Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam): A Novel Precursor of Calcium Oxalate Coating for Carbonate Stone Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Reaction of Compound 2 with CaCO3
2.3. Carbonate Stone Samples
2.4. Treatment of Carrara Marble Samples
2.5. Treatment of Biomicritic Limestone Samples
2.6. DFT Calculations
3. Materials and Methods
3.1. Physico-Chemical Characterization
3.2. Scanning Electron Microscopy
3.3. Ultrasonic Measurements
3.4. Colorimetric Measurements
3.5. Powder X-ray Diffraction
3.6. Single Crystal X-ray Diffraction
3.7. Hygric Measurements
3.8. Physico-Mechanical Measurements
3.9. QM Calculations
3.10. Synthesis
3.10.1. Synthesis of O-methyl-N-(pyridin-2-ylmethyl)oxamate (1)
3.10.2. Synthesis of Ammonium N-(pyridin-2-ylmethyl)oxamate (2)
3.10.3. Synthesis of N,N′-bis(pyridin-2-ylmethyl)oxalamide (3)
3.11. Reaction of Compound 2 with CaCO3 Powder
3.12. Coating Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rohleder, J. The cultural history of limestone. In Calcium Carbonate: From the Cretaceous Period Into the 21st Century; Tegethoff, F.W., Rohleder, J., Kroke, E., Eds.; Birkhäuser Verlag: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 2001; ISBN 3-7643-6425-4. [Google Scholar]
- Eric, D.; Price, C.A. Stone in Architecture, 2nd ed.; America Library of Congress Cataloging-in-Publication Data: Los Angeles, CA, USA, 2010; pp. 1–176.
- Steiger, M.; Charola, A.E.; Sterflinger, A.E. Stone in Architecture: Properties, Durability; Springer: Berlin/Heidelberg, Germany, 2011; pp. 227–316. ISBN 3642144748. [Google Scholar]
- Sassoni, E.; Graziani, G.; Franzoni, E. Repair of Sugaring Marble by Ammonium Phosphate: Comparison with Ethyl Silicate and Ammonium Oxalate and Pilot Application to Historic Artifact. Mater. Des. 2015, 88, 1145–1157. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; Gomez-Heras, M.; Marco-Castaño, L.; García-del-Cura, M.Á. Non-Linear Decay of Building Stones during Freeze–Thaw Weathering Processes. Constr. Build. Mater. 2013, 38, 443–454. [Google Scholar] [CrossRef]
- Uğur, İ.; Toklu, H.Ö. Effect of Multi-Cycle Freeze-Thaw Tests on the Physico-Mechanical and Thermal Properties of Some Highly Porous Natural Stones. Bull. Eng. Geol. Environ. 2019, 79, 255–267. [Google Scholar] [CrossRef]
- Naidu, S.; Blair, J.; Scherer, G.W. Acid-Resistant Coatings on Marble. J. Am. Ceram. 2016, 99, 3421–3428. [Google Scholar] [CrossRef]
- Pinto, A.P.F.; Rodrigues, J.D. Stone Consolidation: The Role of Treatment Procedures. J. Cult. Herit. 2008, 9, 38–53. [Google Scholar] [CrossRef]
- Plummer, L.N.; Busenberg, E. The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90 °C, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 1982, 46, 1011–1040. [Google Scholar] [CrossRef]
- Graziani, G.; Sassoni, E.; Scherer, G.W.; Franzoni, E. Resistance to Simulated Rain of Hydroxyapatite- and Calcium Oxalate-Based Coatings for Protection of Marble against Corrosion. Corros. Sci. 2017, 127, 168–174. [Google Scholar] [CrossRef]
- Franzoni, E.; Sassoni, E.; Scherer, G.W.; Naidu, S. Artificial weathering of stone by heating. J. Cult. Herit. 2013, 14, e85–e93. [Google Scholar] [CrossRef]
- Dakal, T.C.; Cameotra, S.S. Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environ. Sci. Eur. 2012, 24, 36. [Google Scholar] [CrossRef]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Scheerer, S.; Ortega-Morales, O.; Gaylarde, C. Chapter 5 Microbial Deterioration of Stone Monuments—An Updated Overview. Adv. Appl. Microbiol. 2009, 66, 97–139. [Google Scholar] [CrossRef] [PubMed]
- Torraca, G. Porous Building Materials, 3rd ed.; International Centre for the Study of the Preservation and Restoration of Cultural Property: Rome, Italy, 1988. [Google Scholar]
- Sena da Fonseca, B.; Ferreira Pinto, A.P.; Piçarra, S.; Montemor, M.F. The potential action of single functionalization treatments and combined treatments for the consolidation of carbonate stones. Constr. Build. Mater. 2018, 163, 586–599. [Google Scholar] [CrossRef]
- Matteini, M. Inorganic treatments for the consolidation and protection of stone artefacts. Conserv. Sci. Cult. 2008, 8, 13–27. [Google Scholar] [CrossRef]
- Ambrosi, M.; Dei, L.; Giorgi, R.; Neto, C.; Baglioni, P. Colloidal Particles of Ca(OH)2: Properties and Applications to Restoration of Frescoes. Langmuir 2001, 17, 4251–4255. [Google Scholar] [CrossRef]
- Maucourant, C.; O’Flaherty, F.; Drago, A. Applicability and efficacy of an enhanced nanolime consolidation technique for British Museum limestone objects. J. Cult. Herit. 2023, 62, 339–348. [Google Scholar] [CrossRef]
- Ševčík, R.; Viani, A.; Machová, D.; Lanzafame, G.; Mancini, L.; Appavou, M.-S. Synthetic calcium carbonate improves the effectiveness of treatments with nanolime to contrast decay in highly porous limestone. Sci. Rep. 2019, 9, 15278. [Google Scholar] [CrossRef]
- Graziani, G.; Sassoni, E.; Franzoni, E.; Scherer, G.W. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance. Appl. Surf. Sci. 2016, 368, 241–257. [Google Scholar] [CrossRef]
- Sassoni, E. Hydroxyapatite and Other Calcium Phosphates for the Conservation of Cultural Heritage: A Review. Materials 2018, 11, 557. [Google Scholar] [CrossRef]
- Mudronja, D.; Vanmeert, F.; Hellemans, K.; Fazinic, S.; Janssens, K.; Tibljas, D.; Rogosic, M.; Jakovljevic, S. Efficiency of applying ammonium oxalate for protection of monumental limestone by poultice, immersion and brushing methods. Appl. Phys. A Mater. Sci. Process. 2013, 111, 109–119. [Google Scholar] [CrossRef]
- Doherty, B.; Pamplona, M.; Miliani, C.; Matteini, M.; Sgamellotti, A.; Brunetti, B. Durability of the artificial calcium oxalate protective on two Florentine monuments. J. Cult. Herit. 2007, 8, 186–192. [Google Scholar] [CrossRef]
- Salvadori, B.; Pinna, D.; Porcinai, S. Performance evaluation of two protective treatments on salt-laden limestones and marble after natural and artificial weathering. Environ. Sci. Pollut. Res. 2014, 21, 1884–1896. [Google Scholar] [CrossRef] [PubMed]
- Pinna, D.; Salvadori, B.; Porcinai, S. Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Constr. Build. Mater. 2011, 25, 2723–2732. [Google Scholar] [CrossRef]
- Zha, J.; Gu, Y.; Wei, S.; Han, H.; Wang, F.; Ma, Q. Facile two-step deposition of Calcium oxalate film on dolomite to improve acid rain resistence. Crystals 2022, 12, 734. [Google Scholar] [CrossRef]
- Doherty, B.; Pamplona, M.; Selvaggi, R.; Miliani, C.; Matteini, M.; Sgamellotti, A.; Brunetti, B. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering. Appl. Surf. Sci. 2007, 253, 4477–4484. [Google Scholar] [CrossRef]
- McComas, W.H.; Rieman, W. The Solubility of Calcium Oxalate Monohydrate in Pure Water and Various Neutral Salt Solutions at 25°. J. Am. Chem. Soc. 1942, 64, 2946–2947. [Google Scholar] [CrossRef]
- Brečević, L.; Škrtić, D.; Garside, J. Transformation of calcium oxalate hydrates. J. Cryst. Growth 1986, 74, 399–408. [Google Scholar] [CrossRef]
- Gvozdev, N.V.; Petrova, E.V.; Chernevich, T.G.; Shustin, O.A.; Rashkovich, L.N. Atomic force microscopy of growth and dissolution of calcium oxalate monohydrate (COM) crystals. J. Cryst. Growth 2004, 261, 539–548. [Google Scholar] [CrossRef]
- Conti, C.; Casati, M.; Colombo, C.; Realini, M.; Brambilla, L.; Zerbi, G. Phase transformation of calcium oxalate dihydrate–monohydrate: Effects of relative humidity and new spectroscopic data. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 413–419. [Google Scholar] [CrossRef]
- McBride, M.B.; Kelch, S.; Schmidt, M.; Zhou, Y.; Aristilde, L.; Martinez, C.E. Lead Solubility and Mineral Structures of Coprecipitated Lead/Calcium Oxalates. Environ. Sci. Technol. 2019, 53, 13794–13801. [Google Scholar] [CrossRef]
- Conti, C.; Casati, M.; Colombo, C.; Possenti, E.; Realini, M.; Gatta, G.D.; Merlini, M.; Brambilla, L.; Zerbi, G. Synthesis of calcium oxalate trihydrate: New data by vibrational spectroscopy and synchrotron X-ray diffraction. Spectrochim. Acta A 2015, 150, 721–730. [Google Scholar] [CrossRef]
- Conti, C.; Aliatis, I.; Casati, M.; Colombo, C.; Matteini, M.; Negrotti, R.; Realini, M.; Zerbi, G. Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates. J. Cult. Herit. 2014, 15, 336–338. [Google Scholar] [CrossRef]
- Garcia-Valles, M.; Vendrell-Saz, M.; Molera, J.; Blazquez, F. Interaction of rock and atmosphere: Patinas on Mediterranean monuments. Environ. Geol. 1998, 36, 137–149. [Google Scholar] [CrossRef]
- Aulinas, M.; Garcia-Valles, M.; Gimeno, D.; Fernandez-Turiel, J.L.; Pugès, M. Weathering patinas on the Medieval (S. XIV) stained glass windows of the Pedralbes Monastery (Barcelona, Spain). Environ. Sci. Pollut. Res. 2009, 16, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Valles, M.; Gimeno, D.; Martinez-Manent, S.; Fernandez-Turiel, J.L. Medieval stained glass under a mediterranean climate: Typology, weathering and glass decay and associated biomineralization processes and products. Am. Mineral. 2003, 88, 1996–2006. [Google Scholar] [CrossRef]
- Sazanova, K.V.; Frank-Kamenetskaya, O.V.; Vlasov, D.Y.; Zelenskaya, M.S.; Vlasov, A.D.; Rusakov, A.V.; Petrova, M.A. Carbonate and oxalate crystallisation by interaction of calcite marble with Bacillus subtilis and Bacillus subtilis–Aspergillus niger association. Crystals 2020, 10, 756. [Google Scholar] [CrossRef]
- Garcia-Valles, M.; Urzí, C.; Vendrell-Saz, M. Weathering processes on the rock surface in natural outcrops: The case of an ancient marble quarry (Belevi, Turkey). Environ. Geol. 2002, 41, 889–897. [Google Scholar] [CrossRef]
- Maiore, L.; Aragoni, M.C.; Carcangiu, G.; Cocco, O.; Isaia, F.; Lippolis, V.; Meloni, P.; Murru, A.; Tuveri, E.; Arca, M. Synthesis, characterization and DFT-modeling of novel agents for the protection and restoration of historical calcareous stone substrates. J. Colloid Interface Sci. 2015, 448, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.; Gu, Y.; Han, H.; Wang, A.; Ma, Q. Preliminary Investigation of Sequential Application of Different Calcium Oxalate Solutions for Carbonate Rock Conservation. Coatings 2022, 12, 1412. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Giacopetti, L.; Arca, M.; Carcangiu, G.; Columbu, S.; Gimeno, D.; Isaia, F.; Lippolis, V.; Meloni, P.; Navarro Ezquerra, A.; et al. Ammonium monoethyloxalate (AmEtOx): A new agent for the conservation of carbonate stone substrates. New J. Chem. 2021, 45, 5327–5339. [Google Scholar] [CrossRef]
- Burgos-Cara, A.; Ruiz-Agudo, E.; Rodriguez-Navarro, C. Effectiveness of oxalic acid treatments for the protection of marble surfaces. Mater. Des. 2017, 115, 82–92. [Google Scholar] [CrossRef]
- Pintus, A.; Aragoni, M.C.; Carcangiu, G.; Giacopetti, L.; Isaia, F.; Lippolis, V.; Maiore, L.; Meloni, P.; Arca, M. Density functional theory modelling of protective agents for carbonate stones: A case study of oxalate and oxamate inorganic salts. New J. Chem. 2018, 42, 11593–11600. [Google Scholar] [CrossRef]
- Maiore, L.; Aragoni, M.C.; Carcangiu, G.; Cocco, O.; Isaia, F.; Lippolis, V.; Meloni, P.; Murru, A.; Slawin, A.M.Z.; Tuveri, E.; et al. Oxamate salts as novel agents for the restoration of marble and limestone substrates: Case study of ammonium N-phenyloxamate. New J. Chem. 2016, 40, 2768–2774. [Google Scholar] [CrossRef]
- Cambridge Structural Database with CSD codes (Conquest v. 2023.1.0; database updated to April 2023): FARQAU, GAJLAH, RIZUX, ETAVUS, QAWTEQ, SIMRAI, SORXON, XIJBOK, XIYSII, YELQAH, YELQEL, FIZJUV, IQUCED, SESDUQ. Available online: https://www.ccdc.cam.ac.uk/structures/ (accessed on 13 June 2023).
- Sheng, X.; Strasser, C.E.; Raubenheimer, H.G.; Luckay, R.C. Isopropylammonium (isopropylamino)oxoacetate monohydrate. Acta Cryst. 2007, 63, o4361. [Google Scholar] [CrossRef]
- Bereczki, L.; Bombicz, P.; Balint, J.; Egri, G.; Schindler, J.; Pokol, G.; Fogassy, E.; Marthi, K. Optical resolution of 1-(1-naphthyl)ethylamine by its dicarboxylic acid derivatives: Structural features of the oxalic acid derivative diastereomeric salt pair. Chirality 2009, 21, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wojnarska, J.; Gryl, M.; Seidler, T.; Stadnicka, K. Crystal engineering, optical properties and electron density distribution of polar multicomponent materials containing sulfanilamide. CrystEngComm 2018, 20, 3638–3646. [Google Scholar] [CrossRef]
- Büyükgüngör, O.; Odabasoglu, M. 2-Fluoro-anilinium N-(2-fluoro-phenyl)oxamate. Acta Cryst. 2008, 64, o808. [Google Scholar] [CrossRef]
- Balint, J.; Egri, G.; Czugler, M.; Schindler, J.; Kiss, V.; Juvancz, Z.; Fogassy, E. Resolution of α-phenylethylamine by its acidic derivatives. Tetrahedron Asymmetry 2001, 12, 1511–1518. [Google Scholar] [CrossRef]
- Deng, J.-H.; Luo, J.; Mao, Y.-L.; Lai, S.; Gong, Y.-N.; Zong, D.-C.; Lu, T.-B. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. Sci Adv. 2020, 6, eaax9976. [Google Scholar] [CrossRef] [PubMed]
- DeHaven, B.A.; Chen, A.L.; Shimizu, E.A.; Salpage, S.R.; Smith, M.D.; Shimizu, L.S. Interplay between Hydrogen and Halogen Bonding in Cocrystals of Dipyridinylmethyl Oxalamides and Tetrafluorodiiodobenzenes. Cryst. Growth Des. 2019, 19, 5776–5783. [Google Scholar] [CrossRef]
- Siegesmund, S.; Ullemeyer, K.; Weiss, T.; Tschegg, E.K. Physical weathering of marbles caused by anisotropic thermal expansion. Int. J. Earth Sci. 2000, 89, 170–182. [Google Scholar] [CrossRef]
- Mineralogy Database. Available online: https://webmineral.com/ (accessed on 1 June 2023).
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Holthausen, M.C.A. A Chemist’s Guide to Density Functional Theory; Wiley-VCH: New York, NY, USA, 2001; ISBN 978-3-527-30372-4. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1998, 37, 785–789. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Guyader, J.; Denis, A. Wave propagation in anisotropic rocks under stress evaluation of the quality of slates. Bull. Int. Assoc. Eng. Geol. 1986, 33, 49–55. [Google Scholar] [CrossRef]
- Fort, R.; Varas, M.J.; Alvarez de Buergo, M.; Martin-Freire, D. Determination of anisotropy to enhance the durability of natural stone. J. Geophys. Eng. 2011, 8, S132–S144. [Google Scholar] [CrossRef]
- Murru, A.; Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J.; Meloni, P. Evaluation of post-thermal shock effects in Carrara marble and Santa Caterina di Pittinuri limestone. Constr. Build. Mater. 2018, 186, 1200–1211. [Google Scholar] [CrossRef]
- Kapridaki, C.; Maravelaki-Kalaitzaki, P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coatings 2013, 76, 400–410. [Google Scholar] [CrossRef]
- CrysAlisPro Software System; Rigaku Oxford Diffraction: Oxford, UK, 2020.
- Sheldrick, G.M. ShelXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with ShelXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- EN 15801; Conservation of Cultural Property—Test Methods—Determination of Water Absorption by Capillarity. Ente Nazionale Italiano di Unificazione: Milan, Italy, 2010.
- NORMAL 29/88; Misura Dell’indice di Asciugamento (Dryng Index). CNR-ICR (Consiglio Nazionale delle Ricerche—Istituto Centrale per il Restauro): Rome, Italy, 1988.
- Grilo, J.; Faria, P.; Veiga, R.; Santos Silva, A.; Silva, V.; Velosa, A. New Natural Hydraulic Lime mortars—Physical and microstructural properties in different curing conditions. Constr. Build. Mater. 2014, 54, 378–384. [Google Scholar] [CrossRef]
- EN 1936; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. Turkish Standard Institute: Ankara, Turkey, 2007.
- Hall, C.; Hamilton, A. Porosities of building limestones: Using the solid density to assess data quality. Mater. Struct. Constr. 2016, 49, 3969–3979. [Google Scholar] [CrossRef]
- EN 1015-12; Methods of Test for Mortar for Masonry—Part 12: Determination of Adhesive Strength of Hardened Rendering and Plastering Mortars on Substrates. Ente Nazionale Italiano di Unificazione: Milan, Italy, 2000.
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, version 6.0.16; Semichem Inc.: Shawnee Mission, KS, USA, 2016.
- Schaftenaar, G.; Noordik, J.H. Molden: A pre- and post-processing program for molecular and electronic structures. J. Comput. Aided. Mol. Des. 2000, 14, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, H.-M.; Yan, S.-P.; Liao, D.-Z.; Jiang, Z.-H.; Huang, X.-Y.; Wang, G.-L.J. Crystal structure of the addition compound of N,N′-bi(2-pyridylmethyl)-oxamide and complex of manganese with 1,10-phenanthroline. Chem. Crystall. 1999, 29, 623–627. [Google Scholar] [CrossRef]
Weathered White Carrara Marble | Treated Marble (5% w/w) | Treated Marble (12% w/w) | Biomicrite Limestone | Treated Biomicrite (5% w/w) | Treated Biomicrite (12% w/w) | ||
---|---|---|---|---|---|---|---|
Petrography | Mineralogic composition | Calcite, muscovite | Calcite, muscovite, weddellite | Calcite, muscovite, weddellite | Calcite, quartz, muscovite, microcline, albite, chamosite | Calcite, quartz, muscovite, microcline, albite, chamosite, weddellite | Calcite, quartz, muscovite, microcline, albite, hamosite, weddellite |
Dynamics | tuts (µm) | 52.4 ± 0.1 | 56.0 ± 0.1 | 38.9 ± 0.1 | 24.0 ± 0.1 | 27.6 ± 0.1 | 26.0 ± 0.1 |
vuts (km/s) | 1.5 ± 0.1 | 1.4 ± 0.1 | 2.1 ± 0.2 | 3.0 ± 0.2 | 2.9 ± 0.2 | 2.7 ± 0.2 | |
Ed (MN/m2) | 4.23 ± 0.08 | 3.55 ± 0.06 | 7.57 ± 0.19 | 20.3 ± 0.8 | 18.8 ± 0.7 | 16.6 ± 0.6 | |
Structure | ρa (g/cm3) | 2.62 (0.01) | 2.63 (0.01) | 2.63 (0.01) | 1.70 (0.04) | 1.72 (0.02) | 1.75 (0.03) |
ρr (g/cm3) | 2.708 (0.003) | 2.705 (0.006) | 2.711 (0.003) | 2.71 (0.01) | 2.689 (0.001) | 2.686 (0.003) | |
Ic % | 96.75 | 97.23 | 96.83 | 62.73 | 63.96 | 65.15 | |
ɸ % | 3.0 (0.4) | 2.8 (0.2) | 3.1 (0.5) | 29 (2) | 30.7 (0.5) | 29 (1) | |
Colorimetry | L* | 92.90 | 92.60 | 92.40 | 80.30 | 79.20 | 75.60 |
a* | 0.25 | 0.26 | −0.15 | 2.40 | 3.10 | 2.16 | |
b* | 0.26 | 3.70 | 4.91 | 17.70 | 21.70 | 17.14 | |
C | 3.08 | 3.71 | 4.91 | 17.86 | 21.92 | 17.28 | |
WICIELAB76 | 68.56 | 64.92 | 7.38 | – | – | – | |
YIASTME313 | 6.15 | 53.92 | 9.52 | 37.55 | 45.57 | 38.00 | |
ΔE*CIE1976 | – | 0.70 | 0.56 | – | 4.21 | 2.29 | |
ΔE*CIE2000 | – | 3.13 | 2.27 | – | 4.74 | 3.35 | |
Roughness | Ra (µm) | 2.6 (0.3) | 2.8 (0.2) | 2.8 (0.4) | 15 (1) | 17 (2) | 14 (3) |
Rz (µm) | 27 (5) | 30 (5) | 19 (4) | 122 (20) | 137 (8) | 76 (11) | |
Rq (µm) | 3.4 (0.4) | 3.8 (0.3) | 4 (1) | 19 (2) | 21 (3) | 17 (3) |
CA | ΔCA | DI | ΔDI | Po | ΔPo | ρr | Δρr | ρapp | Δρapp | |
---|---|---|---|---|---|---|---|---|---|---|
Carrara white marble | ||||||||||
Untreated | 7.16 | – | 31.86 | – | 5.70(4) | 2.6(0.2) | – | 2.7(0.2) | ||
Treated with 2 | 4.76 | −33.5% | 27.61 | 13.33% | 4.0(4) | –30% | 2.9(0.1) | 1.5% | 3.2(0.2) | –19% |
Biomicritic limestone | ||||||||||
Untreated | 13.22 | – | 3.95 | – | 41.0(3) | – | 2.8(0.2) | – | 1.7(0.1) | – |
Treated with 2 | 9.01 | −31.8% | 2.76 | −30.1% | 38.0(3) | –7% | 2.3(0.1) | –18% | 1.3(0.1) | –24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintus, A.; Aragoni, M.C.; Carcangiu, G.; Caria, V.; Coles, S.J.; Dodd, E.; Giacopetti, L.; Gimeno, D.; Lippolis, V.; Meloni, P.; et al. Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam): A Novel Precursor of Calcium Oxalate Coating for Carbonate Stone Substrates. Molecules 2023, 28, 5768. https://doi.org/10.3390/molecules28155768
Pintus A, Aragoni MC, Carcangiu G, Caria V, Coles SJ, Dodd E, Giacopetti L, Gimeno D, Lippolis V, Meloni P, et al. Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam): A Novel Precursor of Calcium Oxalate Coating for Carbonate Stone Substrates. Molecules. 2023; 28(15):5768. https://doi.org/10.3390/molecules28155768
Chicago/Turabian StylePintus, Anna, M. Carla Aragoni, Gianfranco Carcangiu, Veronica Caria, Simon J. Coles, Eleanor Dodd, Laura Giacopetti, Domingo Gimeno, Vito Lippolis, Paola Meloni, and et al. 2023. "Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam): A Novel Precursor of Calcium Oxalate Coating for Carbonate Stone Substrates" Molecules 28, no. 15: 5768. https://doi.org/10.3390/molecules28155768
APA StylePintus, A., Aragoni, M. C., Carcangiu, G., Caria, V., Coles, S. J., Dodd, E., Giacopetti, L., Gimeno, D., Lippolis, V., Meloni, P., Murgia, S., Navarro Ezquerra, A., Podda, E., Urru, C., & Arca, M. (2023). Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam): A Novel Precursor of Calcium Oxalate Coating for Carbonate Stone Substrates. Molecules, 28(15), 5768. https://doi.org/10.3390/molecules28155768