Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Antimicrobial Activity
2.3. Antioxidant Activity
2.4. Anti-Inflammatory Activity
2.5. Dermatoprotective Activity
2.6. Molecular Docking Analysis
2.7. ADMET Prediction and Drug Likeness
3. Materials and Methods
3.1. Reagents
3.2. Plant Materiel and EO Extractions
3.3. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3.4. Antimicrobial Activity
3.4.1. Tested Microorganisms
3.4.2. Disc-Diffusion Method
3.4.3. Minimum Inhibitory Concentration
3.4.4. MBC and MFC Assay
3.5. Antioxidant Assays
3.5.1. DPPH Radical Scavenging Assay
3.5.2. ABTS Scavenging Assay
3.5.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.5.4. Inhibition of Lipid Peroxidation
3.6. In Vitro Anti-Inflammatory Assay
3.7. Dermatoprotective Activity
3.8. Molecular Docking
3.9. In Silico Pharmacokinetics ADMET and Drug-Likeness Prediction
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, E.M. Antibacterial Activity of Hibiscus sabdariffa L. Calyces against Hospital Isolates of Multidrug Resistant Acinetobacter Baumannii. J. Acute Dis. 2016, 5, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaughule, R.S.; Barve, R.S. Role of Herbal Medicines in the Treatment of Infectious Diseases. Vegetos 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Mlilo, S.; Sibanda, S. An Ethnobotanical Survey of the Medicinal Plants Used in the Treatment of Cancer in Some Parts of Matebeleland, Zimbabwe. South Afr. J. Bot. 2022, 146, 401–408. [Google Scholar] [CrossRef]
- Borghesi, A.; Stronati, M. Superbugs and Antibiotics in the Newborn. J. Pediatr. Neonatal Individ. Med. (JPNIM) 2015, 4, e040253. [Google Scholar]
- Kıran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative Stress and Antioxidants in Health and Disease. LaboratoriumsMedizin 2023, 47, 1–11. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, I. Antioxidant and Radical Scavenging Properties of Curcumin. Chemico-Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef]
- Boy, H.I.A.; Rutilla, A.J.H.; Santos, K.A.; Ty, A.M.T.; Alicia, I.Y.; Mahboob, T.; Tangpoong, J.; Nissapatorn, V. Recommended Medicinal Plants as Source of Natural Products: A Review. Digit. Chin. Med. 2018, 1, 131–142. [Google Scholar] [CrossRef]
- Al Kamaly, O.; Saleh, A.; Al Sfouk, A.; Alanazi, A.S.; Parvez, M.K.; Ousaaid, D.; Assouguem, A.; Mechchate, H.; Bouhrim, M. Cedrus atlantica (Endl.) Manetti Ex Carrière Essential Oil Alleviates Pain and Inflammation with No Toxicity in Rodent. Processes 2022, 10, 581. [Google Scholar] [CrossRef]
- Uehara, A.; Tommis, B.; Belhassen, E.; Satrani, B.; Ghanmi, M.; Baldovini, N. Odor-Active Constituents of Cedrus atlantica Wood Essential Oil. Phytochemistry 2017, 144, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical Composition and in Vitro Antibacterial Activity of the Essential Oil of Cedrus atlantica. Int. J. Agric. Biol. 2010, 12, 381–385. [Google Scholar]
- Salhi, N.; Fidah, A.; Rahouti, M.; Ismaili, M.R.; Kabouchi, B.; Famiri, A. Preservative Effect of Tetraclinis Articulata and Cedrus atlantica Wood Extractives against Fungal Decay. Madera y Bosques 2020, 26, 1–10. [Google Scholar] [CrossRef]
- Fidah, A.; Salhi, N.; Rahouti, M.; Kabouchi, B.; Ziani, M.; Aberchane, M.; Famiri, A. Natural Durability of Cedrus atlantica Wood Related to the Bioactivity of Its Essential Oil against Wood Decaying Fungi. Maderas. Cienc. Tecnol. 2016, 18, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Ainane, A.; Khammour, F.; Charaf, S.; Elabboubi, M.; Elkouali, M.; Talbi, M.; Benhima, R.; Cherroud, S.; Ainane, T. Chemical Composition and Insecticidal Activity of Five Essential Oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater. Today Proc. 2019, 13, 474–485. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Abrini, J.; Talbaoui, A.; Fellah, H.; Bakri, Y.; Dakka, N. Lavandula Stoechas Essential Oil from Morocco as Novel Source of Antileishmanial, Antibacterial and Antioxidant Activities. Biocatal. Agric. Biotechnol. 2017, 12, 179–184. [Google Scholar] [CrossRef]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In Vitro Antibacterial Activity of Some Plant Essential Oils. BMC Complement. Altern. Med. 2006, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Satrani, B.; Aberchane, M.; Farah, A.; Chaouch, A.; Talbi, M. Composition Chimique et Activité Antimicrobienne Des Huiles Essentielles Extraites Par Hydrodistillation Fractionnée Du Bois de Cedrus atlantica Manetti. Acta Bot. Gall. 2006, 153, 97–104. [Google Scholar] [CrossRef]
- Jaouadi, I.; Cherrad, S.; Bouyahya, A.; Koursaoui, L.; Satrani, B.; Ghanmi, M.; Chaouch, A. Chemical Variability and Antioxidant Activity of Cedrus atlantica Manetti Essential Oils Isolated from Wood Tar and Sawdust. Arab. J. Chem. 2021, 14, 103441. [Google Scholar] [CrossRef]
- Martins, D.F.; Emer, A.A.; Batisti, A.P.; Donatello, N.; Carlesso, M.G.; Mazzardo-Martins, L.; Venzke, D.; Micke, G.A.; Pizzolatti, M.G.; Piovezan, A.P. Inhalation of Cedrus atlantica Essential Oil Alleviates Pain Behavior through Activation of Descending Pain Modulation Pathways in a Mouse Model of Postoperative Pain. J. Ethnopharmacol. 2015, 175, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisner, B.S.; Woods, G.L. Laboratory for Antimicrobial Methods Susceptibility Testing. Antimicrob./Anti-Infect. Mater. Princ. Appl. 1999, 292. [Google Scholar]
- Al-Mijalli, S.H.; Assaggaf, H.; Qasem, A.; El-Shemi, A.G.; Abdallah, E.M.; Mrabti, H.N.; Bouyahya, A. Antioxidant, Antidiabetic, and Antibacterial Potentials and Chemical Composition of Salvia Officinalis and Mentha Suaveolens Grown Wild in Morocco. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 2844880. [Google Scholar] [CrossRef] [PubMed]
- Boudarene, L.; Rahim, L.; Baaliouamer, A.; Meklati, B.Y. Analysis of Algerian Essential Oils from Twigs, Needles and Wood of Cedrus atlantica G. Manetti by GC/MS. J. Essent. Oil Res. 2004, 16, 531–534. [Google Scholar] [CrossRef]
- Saab, A.M.; Harb, F.Y.; Koenig, W.A. Essential Oil Components in Heart Wood of Cedrus Libani and Cedrus atlantica from Lebanon. Minerva Biotecnol. 2005, 17, 159. [Google Scholar]
- Paoli, M.; Nam, A.-M.; Castola, V.; Casanova, J.; Bighelli, A. Chemical Variability of the Wood Essential Oil of Cedrus atlantica Manetti from Corsica. Chem. Biodivers. 2011, 8, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Başer, K.H.C.; Demircakmak, B. The Essential Oil of Taurus Cedar (Cedrus libani A. Rich): Recent Results. Chem. Nat. Compd. 1995, 31, 16–20. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Benkhaira, N.; Ferioun, M.; Kandsi, F.; Jeddi, M.; Chebat, A.; Addi, M.; Hano, C.; Fikri-Benbrahim, K. Moroccan Medicinal Plants Used to Treat Cancer: Ethnomedicinal Study and Insights into Pharmacological Evidence. Evid.-Based Complement. Altern. Med. 2022, 2022, 1645265. [Google Scholar] [CrossRef] [PubMed]
- El Hachlafi, N.; Chebat, A.; Fikri-Benbrahim, K. Ethnopharmacology, Phytochemistry, and Pharmacological Properties of Thymus Satureioides Coss. Evid.-Based Complement. Altern. Med. 2021, 2021, 6673838. [Google Scholar] [CrossRef] [PubMed]
- Vriet, C.; Hennig, L.; Laloi, C. Stress-Induced Chromatin Changes in Plants: Of Memories, Metabolites and Crop Improvement. Cell. Mol. Life Sci. 2015, 72, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- ALrajhi, M.; Al-Rasheedi, M.; Eltom, S.E.M.; Alhazmi, Y.; Mustafa, M.M.; Ali, A.M. Antibacterial Activity of Date Palm Cake Extracts (Phoenix dactylifera). Cogent Food Agric. 2019, 5, 1625479. [Google Scholar] [CrossRef]
- Davis, J.L. Pharmacologic Principles. Equine Intern. Med. 2018, 4, 79–137. [Google Scholar]
- Bennouna, F.; Lachkar, M.; El Abed, S.; Saad, I. Cedrus atlantica Essential Oil: Antimicrobial Activity and Effect on the Physicochemical Properties of Cedar Wood Surface. Moroc. J. Biol. 2020, 16, 35–45. [Google Scholar]
- Benouaklil, F.; HAMAIDI-CHERGUI, F.; Hamaidi, M.S.; Saidi, F. Chemical Composition and Antimicrobial Properties Of Algerian Cedrus atlantica M. Essential Oils. Rev. Agrobiol. 2017, 7, 355–362. [Google Scholar]
- Rhafouri, R.; Strani, B.; Zair, T.; Ghanmi, M.; Aafi, A.; El Omari, M.; Bentayeb, A. Chemical Composition, Antibacterial and Antifungal Activities of the Cedrus atlantica (Endl.) Manettiex Carriè Re Seeds Essential Oil. Mediterr. J. Chem. 2014, 3, 1034–1043. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Vanegas, D.; Abril-Novillo, A.; Khachatryan, A.; Jerves-Andrade, L.; Peñaherrera, E.; Cuzco, N.; Wilches, I.; Calle, J.; León-Tamariz, F. Validation of a Method of Broth Microdilution for the Determination of Antibacterial Activity of Essential Oils. BMC Res. Notes 2021, 14, 1–7. [Google Scholar] [CrossRef]
- Çelebi, Ö.; Fidan, H.; Iliev, I.; Petkova, N.; Dincheva, I.; Gandova, V.; Stankov, S.; Stoyanova, A. Chemical Composition, Biological Activities, and Surface Tension Properties of Melissa officinalis L. Essential Oil. Turk. J. Agric. For. 2023, 47, 67–78. [Google Scholar] [CrossRef]
- Sharma, A.D.; Kaur, I. Chemical Profile and In-Silico Docking Studies on Bioactives from Essential Oil of Cymbopogan pendulus Targeting Penicillin Binding Proteins (PBPs) in Bacteria. Biol. Med. Nat. Prod. Chem. 2023, 12, 225–232. [Google Scholar]
- Walasek-Janusz, M.; Grzegorczyk, A.; Zalewski, D.; Malm, A.; Gajcy, S.; Gruszecki, R. Variation in the Antimicrobial Activity of Essential Oils from Cultivars of Lavandula angustifolia and L.× Intermedia. Agronomy 2022, 12, 2955. [Google Scholar] [CrossRef]
- Finberg, R.W.; Moellering, R.C.; Tally, F.P.; Craig, W.A.; Pankey, G.A.; Dellinger, E.P.; West, M.A.; Joshi, M.; Linden, P.K.; Rolston, K.V. The Importance of Bactericidal Drugs: Future Directions in Infectious Disease. Clin. Infect. Dis. 2004, 39, 1314–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, J.; Oesch, G.; Kuster, S.P. Bacteriostatic versus Bactericidal Antibiotics for Patients with Serious Bacterial Infections: Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2015, 70, 382–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, E.M. Plants: An Alternative Source for Antimicrobials. J. Appl. Pharm. Sci. 2011, 6, 16–20. [Google Scholar]
- Kačániová, M.; Galovičová, L.; Valková, V.; Ďuranová, H.; Štefániková, J.; Čmiková, N.; Vukic, M.; Vukovic, N.L.; Kowalczewski, P.Ł. Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar atlantica Essential Oil. Plants 2022, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Free Radicals, Oxidative Stress, and Antioxidants in Human Health and Disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N.C.; Newcomer, M.E.; Werz, O. Untangling the Web of 5-Lipoxygenase-Derived Products from a Molecular and Structural Perspective: The Battle between pro-and Anti-Inflammatory Lipid Mediators. Biochem. Pharmacol. 2021, 193, 114759. [Google Scholar] [CrossRef]
- Lončarić, M.; Strelec, I.; Moslavac, T.; Šubarić, D.; Pavić, V.; Molnar, M. Lipoxygenase Inhibition by Plant Extracts. Biomolecules 2021, 11, 152. [Google Scholar] [CrossRef]
- Chen, Y.; Chi, L.; Liang, X.; Shi, Y.; Wu, T.; Ye, M.; Han, P.; Lin, L.; Zhang, L.; Xu, P. Essential Oils of Cedrus deodara Leaves Exerting Anti-Inflammation on TPA-Induced Ear Edema by Inhibiting COX-2/TNF-α/NF-ΚB Activation. J. Essent. Oil Bear. Plants 2020, 23, 422–431. [Google Scholar] [CrossRef]
- Karrat, L.; Abajy, M.Y.; Nayal, R. Investigating the Anti-Inflammatory and Analgesic Properties of Leaves Ethanolic Extracts of Cedrus libani and Pinus brutia. Heliyon 2022, 8, e09254. [Google Scholar] [CrossRef]
- Douros, A.; Hadjipavlou-Litina, D.; Nikolaou, K.; Skaltsa, H. The Occurrence of Flavonoids and Related Compounds in Cedrus brevifolia A. Henry Ex Elwes & A. Henry Needles. Inhibitory Potencies on Lipoxygenase, Linoleic Acid Lipid Peroxidation and Antioxidant Activity. Plants 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Cretu, E.; Trifan, A.; Aprotosoaie, A.C.; Miron, A. 15-Lipoxygenase Inhibition, Superoxide and Hydroxyl Radicals Scavenging Activities of Cedrus brevifolia Bark Extracts. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2013, 117, 250–256. [Google Scholar] [PubMed]
- Elias, A.; Shebaby, W.N.; Nehme, B.; Faour, W.; Bassil, B.S.; El Hakim, J.; Iskandar, R.; Dib-Jalbout, N.; Mroueh, M.; Daher, C. In Vitro and In Vivo Evaluation of the Anticancer and Anti-Inflammatory Activities of 2-Himachelen-7-Ol Isolated from Cedrus libani. Sci. Rep. 2019, 9, 12855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouyahya, A.; Lagrouh, F.; El Omari, N.; Bourais, I.; El Jemli, M.; Marmouzi, I.; Salhi, N.; Faouzi, M.E.A.; Belmehdi, O.; Dakka, N. Essential Oils of Mentha viridis Rich Phenolic Compounds Show Important Antioxidant, Antidiabetic, Dermatoprotective, Antidermatophyte and Antibacterial Properties. Biocatal. Agric. Biotechnol. 2020, 23, 101471. [Google Scholar] [CrossRef]
- Marmouzi, I.; Kharbach, M.; El Jemli, M.; Bouyahya, A.; Cherrah, Y.; Bouklouze, A.; Vander Heyden, Y.; Faouzi, M.E.A. Antidiabetic, Dermatoprotective, Antioxidant and Chemical Functionalities in Zizyphus lotus Leaves and Fruits. Ind. Crops Prod. 2019, 132, 134–139. [Google Scholar] [CrossRef]
- Heinrich, M.; Jiang, H.; Scotti, F.; Booker, A.; Walt, H.; Weckerle, C.; Maake, C. Medicinal Plants from the Himalayan Region for Potential Novel Antimicrobial and Anti-Inflammatory Skin Treatments. J. Pharm. Pharmacol. 2021, 73, 956–967. [Google Scholar] [CrossRef]
- Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Çol Ayvaz, M.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesterase and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Molecules 2020, 25, 1710. [Google Scholar] [CrossRef] [Green Version]
- Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.-L.; Aligiannis, N. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus Alba Wood. Molecules 2017, 22, 514. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, Z.; Song, W.; Zhao, Z.; Zhao, Y. Isolation of Proanthocyanidins from Pinus Thunbergii Needles and Tyrosinase Inhibition Activity. Process Biochem. 2021, 100, 245–251. [Google Scholar] [CrossRef]
- Yu, Z.-L.; Zhang, Z.; Zeng, W.-C. Investigation of Antibrowning Activity of Pine Needle (Cedrus deodara) Extract with Fresh-Cut Apple Slice Model and Identification of the Primary Active Components. Eur. Food Res. Technol. 2014, 239, 669–678. [Google Scholar] [CrossRef]
- Kakumu, Y.; Yamauchi, K.; Mitsunaga, T. Identification of Chemical Constituents from the Bark of Larix kaempferi and Their Tyrosinase Inhibitory Effect. Holzforschung 2019, 73, 637–643. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a Hundred Plant Extracts as Tyrosinase and Elastase Inhibitors, Two Enzymatic Targets of Cosmetic Interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Yakovenko, O.; Sharma, S.; Forero, M.; Tchesnokova, V.; Aprikian, P.; Kidd, B.; Mach, A.; Vogel, V.; Sokurenko, E.; Thomas, W.E. FimH Forms Catch Bonds That Are Enhanced by Mechanical Force Due to Allosteric Regulation. J. Biol. Chem. 2008, 283, 11596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abad-Zapatero, C.; Goldman, R.; Muchmore, S.W.; Hutchins, C.; Stewart, K.; Navaza, J.; Payne, C.D.; Ray, T.L. Structure of a Secreted Aspartic Protease from c. Albicans Complexed with a Potent Inhibitor: Implications for the Design of Antifungal Agents. Protein Sci. A Publ. Protein Soc. 1996, 5, 640–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Hatsuta, K.; Niikawa, M.; Imaishi, H. Detoxification of Aflatoxin B1 Contaminated Maize Using Human CYP3A4. J. Microbiol. Biotechnol. 2020, 30, 1207–1213. [Google Scholar] [CrossRef]
- Niwa, T.; Inoue-Yamamoto, S.; Shiraga, T.; Takagi, A. Effect of Antifungal Drugs on Cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 Activities in Human Liver Microsomes. Biol. Pharm. Bull. 2005, 28, 1813–1816. [Google Scholar] [CrossRef] [Green Version]
- Santiuste, J.M.; Tarján, G.; Ullrich, E.; Takács, J.M. Contribution to Linearly Programmed Temperature Gas Chromatography: Further Application of the Van Den Dool–Kratz Equation, and a New Utilization of the Sadtler Retention Index Library. J. Chromatogr. A 2008, 1181, 103–115. [Google Scholar] [CrossRef]
- Benkhaira, N.; Koraichi, S.I.; Fikri-Benbrahim, K. In Vitro Methods to Study Antioxidant and Some Biological Activities of Essential Oils: A Review. Biointerface Res. Appl. Chem. 2022, 12, 3332. [Google Scholar]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and Antioxidant Properties of the Essential Oils and Methanol Extract from Mentha longifolia L. Ssp. longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Mrabti, N.N.; Ouassou, H.; Sheikh, R.A.; Abdallah, E.M.; Assaggaf, H.; Bakrim, S.; Alshahrani, M.M.; Awadh, A.A.A.; Qasem, A.; et al. Phytochemical Variability, In Vitro and In Vivo Biological Investigations, and In Silico Antibacterial Mechanisms of Mentha piperita Essential Oils Collected from Two Different Regions in Morocco. Foods 2022, 11, 3466. [Google Scholar] [CrossRef]
- Hadni, H.; Bakhouch, M.; Elhallaoui, M. 3D-QSAR, Molecular Docking, DFT and ADMET Studies on Quinazoline Derivatives to Explore Novel DHFR Inhibitors. J. Biomol. Struct. Dyn. 2021. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadni, H.; Fitri, A.; Benjelloun, A.T.; Benzakour, M.; Mcharfi, M. Evaluation of Flavonoids as Potential Inhibitors of the SARS-CoV-2 Main Protease and Spike RBD: Molecular Docking, ADMET Evaluation and Molecular Dynamics Simulations. J. Indian Chem. Soc. 2022, 99, 100697. [Google Scholar] [CrossRef]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET Modeling Approaches in Drug Discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
No. a n | Compounds b | Molecular Formula | RI c | RI lit d | %Relative Peak Area | Identification |
---|---|---|---|---|---|---|
Cedrus atlantica EO | ||||||
1 | Limona ketone | C9H14O | 1109 | 1105 | 0.58 | MS, IR |
2 | p-Methylacetophenone | C9H10O | 1142 | 1142 | 0.14 | MS, IR |
3 | α-Longipinene | C15H24 | 1347 | 1347 | 0.16 | MS, IR |
4 | Ylangene | C15H24 | 1221 | 1219 | 0.24 | MS, IR |
5 | α-Copaene | C15H24 | 1375 | 1376 | 0.11 | MS, IR |
6 | Eudesma-2,4,11-triene | C15H22 | 1497 | 1497 | 1.38 | MS, IR |
7 | Isovalencenyl formate | C16H24O2 | 1782 | 1786 | 0.39 | MS, IR |
8 | β—Panasinsene | C15H24 | 1411 | 1413 | 1.61 | MS, IR |
9 | Longifolene | C15H24 | 1398 | 1398 | 12.2 | MS, IR |
10 | Himachala-2,4-diene | C15H24 | 1499 | 1495 | 1.35 | MS, IR |
11 | Vestitenone | C12H18O | 1371 | 1373 | 1.15 | MS, IR |
12 | α-Himachalene | C15H24 | 1475 | 1475 | 14.43 | MS, IR |
13 | Himachalene-1,4-diene | C15H24 | 1499 | 1499 | 0.22 | MS, IR |
14 | γ-himachalene | C15H24 | 1499 | 1500 | 0.99 | MS, IR |
15 | α-cedrene | C15H24 | 1403 | 1404 | 2.90 | MS, IR |
16 | β-Himachalene | C15H24 | 1505 | 1501 | 28.99 | MS, IR |
17 | δ-Cadinene | C15H24 | 1469 | 1468 | 3.65 | MS, IR |
18 | α-Bisabolene | C15H24 | 1518 | 1521 | 7.71 | MS, IR |
19 | α-calacorene | C15H20 | 1547 | 1547 | 0.37 | MS, IR |
20 | Himachalene oxide | C15H22O | 1551 | 1551 | 0.77 | MS, IR |
21 | Longiborneol | C15H26O | 1593 | 1592 | 0.71 | MS, IR |
22 | β-Himachalene oxide | C15H24O | 1610 | 1610 | 1.18 | MS, IR |
23 | Isolongifolol | C15H26O | 1733 | 1733 | 1.40 | MS, IR |
24 | Di-epi-1,10-cubenol | C15H26O | 1615 | 1611 | 1.70 | MS, IR |
25 | Himachalol | C15H26O | 1648 | 1647 | 0.85 | MS, IR |
26 | Allo-himachalol | C15H26O | 1674 | 1679 | 2.27 | MS, IR |
27 | (Z)-γ-Atlantone | C15H22O | 1698 | 1699 | 1.52 | MS, IR |
28 | Deodarone | C15H24O2 | 1781 | 1780 | 4.18 | MS, IR |
29 | (Z)-α-Atlantone | C15H22O | 1703 | 1703 | 4.81 | MS, IR |
30 | Aromadendrene oxide | C15H24O | 1642 | 1642 | 0.44 | MS, IR |
Total identified % | 98.40 % | |||||
Monoterpene hydrocarbons | - | |||||
Oxygenated monoterpenes | - | |||||
Sesquiterpene hydrocarbons | 77.9 | |||||
Oxygenated sesquiterpenes | 15.92 | |||||
Ketones | 0.72 | |||||
Other | 4.03 |
Bacterial Strain | C. atlantica EO % v/v | Chloramphenicol µg/mL | Vancomycin µg/mL | ||||||
---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
S. aureus ATCC 29213 | 0.125 | 0.125 | 1.0 | 2.0 | 2.0 | 1.0 | 2.0 | 8.0 | 4.0 |
M. luteus ATTC 14452 | 0.0625 | 0.125 | 2.0 | 32.0 | 64.0 | 2.0 | 1.0 | 2.0 | 2.0 |
E. faecalis (Clinical isolate) | 0.25 | 0.5 | 2.0 | 8.0 | 16.0 | 2.0 | 8.0 | 16.0 | 2.0 |
E. coli ATCC 25922 | 0.25 | 0.25 | 1.0 | 64.0 | 64.0 | 1.0 | 32.0 | 32.0 | 1.0 |
S. enterica serotype Typhi | 1.0 | 1.0 | 1.0 | 16.0 | 16.0 | 1.0 | 256.0 | 256.0 | 1.0 |
P. aeruginosa ATCC 27853 | 0.5 | 2.0 | 4.0 | 16.0 | 16.0 | 1.0 | 32.0 | 32.0 | 1.0 |
K. aerogenes ATCC 13048 | 0.25 | 0.25 | 1.0 | 32.0 | 32.0 | 1.0 | 16.0 | 32.0 | 2.0 |
Fungal Strains | C. atlantica EO (% v/v) | Fluconazole (µg/mL) | ||||
---|---|---|---|---|---|---|
MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | |
C. albicans | 1.0 | 2.0 | 2.0 | 8.0 | 8.0 | 1.0 |
C. tropicalis | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 |
P. expansum (Food-spoilage isolate) | 1.0 | 1.0 | 1.0 | 16.0 | 16.0 | 1.0 |
C. puteana (ATCC 9351) | 4.0 | 8.0 | 2.0 | 32.0 | 64.0 | 2.0 |
Assay | CAEO (IC50 µg/mL) | Quercetin (IC50 µg/mL) |
---|---|---|
5-Lipoxygenase | 36.42 ± 0.103 | 21.31 ± 0.017 |
Tyrosinase | 141.103 ± 0.06 | 93.27 ± 0.021 |
Compounds | Absorption | Distribution | Metabolism | Excretion | Toxicity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intestinal Absorption (Human) | VDss (Human) | BBB Permeability | CNS Permeability | Substrate | Inhibitor | Total Clearance | AMES Toxicity | ||||||
CYP | |||||||||||||
2D6 | 3A4 | 1A2 | 2C19 | 2C9 | 2D6 | 3A4 | |||||||
Numeric (% Absorbed) | Numeric (Log L/kg) | Numeric (Log BB) | Numeric (Log PS) | Categorical (Yes/No) | Numeric (Log ml/min/kg) | Categorical (Yes/No) | |||||||
Longifolene | 95.767 | 0.781 | 0.808 | −1.949 | No | Yes | No | No | No | No | No | 0.901 | No |
α-Himachalene | 94.556 | 0.648 | 0.731 | −2.322 | No | No | Yes | Yes | Yes | No | No | 1.1 | No |
β-Himachalene | 94.465 | 0.657 | 0.718 | −2.322 | No | No | Yes | No | Yes | No | No | 1.089 | No |
Compounds | Drug Likeness | ||||
---|---|---|---|---|---|
Lipinski | Ghose | Veber | Egan | Bioavailability Score | |
Longifolene | Yes (1 violation) | Yes | Yes | Yes | 0.55 |
α-Himachalene | Yes (1 violation) | Yes | Yes | Yes | 0.55 |
β-Himachalene | Yes (1 violation) | Yes | Yes | Yes | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hachlafi, N.; Mrabti, H.N.; Al-Mijalli, S.H.; Jeddi, M.; Abdallah, E.M.; Benkhaira, N.; Hadni, H.; Assaggaf, H.; Qasem, A.; Goh, K.W.; et al. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules 2023, 28, 5913. https://doi.org/10.3390/molecules28155913
El Hachlafi N, Mrabti HN, Al-Mijalli SH, Jeddi M, Abdallah EM, Benkhaira N, Hadni H, Assaggaf H, Qasem A, Goh KW, et al. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules. 2023; 28(15):5913. https://doi.org/10.3390/molecules28155913
Chicago/Turabian StyleEl Hachlafi, Naoufal, Hanae Naceiri Mrabti, Samiah Hamad Al-Mijalli, Mohamed Jeddi, Emad M. Abdallah, Nesrine Benkhaira, Hanine Hadni, Hamza Assaggaf, Ahmed Qasem, Khang Wen Goh, and et al. 2023. "Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations" Molecules 28, no. 15: 5913. https://doi.org/10.3390/molecules28155913
APA StyleEl Hachlafi, N., Mrabti, H. N., Al-Mijalli, S. H., Jeddi, M., Abdallah, E. M., Benkhaira, N., Hadni, H., Assaggaf, H., Qasem, A., Goh, K. W., AL-Farga, A., Bouyahya, A., & Fikri-Benbrahim, K. (2023). Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules, 28(15), 5913. https://doi.org/10.3390/molecules28155913