] [CrossRef]
- Rui, H.; Das, A.; Nakamoto, R.; Roux, B. Proton Countertransport and Coupled Gating in the Sarcoplasmic Reticulum Calcium Pump. J. Mol. Biol. 2018, 430, 5050–5065. [Google Scholar] [CrossRef] [PubMed]
- Sazanavets, I.; Warwicker, J. Computational Tools for Interpreting Ion Channel pH-Dependence. PLoS ONE 2015, 10, e0125293. [Google Scholar] [CrossRef]
- Rook, M.L.; Musgaard, M.; MacLean, D.M. Coupling structure with function in acid-sensing ion channels: Challenges in pursuit of proton sensors. J. Physiol. 2021, 599, 417–430. [Google Scholar] [CrossRef]
- Zuo, Z.; Smith, R.N.; Chen, Z.; Agharkar, A.S.; Snell, H.D.; Huang, R.; Liu, J.; Gonzales, E.B. Identification of a unique Ca2+-binding site in rat acid-sensing ion channel 3. Nat. Commun. 2018, 9, 2082. [Google Scholar] [CrossRef]
- Warwicker, J. The Physical Basis for pH Sensitivity in Biomolecular Structure and Function, with Application to the Spike Protein of SARS-CoV-2. Front. Mol. Biosci. 2022, 9, 834011. [Google Scholar] [CrossRef] [PubMed]
- Narayan, A.; Naganathan, A.N. Switching Protein Conformational Substates by Protonation and Mutation. J. Phys. Chem. 2018, 122, 11039–11047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebditch, M.; Warwicker, J. protein-sol pKa: Prediction of electrostatic frustration, with application to coronaviruses. Bioinformatics 2020, 36, 5112–5114. [Google Scholar] [CrossRef]
- Hartzell, H.C.; Qu, Z.; Yu, K.; Xiao, Q.; Chien, L.T. Molecular physiology of bestrophins: Multifunctional membrane proteins linked to best disease and other retinopathies. Physiol. Rev. 2008, 88, 639–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warwicker, J. Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme. Protein Sci. 2004, 13, 2793–2805. [Google Scholar] [CrossRef] [Green Version]
- Newport, T.D.; Sansom, M.S.P.; Stansfeld, P.J. The MemProtMD database: A resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 2019, 47, D390–D397. [Google Scholar] [CrossRef] [Green Version]
- Sondergaard, C.R.; Olsson, M.H.; Rostkowski, M.; Jensen, J.H. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. J. Chem. Theory Comput. 2011, 7, 2284–2295. [Google Scholar] [CrossRef]
- Qu, Z.; Hartzell, H.C. Bestrophin Cl− channels are highly permeable to HCO3−. Am. J. Physiol.-Cell Physiol. 2008, 294, C1371–C1377. [Google Scholar] [CrossRef] [Green Version]
- Kuboniwa, H.; Tjandra, N.; Grzesiek, S.; Ren, H.; Klee, C.B.; Bax, A. Solution structure of calcium-free calmodulin. Nat. Struct. Biol. 1995, 2, 768–776. [Google Scholar] [CrossRef]
- Zhang, M.; Tanaka, T.; Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat. Struct. Biol. 1995, 2, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Svensson, B.; Joensson, B.; Thulin, E.; Woodward, C.E. Binding of calcium to calmodulin and its tryptic fragments: Theory and experiment. Biochemistry 1993, 32, 2828–2834. [Google Scholar] [CrossRef]
- Ogawa, Y.; Tanokura, M. Calcium binding to calmodulin: Effects of ionic strength, Mg2+, pH and temperature. J. Biochem. 1984, 95, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Rupp, B.; Marshak, D.R.; Parkin, S. Crystallization and preliminary X-ray analysis of two new crystal forms of calmodulin. Acta Crystallogr. 1996, 52, 411–413. [Google Scholar] [CrossRef]
- Svensson, L.A.; Thulin, E.; Forsén, S. Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J. Mol. Biol. 1992, 223, 601–606. [Google Scholar] [CrossRef]
- Skelton, N.J.; Kördel, J.; Chazin, W.J. Determination of the solution structure of apo calbindin D9k by NMR spectroscopy. J. Mol. Biol. 1995, 249, 441–462. [Google Scholar] [CrossRef] [PubMed]
- Kesvatera, T.; Jönsson, B.; Thulin, E.; Linse, S. Focusing of the electrostatic potential at EF-hands of calbindin D9k: Titration of acidic residues. Proteins Struct. Funct. Bioinf. 2001, 45, 129–135. [Google Scholar] [CrossRef]
- Duran, C.; Thompson, C.H.; Xiao, Q.; Hartzell, H.C. Chloride channels: Often enigmatic, rarely predictable. Annu. Rev. Physiol. 2010, 72, 95–121. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Pang, C.; Guo, S.; Chen, Y.; Ma, B.; Qu, C.; Ji, Q.; An, H. Recent progress in structural studies on TMEM16A channel. Comput. Struct. Biotechnol. J. 2020, 18, 714–722. [Google Scholar] [CrossRef]
- Brunner, J.D.; Lim, N.K.; Schenck, S.; Duerst, A.; Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 2014, 516, 207–212. [Google Scholar] [CrossRef]
- Paulino, C.; Kalienkova, V.; Lam, A.K.M.; Neldner, Y.; Dutzler, R. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 2017, 552, 421. [Google Scholar] [CrossRef] [Green Version]
- Lam, A.K.M.; Rheinberger, J.; Paulino, C.; Dutzler, R. Gating the pore of the calcium-activated chloride channel TMEM16A. Nat. Commun. 2021, 12, 785. [Google Scholar] [CrossRef]
- Chun, H.; Cho, H.; Choi, J.; Lee, J.; Kim, S.M.; Kim, H.; Oh, U. Protons inhibit anoctamin 1 by competing with calcium. Cell Calcium 2015, 58, 431–441. [Google Scholar] [CrossRef]
- Segura-Covarrubias, G.; Arechiga-Figueroa, I.A.; De Jesus-Perez, J.J.; Sanchez-Solano, A.; Perez-Cornejo, P.; Arreola, J. Voltage-Dependent Protonation of the Calcium Pocket Enable Activation of the Calcium-Activated Chloride Channel Anoctamin-1 (TMEM16A). Sci. Rep. 2020, 10, 6644. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Rangel, S.; De Jesus-Perez, J.J.; Arechiga-Figueroa, I.A.; Rodriguez-Menchaca, A.A.; Perez-Cornejo, P.; Hartzell, H.C.; Arreola, J. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A. J. Physiol. 2017, 595, 1515–1531. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Ma, B.; Sun, F.; Qu, C.; An, H. Theaflavin binds to a druggable pocket of TMEM16A channel and inhibits lung adenocarcinoma cell viability. J. Biol. Chem. 2021, 297, 101016. [Google Scholar] [CrossRef]
- Middleton, R.E.; Pheasant, D.J.; Miller, C. Homodimeric architecture of a ClC-type chloride ion channel. Nature 1996, 383, 337–340. [Google Scholar] [CrossRef]
- Zifarelli, G.; Pusch, M. The role of protons in fast and slow gating of the Torpedo chloride channel ClC-0. Eur. Biophys. J. 2010, 39, 869–875. [Google Scholar] [CrossRef]
- Niemeyer, M.I.; Cid, L.P.; Yusef, Y.R.; Briones, R.; Sepúlveda, F.V. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons. J. Physiol. 2009, 587 Pt 7, 1387–1400. [Google Scholar] [CrossRef]
- Wang, K.; Preisler, S.S.; Zhang, L.; Cui, Y.; Missel, J.W.; Grønberg, C.; Gotfryd, K.; Lindahl, E.; Andersson, M.; Calloe, K.; et al. Structure of the human ClC-1 chloride channel. PLoS Biol. 2019, 17, e3000218. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- UniProt, C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Leisle, L.; Xu, Y.; Fortea, E.; Lee, S.; Galpin, J.D.; Vien, M.; Ahern, C.A.; Accardi, A.; Berneche, S. Divergent Cl− and H+ pathways underlie transport coupling and gating in CLC exchangers and channels. eLife 2020, 9, e5122. [Google Scholar] [CrossRef]
- Fritschy, J.M.; Brünig, I. Formation and plasticity of GABAergic synapses: Physiological mechanisms and pathophysiological implications. Pharmacol. Ther. 2003, 98, 299–323. [Google Scholar] [CrossRef]
- Barnard, E.A.; Skolnick, P.; Olsen, R.W.; Mohler, H.; Sieghart, W.; Biggio, G.; Braestrup, C.; Bateson, A.N.; Langer, S.Z. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: Classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 1998, 50, 291–313. [Google Scholar]
- Pasternack, M.; Smirnov, S.; Kaila, K. Proton Modulation of Functionally Distinct GABAA Receptors in Acutely Isolated Pyramidal Neurons of Rat Hippocampus. Neuropharmacology 1996, 35, 1279–1288. [Google Scholar] [CrossRef]
- Mercik, K.; Pytel, M.; Cherubini, E.; Mozrzymas, J.W. Effect of extracellular pH on recombinant α1β2γ2 and α1β2 GABAA receptors. Neuropharmacology 2006, 51, 305–314. [Google Scholar] [CrossRef]
- Mozrzymas, J.W.; Zarnowska, E.D.; Pytel, M.; Mercik, K. Modulation of GABA(A) receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 7981–7992. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Noviello, C.M.; Teng, J.; Walsh, R.M.; Kim, J.J.; Hibbs, R.E. Structure of a human synaptic GABAA receptor. Nature 2018, 559, 67–72. [Google Scholar] [CrossRef]
- Huang, R.-Q.; Chen, Z.; Dillon, G.H. Molecular Basis for Modulation of Recombinant α1β2γ2 GABAA Receptors by Protons. J. Neurophysiol. 2004, 92, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Michałowski, M.A.; Czyżewska, M.M.; Iżykowska, I.; Mozrzymas, J.W. The β2 subunit E155 residue as a proton sensor at the binding site on GABA type A receptors. Eur. J. Pharmacol. 2021, 906, 174293. [Google Scholar] [CrossRef]
- Kisiel, M.; Jatczak-Śliwa, M.; Mozrzymas, J.W. Protons modulate gating of recombinant α1β2γ2 GABAA receptor by affecting desensitization and opening transitions. Neuropharmacology 2019, 146, 300–315. [Google Scholar] [CrossRef]
- Thompson, A.J.; Lester, H.A.; Lummis, S.C.R. The structural basis of function in Cys-loop receptors. Q. Rev. Biophys. 2010, 43, 449–499. [Google Scholar] [CrossRef] [Green Version]
- Langosch, D.; Thomas, L.; Betz, H. Conserved quaternary structure of ligand-gated ion channels: The postsynaptic glycine receptor is a pentamer. Proc. Natl. Acad. Sci. USA 1988, 85, 7394. [Google Scholar] [CrossRef]
- Song, Y.-P.; Schlesinger, F.; Ragancokova, D.; Calixto, R.; Dengler, R.; Krampfl, K. Changes in extracellular pH affect glycine receptor channels expressed in HEK 293 cells. Eur. J. Pharmacol. 2010, 636, 59–64. [Google Scholar] [CrossRef]
- Chen, Z.; Dillon, G.H.; Huang, R. Molecular Determinants of Proton Modulation of Glycine Receptors. J. Biol. Chem. 2004, 279, 876–883. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Chen, H.; Michelsen, K.; Schneider, S.; Shaffer, P.L. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 2015, 526, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, S.; Shan, Q. Charged residues at the pore extracellular half of the glycine receptor facilitate channel gating: A potential role played by electrostatic repulsion. J. Physiol. 2020, 598, 4643–4661. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Lujan, R.; Marmorstein, A.; Gabriel, S.; Hartzell, H.C. Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J. Clin. Investig. 2010, 120, 1722–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinning, A.; Hubner, C.A. Minireview: pH and synaptic transmission. FEBS Lett. 2013, 587, 1923–1928. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.H.; Bezprozvanny, I.; Tsien, R.W. Molecular basis of proton block of L-type Ca2+ channels. J. Gen. Physiol. 1996, 108, 363–374. [Google Scholar] [CrossRef]
- Rowe, J.B.; Kapolka, N.J.; Taghon, G.J.; Morgan, W.M.; Isom, D.G. The evolution and mechanism of GPCR proton sensing. J. Biol. Chem. 2021, 296, 100167. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elverson, K.; Freeman, S.; Manson, F.; Warwicker, J. Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels. Molecules 2023, 28, 5753. https://doi.org/10.3390/molecules28155753
Elverson K, Freeman S, Manson F, Warwicker J. Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels. Molecules. 2023; 28(15):5753. https://doi.org/10.3390/molecules28155753
Chicago/Turabian StyleElverson, Kathleen, Sally Freeman, Forbes Manson, and Jim Warwicker. 2023. "Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels" Molecules 28, no. 15: 5753. https://doi.org/10.3390/molecules28155753
APA StyleElverson, K., Freeman, S., Manson, F., & Warwicker, J. (2023). Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels. Molecules, 28(15), 5753. https://doi.org/10.3390/molecules28155753